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FOREWORD

This handbook has been produced by the Space Systems Division of

the Martin Company under Contract NAS 8-5031 with the George C.
Marshall Space Flight Center of the ik-ationalAeronautics and Space

Administration. The handbook expands and updates work previously

done by the Martin Company and also incorporates, as indicated in the

text, some of the work done by Space Technology Laboratories, Inc.
and Norair Division of Northrop Corporation under previous contracts

with the George C. Marshall Space Flight Center. The Orbital Flight
Handbook is considered the first in a series of volumes by various

contractors, sponsored by MSFC, treating the dynamics of space flight

in a variety of aspects of interest to the mission designer and cval-
uator. The primary purpose of these books is to serve as a basic tool

in preliminary mission planning. In condensed form they provide back-

ground data and material collected through several years of intensive
studies in each space mission area, such as earth orbital flight, lunar

flight and interplanetary flight. Volume I, the present volume, is con-
cerned with earth orbital missions.

The Martin Company Program Manager for this project has been
Jorgen Jensen; George Townsend has beer_ Technical Director. George
Townsend has also had the direct responsibility for the coordination
and preparation of this volume. Donald Kraft is one of the principal
contributors to this volume; information has also been supplied by
JyriKork and Sidney Russak. Barclay E. Tucker and John Magnus
have assisted in preparing the handbook for publication.

The assistance given by the Future Project Office at MSFC and by
the MSFC Contract Management Panel, directed by Conrad D. Swanson,
is gratefully acknowledged.
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I. INTRODUCTION

The material within the manual is arranged in

three major areas and these areas are further
divided into related discussions. The classifi-

cation of material is as follows:

Basic Techniques and Data--Chapters II

through V.

.Mission Sequencin_ Problems--Chapters VI

through L-_I.

Requirem.ents--Chapters X through XIII.

These areas encompass most of the material in

the field of earth orbital mechanics. The intent

in all of these discussions is to provide analytic

relationships which define the problem, and to

augment these discussions with an error analysis

and graphical or tabular data. In some of the
material, however, the number of variables is

so large that it is not practical to present graphi-
cal data; in others, the problem is so involved

that it is not possible to obtain analytic solutions

(such investigations were conducted numerically).

In all cases, however, the prescribed purpose

has been achieved without sacrificing the scope

of the investigation.

A brief resurge of some of the more important

featur_:_ ,_':" th_se chapt_r_ is presented in the

followin_ paragraphs.

II. PHYSICAL DATA

The material in this chapter reviews some of

the work published by R.._I. L. and by W. R'I. P[aula

for the purpose of presenting a set of constants

necessary in the computation of trajectories.

Appendix B extending this data is an internally

consistent set of constants developed by Dr. H.

G. L. Krause.

The chapter then discusses other geophysical
factors which can affect the selection of an orbit.

Included in these discussions is material on the

radiation environment, the meteoroid environ-

ment and the upper atmosphere and its variability.

The chapter concludes with a discussion of the
measurement of time, distance, mass, etc. This

portion of the chapter contains tables constructed

for the purposes of making the transformation of
units as simple and accurate as possible.

m. ORBITAL MECHANICS

The discussions of this chapter present the

basic central motion trajectory equations to be
used in the balance of the text. Relations de-

fining the 3-D motion are developed and a large

number of identities and equations are presented

for elliptic motion. These equations (numbering
in excess of 400) are followed by approximately

75 series expansions of the time variant orbital

parameters with arguments of the mean anomaly,

the true anomaly, and the eccentric anomaly. The

chapter concludes with a discussion of the n-body

problems.

IV. PERTURBATIONS

Special and general perturbation techniques

are discussed, and the results of several general

perturbation theories are catalogued and compared.

This presentation provides the reader with the in-

formation necessary to evaluate the theories for

each individual application and with an awareness

of the subtle differences in the approaches and

results.

V. SATELLITE LIFETI.AIES

The material of this chapter presents in suc-

cession discussions pertaining to the aerociyr, amic

forces in free molecular flow, to analytic approxi-

mations for use in determining the lifetime of

satellites in circular orbits in a nonrotating'atmos-

phere, and, finally, to decay rates in a rotating

oblate atmosphere. Where possible, analytic ex-

pressions have been obtained, but accuracy has

not been sacrificed for form, and extensive use

has been made of numerical computation facilities.

Here again, however, attention to detail revealed

several nondimenslona! decay parameters and made

it possible to make th_se computations more effi-

c i_ntly.

VI. RIANEUVERS

The general problem of orbital maneuvering

is approached from several directions. First,

the case of independent adjustment of each of the

six constants of integration is presented both for

the case of circular motion and elliptic motion.

Then the general problem of transferring between

two specified terminals in space is developed.

These discussions, like those of the other chapters,

are fully documented.

The chapter concludes with a discussion of the

effects of finite burning time, of the requirements

for the propulsion system to accomplish the pre-

viously described maneuvers, a discussion of the

error sensitivities, and a discussion of the sta-

tistical distribution of errors in the resultant

orbital elements.

VII. RENDEZVOUS

Rendezvous is broken into two basic phases

for the purpose of the discussion in this handbook.

The first of these phases contains the launch and

ascent timing problems, the problems of maneu-

vers and of the relative merits of direct ascent

versus the use of intermittent orbits or rendezvous

compatible orbits. The second phase is the dis-

cussion of the terminal maneuvers. Included in

this final section are the equations of relative

motion, a discussion of possible types of guidance

laws, and information necessary to evaluate the

energy and timing of the terminal maneuver whether

it be of a short or long term nature.
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VIII. ORBITAL DEPARTURE

The problem of recovering a satellite from
orbit at a specific point on earth at a specific time

is essentially the reverse of the rendezvous prob-

lem, and the approach taken here is the same.

First, an intermediate orbit is established which

satisfies the timing constraints, then the maneuver

is completed by deorbiting without requiring a
lateral maneuver. For cases where this approach

should prove impractical, data for a maneuverable

re-entry is also presented.

The presentation progresses from the timing

problem to the analyses of the intervals between

acceptable departures, the finite burning simu-
lation of the deorbit maneuver, and the error

sensitivities for deorbiting.

IX. SATELLITE RE-ENTRY

Once the satellite leaves orbit it must penetrate

the more dense regions of the atmosphere prior

to being landed. This chapter treats analytically

and parametrically (i. e., as function of the re-

entry velocity vector) the various factors which
are characteristic of this trajectory: Included
are the time histories of altitude, velocity and

flight path angle; also included are the range
attained in descent, the maximum deceleration,

the re.aximum dynamic pressure, and equilibrium

radiative skin "_emperatures, as well as a dis-

cussion of aerodynamic maneuverability. Thus,

this chapter makes it possible to analyze the tra-

jectory all the way from launch to impact in a

reasonably accurate manner before progressing

to a detailed numerical study of a particular vehi-

cle flying a particular trajectory.

X. WAITING ORBIT CRITERIA

The balance of the book treats problems as-

sociated with the flight mechanics aspects of

specific missions. However, these are some
problems which are not of this nature but which
can influence the selection of orbits. (The radi-

ation environment etc., of Chapter II is an example

of this type material. ) Accordingly, Chapter X
presents some information pertaining to the solar
radiation heat level, and to the storage of cryo-

genic fluids. This information is treated only

qualitatively because it is outside the general
field of orbital mechanics and is itself the subject

for an extensive study. The material is included

however, because of the requirement for fuel in

many of the discussions of maneuver outlined in
the rest of the text.

XI. ORBIT COMPUTATION

The discussions of this chapter tie many of the

previous chapters together since all trajectories
to be of value must be known. The discussions

progress from the basic definitions of the basic

coordinate systems and transformations between

them, to the determination of initial values of the
six constants of integration, to the theory of ob-

servational errors, and finally to the subject of

orbit improvement. In this process, data is pre-

sented fqr most of the current tracking facilities

and for many basic techniques applicable to the

various problem areas (e.g., orbit improvement

via least squares, weighted least squares, mini-
mum variance, etc. ). The chapter concludes with

a presentation of data useful in the preliminary

analysis of orbits.

XlI. GUIDANCE AND CONTROL REQUIREMENTS

The discussions of this chapter relate the

errors in the six constants of integration to errors

in a set of six defining parameters. This 6 x 6

matrix of error partials has been inverted to ro-

tate the parameter errors to errors in the ele-
ments. The result is that it is possible to pro-

gress from a set of parameter errors at some
time directly to the errors in the same parameters

at any other time. This formulation has proved

itself useful not only in the study of error propa-

gation but in the analysis of differential corrections

and the long time renaezvous maneuver.

Also included in the chapter is information

related to problems of guidance system design,

the attitude disturbing torques and the attitude

control system.

XIII. MISSION REQUIREMENTS

The purpose of this chapter is to present many

problems which directly affect the selection of
orbits for various missions and experiments. The

data include satellite coverage (both area and

point), satellite illumination and solar eclipses,
solar elevation above the horizon, surface orienta-

tion relative to the sun, sensor limitations (e. g.,

photographic resolution considerations, radar

limitations), and ground tracks. Thus, giveh a

particular mission, one can translate the accompa-

nying requirements to limitations on the orbital

elements and, in turn, pick a compromise set

which best satisfies these requirements (when the

radiation environment, meteoroid hazard and radi-

ation heat loads have been factored into the selec-

tion).
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II. PHYSICAL DATA

SYMBOLS

Semimajor axis of the instantaneous

elliptical orbit

Eccentricity of the instantaneous ellipti-
ca/ orbit

Flattening = (l_equatorial - Rpola r) -

R
equator h_.l

Universal gravitational constant

Inclination of the instantaneous elliptical
orbit

Coefficients of the potential function

Solar gravitational constant -- G
m®

Latitude

Coefficient of the lunar equation

Mass

Mean anomaly of epoch

Number

Probability

Legendre polynomial of order n

Radius

Radius of action (Tisserand' s criteria)

%
U

w

<

0

®

P

Coefficient obtained from t distribution

Potential function

Mean of a sample of size n

Gravitational constant for a planet : Gm
P

Mean of population from which sample is

taken

Parallax = ratio of two distances

Variance of population from which s_mple

is taken

Estimate of the variance assuming the

popuhL_iunpa_'ent is normal

Orbital period

Longitude of the ascending node of the

instantaneous elliptical orbit

Argument of perigee of the instantaneous

elliptical orbit

Lunar

Solar

Earth

Planet

Subscrip:s
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INTRODUCTION

In the study of trajectories about the earth,

factors defining the trajectory must be accurately
known. Since these factors fall into two areas:

Astronautical constants

Geophysical constants

each of these general areas will be investigated.

In addition, information which is not of a flight
mechanics nature but which can effect the selectLon

of orbits will also be presented. This type of in-
formation includes :

Radiation hazard data (all types)

Micrometeoroid data

Shielding data.

Finally, information necessary to convert this

data from one set of units to another will be pre-

sented. This discussion goes beyond unit con-

version, however, to include a review of time
standards and measurement. This review is ap-

plicable to the material presented in all of the
chapters which follow.

A. ASTRONAUTICAL CONSTANTS

Three noteworthy articles dealing with the
constants which define the trajectory of a mis-

sile or space vehicle have been published within

the past two years. These articles are:

"Analysis and Standardization of Astro-
Dynamic Constants" by M. W. Makemson,

R. M. L. Baker, Jr., and G. B. Westrom,

Journal of the Astronautical Sciences, Vol.

8, No. 1, Spring 1961, pages 1 through 13.

"A Geoid and World Geodetic System

Based on a Combination of Gravimetric,

Astrogeodetic and Satellite Data" by W.
M. Kaula, Journal of Geophysical Research,

Vol. 66, No. 6, June 1961, pages 1799
through 1811.

"On a Consistent System of Astrodynamic
Constants" by H. G. L. Krause, NASA

Report MTP-P&VE-F-62-12, Marshall

Space Flight Center, 12 December 1962.

The first paper reviews measurements of

heliocentric, planetocentric and selenocentric
constants; the second treats the determination

of the geocentric constants by statistical methods

using the graviznetric, astrogeodetic and satellite

data. The work reported in these papers is
excellent and will not be reproduced since it is

readily available. Rather the published data
will be summarized and the best values selected

for use in trajectory analysis. It is felt that

this step is necessary because (1) there are
small inconsistencies in the data, and (2} there
is no mention in the first article of a method of

analysis or an approximate confidence interval.
"Confidence interval" will be used here to in-

dicate that the sample interval brackets the true

mean some prescribed percentage of the time.

The discussion of these constants will be

followed by a presentation of desirable data
which is obtained from the constants and tables

of conversions relating these quantities to the

corresponding quantities in other sets of units.

This latter set of tables is particularly important
since there is much confusion as to the meaning

of generally used units and the accuracy of the
conversion factors.

Dr. Krause, s paper, which is presented as

Appendix B to this volume by consent of the

author, presents a slightly different set of con-
stants. This results from the fact that the

approach taken was to produce an internally con-
sistent set of constants based on the author' s

adopted values of the independent quantities

rather than to accept the slight inconsistencies

resulting from the development of "_est values"
for each of the quantities. It is noted, however,

that in nearly every instance Dr. Krause' s

values differ from those quoted in this section

by a quantity less than the uncertainties quoted

in this chapter. Thus, the two approaches seem
to complement each other.

1. Analysis of Constants

Although Baker' s exact analytical procedure
is not known, his results indicate a process

similar to the following:

(i) Collect all available da:a pertinent to

a particular quantity.

(2) Obtain the mean and standard deviation

of this sample

n

IZE= E x i

i=l

n

ffi _ (xi - x-) 2

i=1

2 n-i 2
(7 ffi (Y

n

(3)

(4)

Throw out all points deviating from

the mean by more than one standard
deviation.

Recompute the mean and standard
deviation.

Assuming that the various pieces of data are

of roughly the same accuracy (this assumption

is necessary since the uncertainties quoted for

the number are inconsistent} and that there is no

uniform bias to the determinations, this procedure

will result in a reasonable estimate for the

quantity and its uncertainty, provided that the

sample size is sufficiently Large. However,

there is no guarantee that the estimate will be

reasonable for small samples. A general feel

for the maximum number of random, unbiased

determinations required for a specified accuracy

of the resultant analysis can be obtained from

Tchebycheff, s inequality.
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P [ 0"

2
* O"

n =

b 2 (1 - p)

= an estimate of the minimum

sample size.

Since the general accuracy of the determina-
tions is quoted to about 1 to 5 parts in

104 and since the standard deviations are of

the same order,

or

* K
n = _ ; K= 1

n = 10K P = 90%

= 100K P : 99%

where K is a constant of proportionality.
Because the sample sizes are generally smaller
than 10, it may appear that the confidence level
for the quoted constants will be less than 90%
but probably greater than 80% for most but not
all of the constants. This, however, is not
true as will be shown in the following para-

graphs.

Tchebycheff' s inequality provides a general
feel for the concept of assigning a probability
of correctness to the quoted value of any of the
discussed constants. However, the question
arises as to the definition of the number K;
moreover, even if K is defined, the estimates

are in general too conservative. For this
reason, she method described below will be
utilized.

Assuming once again, that the samples come
from a normal distribution, the probability P

that a given value will fall in a quoted region
about the mean is

P Ix'a -a < /_t < _+a-a ] =P'VE VIT

However, care must be taken because the
quantities _'and @ used in this expression are
the mean and variance of the true population,

1 V'
not the estimates of _r _ = _ _ xi,

and a, _ = While these

estimates may be utilized there is no assurance
for the correctness for any but the large sample.
The solution to this problem is found in the "t"
distribution

. "i-V, _ (n I)I/2t • "

n (n - 11

This distribution involves only _, and the data

x i and is of n - 1 degree of freedom. Since this

distribution is also tabulated it is possible to
write

%
P

P (-tb< t<%) = -_-/% f (t; n- 1)dt:P=l-b

and convert the inequalities to obtain

< _+tb n(n I) ._j= 1 - b

The coefficient t b is called the b percent level

of t and locates points which cut off b/2 percent
of the area under f(t) on each tail (f(t) is sym-
metric about t = 0).

f (t)'-"_

-% =o %

Thus, the problem of defining the probability of
correctness which can be assigned to a quoted

constant is one of defining t b. Since in all the

work to be discussed 1 a variation will be quoted,

t b times the radical can be defined as (7 . This

assumption results in an estimate of the probable
correctness of the quoted constant which is a
function only of the number of data points.

% :
At this point it is possible to refer to a table of a
cumulative t distribution and obtain the estimate

of the confidence level for a given value of t b

(i.e., a specified sample size). However, since
this solution requires nonlinear interpolation,
the confidence levels have been plotted as a func-
tion of the sample size in Fig. 1. These data
will be utilized for all estimates to be made in
this section.

In view of the facts that the original measure-
ments do not agree to within the probable errors
quoted for the experiments and that the confidence
levels for the results are reasonable, this pro-
cedure appears to be the most attractive means
of resolving the confusion associated with these
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constants until more and better data can be ob-

tained. This is not meant to imply that Baker, s
data should be used as presented because in
several cases his constants deserve special
attention. In any event, when superior data be-
come available they should either be weighted

[
heavily _ obtained from 0 =

i=l 1

or utilized in preference to any other value.

Kaula, s data will not be reviewed specifically
because it is included in the analysis which fol-
lows. However, in the discussion of the geo-
centric constants, special note will be made of
the agreement of Kaula, s data with Baker, s
and that obtained by the criteria outlined above.

2. Heliocentric Constants

a. Solar parallax

Planetary observations and theories of
planetary motion permit precise computation
of the angular position of the planets. Although
angular measurements are quite accurate, no
distance scale is readily available. Attempts
to resolve this problem have led to the compari-
son of large, unknown interplanetary distances
to the largest of the known distances available
to man, the equatorial radius of the earth. In
the process, solar parallax was defined as the
ratio of the earth, s equatorial radius to the
mean distance to the sun from a fictitious un-
perturbed planet whose mass and sidereal
period are those utilized by Gauss in his com-
putation of the solar gravitation constant (i. e.,
one astronomical unit). This definition renders
unnecessary the revisions in planetary tables
as more accurate fundamental constants are

made available, since the length of the a_tro-
nomical unit can be modified.

In the broadest sense, the solar parallax is
the ratio between two sets of units: (1) the

astronomical set utilizing the solar mass, the
astronomical unit and the mean solar day, and
(2) the laboratory set (cgs, etc. ).

Before reviewing solar parallax data obtained
from the Literature. it is worthwhile to consider

the means of computing the values and their un-
certainties.

The first method, purely geometric, is
triangulation based on the distance between two
planets, between a planet and the sun, etc. One
such computation was made by Rabe following a
close approach of the minor planet Eros. The
second method is an indirect approach based on
Kepler, s third law (referred to in the literature
as the dynamical method). The third method
employs the spectral shift of radiation from
stars produced by the motion of the earth.
Perturbations on the moon produced by the sun
constitute a fourth means of computing solar
parallax to good precision provided that the
ratio of the masses of the earth and moon is

well known. A fifth approach utilizes direct
measurements of distance between bodies in

space obtained from radar equipment.

Other approaches have also been advanced,
but the five listed constitute the most frequently
employed.

Table I presents the adopted value of solar
parallax (from Baker) along with the unweighted
mean of the data and the mean of the adjusted
sample. (Special note is made that the value

adopted by Baker corresponds most closely to
that of Rabe which has been widely utilized
during recent years. ) The corresponding value
of the astronomical unit is also presented.

TABLE 1

Solar Parallax

Jnc orrected

Adopted Mean and
by Standard

Baker Deviation

Solar parallax 8. 798± 8. 7995±
(sec) 0.002 0. 0049

Astronomical 149.53_ 149. 507 ±

(106 kin) 0.03 0.083unit

Confidenc e ? 99%
level

Adjusted
Mean and
Standard

Deviation

8.8002*
0.0024

149.495 ±
0.041

92%

The data in Table 1 show reasonably good
agreement between the various estimates.
However, it is interesting to note that me adjusted
mean moved away from the value adopted by
Baker. This behavior is undesirable but was not
unforeseen because of the limitations of the
method and the fact that more of the measure-

ments were situated in this direction. However,
most of the reported measurements were made
before 1945 and the general trend during subse-
quent years has been toward slightly lower values
of the solar parallax. If it is assumed that this
trend reflects increased accuracy in the measure-
ments (resulting in part from the availability of
radar data}, and if the more recent measure-
ments are weighted by the time of determination
(since the uncertainty in the various measure-
ments is much larger than the quoted error in the
experiment), a value of solar parallax of 8. 7975 sec
± 0.0005 is obtained. This value is almost ident-

ical to Baker's which, as was noted, agrees with
that of Rabe (generally accepted by those perform-
ing astronomical computations). For this reason,
and for consistency in calculations by various
groups within industry and the government, Baker's
value of the solar parallax should be used. How-
ever, his assignment of probable error in this
constant apparently is too large in view of the

agreement of these data. A maximum uncertainty
of ± 0.001 is more realistic.

b. Solar gravitational constant

In 1938 it was internationally agreed (IAU 1938)
that to maintain the Gaussian value of the solar

gravitational constant (Ks2 = Gn_ where G :

Universal gravitational constant) in spite of

changes in the definition of the sidereal year
and the mass of the earth, the astronomical unit
0kU) would be modified when necessary. Thus
the solar gravitational constant has remained.
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where

.2_. a2I" m$

mO+ m®

-- 0,017, 202, 098, 95
AU3/2

day

a S = 1 AU

_- -- 365. 256, 383, 5 mean solar days

m = solar mass = 1
®

m@

m

®

ratio of earth mass to solar mass

0. 000,002,819

This value of K s is accurate to its ninth signifi-

cant figure by definition. The precision in this

determination is contrasted to the accuracy of a
determination in laboratory units from the fol-

lowing equation

Ks 2= Gm
Q

where

G = the universal gravitational constant

in the cgs or English system of

units (mass in same system).

Utilizing even the most accurately known

values of G and m (obtained from Westrom) the

result is accurate only to its third place.

Ks 2 -- {E6.670 (I _0.0007)10-8_

._.9866 (1+0.007)1033]}

K s = 1.511 (i ±0.0005) 1013cm3/2/sec

The evaluation of K s in laboratory units using

the solar parallax proves equally as inadequate

since the uncertainty is large. When the adopted

value indicated in Table 1 is used, K s is found
to be

K s = 1. 1509 (1 ± 0. 00015)1013 cm3/ 2/ sec

It is thus advantageous to compute in the

astronomical system of units, converting only

when necessary. This procedure assures that
the results will become more accurate as better

values for the astronomical unit are obtained

and produces a much lower end figure error due
to round-off.

3. Planetocentric Constants

a. Planetary masses

Planetary masses are significant in comput-

ing transfer trajectories to the planets and tra-

jectories about these bodies. The two most

common methods of determining planetary mass
are by the perturbation actions on other bodies

or by observations of the moons of the planet.
While the accuracies of the two approaches differ,

each involves such complex functions as near-

ness of approach, mass of the planets, size and

number of moons, etc., that no general conclu-

sion can be made as to the superiority of one to
the other.

Table 2 presents data reduced from deter-

minations of the mass of each of the planets in

terms of the solar mass, the related mass in

kilograms, and the probable uncertainty in the
measurement. In addition, since the number of

points in the sample varies from planet to planet,

this quantity is noted along with an estimate of

the confidence level for the result.

In each case shown in Table 2 the results ob-

tained with the adjusted sample approach those

of Baker to within the uncertainties quoted for

the masses and are practically identical. How-

ever, it should be noted that the uncertainties

quoted for these masses are different at times.

This discrepancy is believed to result from the

somewhat arbitrary handling of the limits in the

reviewed reference. On the basis of the data

available, it seems more proper to use the

standard deviation, as obtained from the adjusted
sample, rather than Baker' s value.

b. Planetary dimensions

Vvhile the physical dimensions of the planets

have no effect on the trajectories of interplanetary

vehicles and the dimensions are generally

smaller than the uncertainty in the astronomical
unit, the constants must be known for self-con-

tained guidance techniques and for impact and
launch studies. For these reasons the best shape

of the various planets will be discussed.

Table 3 presents equatorial and polar radii

and a quantity referred to in the literature as

the flattening which is defined to be

f = Re_,uatorlal -Rpolar

equatorial

The table also presents comparisons of various

data, the number of points in the sample and an
estimate of the confidence level.

The sample size for the planet Uranus is

questioned because Baker references only one

source for this planet and that is a weighted
average of several determinations. In the tabu-

lation on Mars, note should be made of the

excellent agreement on the best value of the

radius given by the statistical approach and by

Baker, and of the slight discrepancies in the un-
certainties of the radius and in the best value

of the flattening. Therefore, it is once again
proposed that Baker, s value of the radii and

flattening (with one exception) be utilized but

that the uncertainty obtained via statistics be
associated with this number. The exception

exists in the case of Mars for which it is pro-

posed that 1/f be 75 ± 12, rather than Baker, s
value (150 ± 50) since this estimate is consistent

with the data.
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TABLE 2

Planetary Masses

Planet

Mercury

Venus

Earth-Moon

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Quantity of Interest

solar mass/mass of Mercury
Mass of Mercury in kg

Sample size
Com'id enc e level

Solar mass/mass of Venus

Mass of Venus in kg
Sample size
Confidence level

Solar mass/earth-moon mass

Mass of earth-moon in kg
Sample size
Confidence level

Solar mass/mass of Mars

NIas__ of _[ars in kg
Salnple size
Confidence level

Solar mass/mass of Jupiter

Mass of Jupiter in kg
Sample size
Confidence level

Solar mass/mass of Saturn

Mass of Saturn in kg

Sample size
Confidence level

Solar mass/mass of Uranus

Mass of Uranus in kg
Sample size
Confidence level

Solar mass/mass of Neptune

Mass af Neptune in kg
Sample size
Confidence level

Solar mass/mass of Pluto

Mass of Pluto in kg
Sample size
Confidence level

Adopted b7 Baker

6,100,000, 50,000

0.32567 x 1024
4

407,000 • 1.000

4.881____ix 1024
8

328,450 ± 50

6.0484_._1 x 1024
6

3,090.000 ± i0,000

6.0429! x 1024

6

1047.4 ± 0. I

1.89670 x 1027
8

3500.0 = 3

0.56760 x 1027
4 --

32,800 e 100

87.132 x 1024
2 _

19,500 ± 200

101.88 x lO 24
3 --
-

350,000 * 50,000

5.6760x 1024
3

Uncorrected Sample

6.400.000 ± 630,000

0.31041 x ]024

4
81%

406,200 ± 1,900

4.890_.._7x 1024
8

97%

328,500 ± I00

6.0474__9x 1024
6

92%

3,271,000 ± 795,000

0.5073__.33x 1024
6
92%

1047.89 • 1.87

1.89581 x 1027
8 _
97%

3497.3 * 4.5

0.56804 x 1027

4 --
81%

22,810 • 60

87.093 x 1024
2

5O%

19,500 i 200

101.88 x 1024
3 --

70%

333,000 ± 27,000

5.9658 x 1024
3 _
7O%

Adjusted Sample

6,030,000 ± 65,000

0.32945 x 1024

3
7O%

407,000 ± 1,300

4.881___!1x 1024
6
92%

328,430 ± 25

6.0487._8x 1024
4
81%

3,092,000 = 12.000
• ,24

0.6425.Ox _
4
81%

1047.41 • 0.08

1.89670 x 1027
4 m

81%

3499.8 • 1.7

0.56763 x 1027

3
7O%

.-.

--.

--.

Underlined digits are questionable
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TABLE 3

Planetary Dimens ions

Planet

Mercury

Venus

Mars

Jupiter

Satur n

Uranus

Neptune

Pluto

Quantity of Interest

Equatorial radius (km)

l]f

Polar radius (km)

Sample size
Confidence level

Equatorial radius _*(kin)

I/f

Polar radius (km)

Sample size
Confidence level

Equatorial radius (km)

1/f
Polar radius (km)

Sample size

Confidence level

EcFaatorial radius (kin)

I/f
Polar radius (kin)

Sample size
Confidence level

Equatorial radius (km}
l/f
Polar radius {km)

Sample size
Confidence level

Equatorial radius (km)
1/f
Polar radius (kin)

Sample size

Equatorial radius (kin)
1/f
Polar radius (kin)

Sample size
Confidence level

Equatorial radius (kin}
l/f
Polar radius (kin)

Sample size
Confidence level

Adopted by Baker

2,330 ± 15
?

?

4

?

6, 100 ± 10
?
?

6

?

3,415 i 5
150 ± 50

3,392 ± 12
9

?

71, 375 _ 50
15.2_ 0.1

66,679 ± 50
2
?

60, 503 ± 50

10.2± ?

54,569 ± 45

2

.9

24, 850 ± 50

?

.9

?

25,000 ± 250

58.5± ?
24,573 ± 250

2

?

3,000 ± 500
?
?
1
?

Uncorrected Sample

2, 355 • 39
?
?
4

81¢0

6,154 ± I00
?
?
6

92%

3, 377 ± 47
108.4 ± 54

3, 346 ± 55
9

98%

71,375 ± 20
15.2 = 0. I

66,679 ± 50
2
50%

60,160 ± 480
10.2± ?
54,262 ± 450
2
50%

24,847 ± 50
14 ± ? _"_

23,072 ± 50
?

24,400 ± 2100
58.5 ± ?
23,983 ± 2000
2
50%

2,934 ± 500
?
?
1

20%

Adjusted Sample

2,333 • I I
.9

.9

3
70%

6,106 x 12
?

?
3
70%

3,414 + 12
75, 12

3,403 ± 12
5
88%

---

--.

---

.-.

...

*Equatorial radius for Venus includes the distance from the surface to the outer boundary
of the dense atmosphere.

_'*From K.A. Ehricke's book "Space Flight Trajectories. "
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As was the case with some of the planetary

masses, there was insufficient data available

to allow for refining dimensional computations

for all planets. Even where such computations

were possible the confidence level of the re-

sultant quantity was low.

c. Planetary orbits•

Because the motion of a planet about the sun

approximates an ellipse for relatively long

periods of time, it has become standard practice
to express the paths in terms of an ellipse with

time-varying or osculating elements. To assure
that the terminology is familiar, the six ele-

ments (or constants of integration) necessary

to determine planetary motion are defined below.

(1) Planar elements

(1) Semimajor axis (a)--This element

is a constant, being one-half the sum
of the minimum and maximum radii.

Element (a) is also a function of

radius and velocity at any point.

(2) Eccentricity (e)--This element is re-
lated to the difference in maximum

and minimum radii and is used to

express a deviation in the path from

c ircularity.

(3) Mean anomaly of epoch (M0)--This

element (referenced to any fixed

known time) defines the position of

the orbiting body in the plane of
motion at any time.

(2)

(1)

(2)

(3)

Orientation elements

Argument of perigee (_)--This is

the angle measured in the orbital

plane from the radius vector defining

the ascending node to the minimum

radius.

Orbital inclination (1)--This angle

expresses rotation of the orbital

plane about a line in the ecliptic

(or fundamental) plane.

Longitude of the ascending node (_)--

This is the angle measured in the
fundamental plane from a fixed ref-
erence direction to the radius at which

the satellite crosses the fundamental

plane from the south to the north.

These osculating elements obviously are of
primary importance in the computation of inter-

planetary transfer trajectories. Thus, the
procedure for obtaining these elements will be
reviewed; then the values of the elements will

be presented. It is assumed only that a table
of the time variation of acceleration is available.

One such table is presented in Planetary Coord-
inates 1960 to 1980 available through Her Majesty's

Stationery Office.

This reference quotes position and accelera-

tion components in ecliptic rectangular coordin-
ates. The most direct transformation is thus

via the vectorial elements Po Q and R (where P

points toward perihelion, Q in the direction of

the true anomaly equals 90" and R completes the

right handed set). The computation proceeds as

follows: First the velocity components at the

instant are computed. This is accomplished by

numerical integration of the acceleration com-
ponents rather than by differentiation of the

position data in order to obtain better accuracy.

Ar_urnen_

t 2

6 -2x'3 o x_l[2
tg , *

[ I _-'_"I ,°

t, _-%', !

Suma Function 1

2nd 1st |Acceleration) Differen_e_*'*

LSX_l f 2 -1 63x-i;2

:0
exl,g

xv

i'$

6 2 x I

Thus,.at the

S

argument to

where

w = the interval between points in mean solar

days

K = Gaussian constant
s

AU3/2

= 0.017,202,098,95 so--0"l-d_ay

,6-1x "= 1/2 (6-1x'_1/2 + 6-1x'1/2)

and similarly for y and z.

Now

2 x 2 z 2r = + y2 + (evaluated at t O )

2 "2 +y2 +z 2V =X

H --xx +y_ +_z

1
a - (i)

2/r - G 2

e sinE =H/ a_" (2)

ecos E =rG 2 - 1 (3)
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/ _'? 1 sin E + va I/2-e2 - - 7 r

• (cos E - e)

= r I cos E + va I/2 sin E
r

And finally

sin i sin _ = R
X

And

where:

belov/:

sin icos _ = - R cos c - R sin e
y z

cos i --R cos c - R sin E
z y

(4)

(5)

(6)

{1 ± cos i) sin (_±12) --+ P cos E
Y

± Pz sin E - Qx (7)

(1 ± cos i) cos (_ ± _) = _ Qy cos

± Qz sin , + Px (8)

t = obliquity of the eclip:ic of date given

t = 1960 t - 23°26'40.15" sin , - 0.39786035 cos * - 0.917445_9

1962 23°26'39.2i '' 0.39785618 0.91744780

1964 23°26'38.28" 0.39785201 0,91744960

1966 23°26'37,34 '' 0.39?84?84 0.91745141

1968 23°26'36.40" 0.39784368 0,91745322

1970 23°26'35.93 '' 0.39783951 0.91745503

Equations (1), [2) and (3) define a, e and E (analo-

gous to M) at the selected epoch. Then Eqs (4)

through (8) define the orbital planes and the quad-
rants of the three orientation elements.

Data for these six elements is presented in

Tables 4 and 5. These tables present each of the

six elements for a two-year period and the re-

gression and precession rates of the nodal angle
and the argument of perigee, respectively. These
data are accurate to the last quoted digit for the

quoted epochs and provide reasonably good ac-

curacy when linearly interpolated. In order to

maintain precision in such computations it is nec-

essary to have the elements evaluated at much
smaller time intervals.

4. Geocentric Constants

a. Potential function

The potential function of the earth (i. e. , the

relationship between potential energy and position
Gm

relative to the earth) is not simply - ---F-_as is

assumed in most Keplerian orbit studies because

this approximation assumes that the mass is

spherically symmetric. This assumption is suf-

ficiently accurate for many preliminary studies
but is not valid for precise orbital studies. For

this reason it is general practice to expand the

potential function in a series of Legendre polyno-

mials. The coefficients of this series may then

be evaluated from satellite observation.

Since the perturbations in the motion (i. e.,

deviations due to the presence of the terms in-

volving mass asymmetry of the earth) are very
sensitive to the uncertainties in the coefficients

of the resulting potential function, one form of
this function will be presented and discussed.

The form selected, because of its simplicity and

the fact that it was recently adopted by the IAU

(1961), is that of J. Vinti of the National Bureau
of Sr/andards. The coeffLc/ents of other generally

used expansions will be related to this set in later

paragraphs.

U = -! - .In P (sin L
r n

n=2

where

=gravitational constant =Gm_

J = coefficients
n

R = equatorial radius of the earth

r = satellite radius

P (sin L) = Legendre polynomials
n

L = instantaneous latitude

The first few terms of this series are:

[1U (3 sin 2 U - i)
U ---F --2-

J3 (R) 3 (5 sin 3 L - 3 sin L)

J4 4 , ,.- ,.+

--8- (63 sin 5 L - 70 sin 3 L + 15 sin L)

J6 6
sins' -3lSsiJ L

+ 105 sin 2 L - 5) |

.J

As is immediately obvious, this function contains

the potential function for a mass spherically sym-

metric earth and a series of correction terms re-

ferred to as zonal harmonics. The odd ordered

harmonics are antisymmetric about the equatorial

plane (L = 0) and the even ordered harmonics,

symmetric. This function was introduced merely
to aid in the discussion of the factors affecting

motion in geocentric orbits; therefore, the func-

tion as a whole will not be discussed further but

its coefficients will be treated.
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TABLE 4

Mean Elements of Inner Planets

(from American Ephemeris, 1960, 1961, 1962;
referred to mean equinox and ecliptic of date. )

Epochs: 1960 September 23.0 = J.D. 243 7200,5

1961 October 28.0 = J.D. 243 7600.5

1962 December 2.0 = J.D. 243 8000.5

l:_anet

Mercury

Venus

Mars

Year (de_') (deg) (deg)

1960 7. 00400 + I 47. 86675 + 325 76. 84441 + 426

196l 7. 00402 + I 47. 87873 + 325 76. 86145 + 426

1962 7. 00404 ÷ i 47. 89171 + 325 76. 87849 + 426

1960 3. 39424 _ 0 76. 32625 + 247 131.01853 + 385

1961 3. 39425 + 0 76. 33611 + 247 131. 03394 + 385

1962 3, 39426 + 0 76. 34597 + 247 131. 04934 + 385

1960 I. 84993 + 0 49. 25464 + 211 335. 33609 + 504

1961 I. 84992 + 0 49. 26308 + 211 335, 35625 + 504

1962 1.84991 +0 49.27153+211 335.37641+504

(A_') e (deg)

0.387099 0.205627 152.303

0.387099 0.205627 349.237

0.387099 0.205627 186.171

0.723332 0.006792 108.652

0.723332 0.006791 29.504

0.723332 0.006791 310.356

1.523691 0.093369 62.572
1.523691 0.093370 272.180

1.523691 0.093371 121.789

*Plus variation per 100 days.

**The large differences between the mean anomalies

not to perturbations.

at epoch are due primarily to the shift in the epoch and

TABLE 5

Osculating Elements of Outer Planets
(from American Ephemeris, 1960, 1961, 1962;
referred to mean equinox and ecliptic of date. )

Planet* Date

3upRer 1960 Jan. 27
1961 Jan. 21
1962 Jan. 16

Saturn 1960 3an. 27
1961 Jam. 21

1962 Jan. 16

Uranus 1960 Jan. 27

1961 Jan. 21
1982 Jan. 16

Neptune 1960 Jan. 27
1961 Jan. 21

1962 Jan. 16

Pluto 1960 Jan. 27
1961 Mar. 2
1962 Jan. 16

i O _ a MO

(deE) (de_) (de E ) (AU) e (de E )

1. 30641 100. 0560 12. 3279 5. 208041 O. 048, 335, 1 249. 7967
1. 30626 100. 0651 13. 2393 5. 203825 O. 048, 589, 9 278. 7932

1. 30616 100. 0725 13. 2614 5. 203520 0. 048, 459, 7 308.6768

2.48722 113. 3161 92. 1031 9. 582589 O. 050, 548, 4 168.9699
2. 48718 113. 3273 90. 7422 9. 580399 O. 051,145.6 202.4677
2.48714 113. 3385 89. 3436 9. 581007 O. 051, 778, 3 216.0551

0. 77236 73. 7218 172. 5311 19. 16306 0. 046,906, 5 329. 2259
O. 77222 73. 6971 172. 8809 19.13202 O. 045, 282, 3 333.0587
0.77221 73.6942 172.3515 19.11431 0.044,112,4 337.7453

1.77329 131.3233 25.9372 30.23803 0.003,139,4 191.3613

1. 77325 131. 3709 22.4739 30. 17541 0. 005, 351, 5 197.0665
1. 77318 131. 4144 26. 5510 30. 09783 O. 007, 911, T 195. 1770

17. 16644 109. 8642 223. 8342 39. 52392 O. 251, 35532 316. 9810
17.17057 109.8943 224.3400 39.38437 0.249,400,9 317.9194
17. 16791 109. 8958 224. 5629 39. 29379 O. 247, 895, _ 318.8914

• Oscu/at/n elements are given for every40 days for Jupiter, Saturn,

80 days for Pluto.

w = w+Q

Uranus and Neptune, and for every
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Since the earth is almost spherically sym-

metric, the Jn are all small compared to one (as

will be shown later); thus, the prime factor af-

fecting motion is the gravitational constant, _,
which is defined directly from Newtonian Mech-

anics as Gm_:_. Data for this constant were not

presented in the referenced paper (Baker) though

a value was adopted. For this reason a review
of some of the more recent determinations was

made and a comparison constructed (Table 6).

Baker's value corresponds to that of Herrick
(1958) and no data were found which ascribe an un-

certainty or confidence level to this value. The

value corresponds very closely to mean of the ad-

justed sample; for this reason an estimated un-
certainty would be ±0.00004.

While Herrick's value appears valid, a better
estimate in view of the work done by Kaula would

seem to be Kaula's value (or the mean of the ad-

justed sample which is the same). It is proposed,

therefore, that the value of_ be 1. 407648. 1016

• 0.000035.10 16 ft3/sec 2 or 398,601.5 ± 9.9km3/

2
sec . The selection of this constant, which is

obviously related to the mass of the earth-moon

system (previously adopted), does not produce

large inconsistencies due to the fact that the con-
version between solar mass and earth mass is ac-

curate to only four places, and to this order the

two answers agree.

The remaining coefficients, Jn' are related

to the earth's equatorial radius, the average ro-

tational rate of the earth, the gravitational con-

stant, and the flattening of the earth. For this

reason, it is clear that the arbitrary selection of
a set of constants will result tn slight numerical

inconsistencies. However, these uncertainties

are small and of the same order as the uncertainty
in the numerical values of the J . Data for the J

n n

are presented [n Table 7.

Baker' s values of the Jn correspond almost

identically to those of the adjusted sample while

Kaula's do not for J4" J5 and J6" No satisfactory

TABLE 6

Gravitational Constant for the Earth

Date ft 3/see 2 Author

1957

1958

1959

1959

1960

1961

1.407754 x 1016

I. 407639

1. 40760

1.40771

1.407645

1. 40765

Elfers (Project Vanguard)

Herrick

Jeffreys

O' Keefe

Department of Defense (see Baker)

Kaula

Gravitational con-

stant (ft3/sec 2)

(km3/sec 2 )

Uncertainty (1)

(2)

Sample size

Confidence level

Adopted by
Baker

l.407639 x 1016

398,599.9

Unadjusted

Sample

I.407666 x 10

398,606.6

16

?

± ?

?

?

±0.000050 x 1016

+14.2

6

92%

Adjusted

Sample

1.407648 x 1016
398,601.5

16
±0.000035 x 10

±9.9

5

88%
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TABLE 7

Coefficients of the Potential Function

J2

(J2)

Confidence level

Baker

J3

o" (J3)

Confidence level

J4

a (J4)

Confidence level

J5

a (J5)

Confidence level

J6

(J6)

Confidence level

1082.28 x 10 -6

• 0.2 x 10 -6

?

-2.30 x 10 .6

+0.20 x I0 -6

?

-2.12 x 10 -6

sO. 50 x 10 -6

?

-0.20 x 10 -6

sO. 1 x 10 -6

?

1.0 x 10"6

sO. 8 x 10 -6

?

Kaula

1082.61 x 10 -6

sO. 06 x 10 -6

?

-2.05 x 10 -6

"-0. I0 x 10 -6

?

-1.43 x 10 -6

sO. 06 x 10 -6

?

-0.08 x I0 -6

sO. 11 x 10 -6

?

O. 20 x 10 -6

±0.05 x I0-6

?

Uncorrected Sample

1082. 396 x 10 -6

+0. 241 x I0 "6

98%

-2.39 x 10 -6

sO. 23 x 10 -6

98%

-1.82 x 10 -6

±0.35 x 10 -6

98%.

-0.25 x 10 -6

sO. 16 x 10 -6

92%

O. 68 x 10 -6

sO. 29 x 10 -6

81%

Adjusted Sample

1082. 303 x 10 -6

sO. 185 x 10 -6

95%

-2.39 x 10 -6

±0.23 x 10 -6

9O%

-2.03 x 10 -6

sO. 24 x 10 -6

92%

-0.19 x 10 -6

sO. 08 x 10 -6

88%

O, 83 x 10 -6

±0.10 x 10 -6

7O%

reason was obtained for this difference, though

it is believed that the data utilized by Kaula in the

determination of J4' J5 and J6 may have been

biased. This conclusion is strengthened slightly

by the fact that the results of Kaula for these three

constants are somewhat below the majority of the

other independent determinations. Even if the un-

certainty in these three values is increased an

amount sufficient to include all values, no appre-

ciable change will be noted in the computation of

trajectories, since the numbers are very small

compared to unity and are even small compared

to J2"

It is proposed that the values adopted by Baker

be accepted without change. This procedure seems

justifiable on the basis of the data and has the ad-

vantage that the set is presumably consistent.

This advantage is not clear cut since, even though

the J's are interrelated, the uncertainties in the
n

values are relatively large.

At this point Vinti's set of coefficients will be

related to those utilized by other authors. Rather
than discuss each potential, however, the poten-

tials will be tabulated for comparison. Then, the

coefficients of the various terms will be equated.
This data is presented in Tables 8a and 8b.

b. Equatorial radius and flattening

The average figure of the earth is best repre-
sented as an ellipsoid of revolution (about the

polar axis) with the major axis the equatorial
diameter. Obviously this model is not exact;

however, the accuracy afforded is generally ade-
quate when computing the ground track of a satel-

lite, determining tracking azimuths, etc. For

this reason the best values for the parameters of
the ellipsoid are desired. These data are pre-
sented in Table 9 in the form of values of the

equatorial radius and flattening (previously de-

fined) along with polar radii, also for each pair of
values.

Although the discrepancies in the sets of data

shown in Table 9 are minor, they are sufficient

to justify the selection of one particular set.

Based on the data reviewed, it is felt that the

data of Kaula is probably slightly superior to the

remaining values. This conclusion is strength-

ened by the good agreement between Kaula and

some of the more recent standards. While this

is by no means conclusive proof, the fact indi-

cates a wide degree of acceptance. For this

reason, an estimate of the confidence level would

be greater than 90%.
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TABLE 8h

Comparisons of Constants Used in
Potential Functions

Vlmt J2 J3 J 4 Rec(_nmended

Lsp_*

JeffreT=

Koza_

i

; B_uwtr

O*Keef*. Eekebl, Squlreo

-B3/R2 -B3/R 3 -B4/R4

2 A2 ^4
_ .A3/R3 8- _s R-r

2_ z k 4

R. E. Roberlon

i Gar fiaXel

I _r_bte

I
I Krl_l_

Sterne

! _e_e_ _ M_en

I P_kurln L_I BL_ralLm,

_ diS_er

2u Non. -8 "2

2k/R 2 None kt/R 4

8 W4
2k2/R2 None - ] _

2B

_2,R z :;one -gk4_ R4

-_ ..... 6 o

TABLE 9

Equatorial Radius and Flattening

Uncorrected Adjusted

Baker Kauia Sample Samole

Equatort_tradius (km)l 6378.150
=0.050

lit 298.30

*0.05

Polar radius {km} 6356. 768

• Req (1 -._--) *0.050

Sample SLlze 9

Confidence level ?

6378.163 6378.215 6378.210

¢0.021 =0.105 ¢0.043

298.24 298.27 298.27
*0.01 ±0.05 t0.03

6356.777 6356.831 6356.826

_0.021 *0. t05 =0.045

? I0 7

? 98% 95_

5. Selenocemric Constants

The determination of the lunar mass has been

made from the lunar equation (involved in the

reduction of geocentric coordinates to those of

the barycenter, i.e., the center of mass of the

earth-moon system), through the evaluation of

the coefficient, L, defined to be

mq

m O
L' • O

1 + mff sm _r#
m

e

where

,r_ is the lunar parallax (i.e.,

R@ equatorial )
average lunar distance

Since there are no lunar satellites whose orbits

can be used in determining lunar mass, the calcu-

lations for the most part have been based on ob-

servations of Eros at the time of closest approach.

The method consists of finding the solar and

lunar paraUaxes, comparing the observed positions

of Eros when nearest the earth with an accurate

ephemeris, fitting the residuals to a smooth

curve that has the periodicity and zero points of

the lunar equation, and using the curve to im-

prove the adopted value of L'. Once this is ac-

re#
complished -- is evaluated from the previous

m e

equation. Thus, the first step in the evaluation
of the lunar mass is the evaluation of the lunar

parallax or equivalently the lunar distance.

Baker presents data for the lunar distance

evaluated by several different methods. These

data have been used to produce Table 10.

TABLE i0

Lunar Distance

Ado_Acd
by Baker

Lunar ,li_tance (kin) ] 384, 402
i

Uncer:ainty (krn) ,-1
I-

Lunar parallax (tad) :0 016, 592, 4

(see) i3422. 428

Uncertainty {tad) i *0. 000. 000, l

Sample stze (sec) -_6"021

Confidence level _

Uncorrected i Adjusted iSample Sample

384. 402.6 !384. 40_.6 1
Z2. S ti.l
0.o16.592._ o.ol6.582.4
3422.428 13422.428

+0. 000. 000, 1 I _0. OOO, OOO, 1

;.ozl _.02,6 1

The data of Table I0 all agree very well and

exhibit no inconsistencies of the type shown in

other data. For this reason tt is believed that

Baker's value should be uttl_zed as it is quoted

in Table I0. It is interesting to note that the

value of the lunar parallax and its uncertainty
were the same for all of the evaluations.

The nex't step in the evaluation of the lunar

mass is the determination of the best value of

the coefficient of the lunar equation. Once again

several values are available, each determined by

different individuals at different times. The re-

sults of the analysis of these data are presented
in Table 11.

TABLE 11

Coefficient of Lunar Equation

Coefficient L' (sec)

Uncertainty (sec)

Sample size

Confidence level

A.dol_ed Unc or r ected Adjusted

b_, _ker Sample Sample

6. 4385 6. 430 6. 4381

*0. 0015 ±0. 005 ±0. 0018

? 8 6

? 97% 92%

Once again good general agreement is noted. It

is proposed, therefore, that the value of L' be

6. 4385 ± 0. 0015 with a confidence level of about

90%. With this value of L' and that of lunar

parallax adopted in Table 10, the best value of

m

the quantity _ is found as

m I

m@ - *rO 1

m_ sm _r_--_--L"- - I

8. 798 8. 7981

= 0.018592 _ - i = 81.357

II-14



(

The estimate of the uncertainty is obtained by

differentiating this equation with respect to

and L'. It is not necessary to differentiate with

respect to _r(_ since this constant is known to a

much higher precision.

; 82.357 \g-.T_ -

= 0. 0098

m e

Thus the best value of the quantity m-T is 81. 357

± 0.0 I0 with a confidence level of approximately

90%. This value was obtained using Baker's data
and is contrasted to his adopted value of 81.35 ±

0.05. Since the uncertainty of Baker's value

seems inconsistent, it is proposed that the value

and uncertainty developed here be utilized.

The remaining information required pertains

to the figure of the moon. The figure of the moon

is best represented by a triaxial ellipsoid ,,_th

the radii of lengths a, b and c where a is directed

toward the earth, c is along the axis of rotation
and b forms an orthogonal set. Very little data

are available for these lengths. Some informa-

tion. however, Ls presented in:

Alexandrov, I, "The Lunar Gravitational
Potential" in Advances in the Astronautical

Sciences, Vol. 5, Plenum Press (N. Y.),

1960, pages 320 through 324.

This reference gives data for determinations of

the dynamic dimensions and the methods of eom-
_utation as :

Forced Free Adopted by

Libratton Libration Baker

Serntaxtl a(krn) 1738.67 * 0.07 1738.57 • 0.07 1738.57 t 0.07

Semiaxil b(km) 1738.21 i 0.07 1738.31 ffi 0.07 1738.31 * 0.07

I _mtaxtm c(km) 1737.58 t 0.07 1737.58 i 0.07 1737.38 • 0.07
{

There is no reason to assume a value other than

that of Baker due to the general lack of data.

6. Summary of Constants and Derivable Data

Because several values have been discussed

for each constant, there is need to combine in one
table the best value, its uncertainty and approxi-

mate confidence level. This is done in Table 12.

Note is made of the source of each number given.

In addition to a tabulation of constants, there

generally exists a requirement for data which

are easily derivable from this more basic data.

Table 13 presents the mass, the gravitational

constant (p ffi Gin) and the radius of action* in

metric, English and astronomical units. Table 14

L_, 215

*Tisserand's criteria, r* = d (_) where d

is the average distance between the two bodies,
m is the mass of the smaller body and M is the

mass of the larger body.

presents the geometry of the planets in metric

and English units, and Table 15 presents surface
values for the circular and escape velocities and

for gravity.

B. ASTROPHYSICAL CONSTANTS

In the previous section certain of the astro-
nautical constants were reviewed. The purpose
of this section is to include other factors affecting

the trajectory. Accordingly, atmospheric models

and density variability will first be discussed.
The discussions will then be oriented toward the

definition of other factors which must be con-

sidered in satellite orbit selection such as the

radiation and meteorid environments.

1. Development of Model Atmospheres for
Extreme Altitudes

In November 1953 an unofficial group of

scientific and engineering organizations, each

holding national responsibilities related to the

requirement for accurate tables of the atmosphere

to high altitudes formed the "Committee on the
Extension of the Standard Atmosphere" (COESA).

A Working Group, appointed at the first meeting,

met frequently between 1953 and the end of 1956.

This committee developed a model atmosphere
to 300 km based on the data available at that time.

This model was published in 1958 as the "U. S.
Extension to the ICAO Standard Atmosphere, "

(Ref. 1).

At the time of the development of this standard

only two methods of direct measurement of upper

atmosphere densities were available:

(1) High altitude sounding rockets.

(2) Observations of meteor trails.

Both methods have severe limitations in the

interpretation of the measured data. First, the

rocket made only short flights into the upper

atmosphere and.the density measurements were

made mostly inside the rocket's flow field, not
in the undistrubed free stream. Second, meteors

were visible only in a small range of altitude (85
to 130 kin) and their aerodynamic characteristics

contained too many unknowns (unsymmetrical

shapes, loss of momentum by evaporation of

melting surface layers, etc. ).

The extent of the limitations of the rocket and

meteor trail data became evident with the launch-

ing of the first satellites. The orbital periods of
the first Sputnik indicated that the densities of the

upper atmosphere were off by approximately an

order of magnitude.

The Smithsonian 1957-2 atmosphere (Ref. 2)

was developed based on the density estimates

from the decay histories of the Sputnik satellites.
This standard was soon superseded by the ARDC

1959 Model Atmosphere (Ref. 3). Up to about 50

km this atmosphere was the same as the U. S.
extension to the ICAO Standard Atmosphere.
Above that altitude some IGY rocket and early

satellite data were used. Since all these data

were obtained during the period of maximum

11-15



TA BLE 12

Adopted Constants

Heliocentric Constants

Solar parallax

Astronomical unit

C

Planetocentric Constants

Mercury

Solar mass/mass Mercury

Equatorial radlus

I/f

Venus

Solar mass/mass Venus

Equatorial radius

i/f

Earth -Moon

Solar mass/earth-moon
maaa

Equatorial radius

l/f

Mars

Solar mass/mass Mars

Equatorial radius

I/f

Jupiter

Solar mass/mass Jupiter

Equatorial radius

I/f

Saturn

Solar mass/mass Saturn

Equatorial radius

I/f

Best Value

a8,798 sec

a149.53xlO6km

c_.2959122083

AU3/solar day 2

a6,100,000

a2330 km

?

a407, 000

a6100 km (incl

atmos)

?

a328,450

a3.090,000

a3415 km

b75

ai047.4

a71,875 km

a15.2

a3500

a60,500km

a10.2

Uncertainty

b±o. o01

a¢0.03

a±O. Olo'lO

b±65.000

b±ll

?

b±1300

b±12

b±25

b±12, 000

b¢12

b+12

b±o.l

b+20

b+o.l

b+2.0

b±480

+ ?

Approximate b
Confidence Level

(%)

90

90

99+

70

70

?

9O

7O

81

81

88

80

81

50

50

70

S0

?

(continued)

NOTE:

aBaker's value.

bValue obtained in this report,

CGausetan value.

dEhricke's value.

eKaula's value.
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f
TABLE 12 (continued)

Uranus

Solar mass/mass Uranus

Equatorial radius

i/f

Neptune

Solar mass/mass Neptune

Equatorial radius

I/f

Pluto

"Solar mass/mass Pluto

Equatorial radius

i/f

Geocentric Constants

(km3 Isec 2)

J2

J3

J4

J5

J6

Equatorial radius (kin)

I/f

Selenocentric Constants

Lunar distance (kin)

L'

,no /me

Semtaxis a (kin)

b (kin)

c (kin)

Best Value

a22, 800

a24, 850 km

al4.0

a19.500

a25,000 km

a58.5

a350,000

a3000 km

?

¢398, 601.5

ai082.28x 10 -6

a-2.30 x 10 -6

a-2.12 x 10 -6

a-0.20 x 10 -6

a-1.0 x 10 -6

e6378. 163

e298.24

a384,402 km

a6.4385

b81.357

a1738.57 km

a1738.31 km

a1737.58 km

Uncertainty"

b±60

b±50

= ?

b_200

b=2100

z ?

bx27, O00

b±500

?

e±9.9

-6a+0.2 x 10

-6
axo. 2 x 10

a±o. 5 x 10 "6

a±0.1 x 10 -6

a±0.8 x 10 -6

e±o. 021

e±o. Ol

a±l km

a±0.0015

b±o.01

a±0.17 km

a_0.07 km

a±0.07 km

Approximate h
Confidence Level-

(%)

50

?

?

70

5O

?

70

20

?

88

95

90

92

88

70

95

95

88

92

90

50

50

5O

NOTE:

aBaker' s value.

bValue obtained in this report.

CGauss tan value.

dEhricke's value.

eKaula,s value.
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solar activity, the resulting model was more
representative of these conditions than average
atmospheric properties. An example of the effect
of solar conditions on upper atmosphere density
is shown in the following sketches taken from
Ref. 4. These sketches show the data calculated
from the orbRs of Explorer IX compared to
earlier satellite data and the 1959 ARDC Model

Atmosphere. Also shown are the portions of the
solar sunspot cycle represented by the data.

80C

d_

<

4OO

_,qO --

I

O 1961 # I Exp[orer IV

D 1958 _ 2 VAnguard l

A 1958 _, Explore_" ]

. _ t958, Explorer IV

<) ;357 _, 3 SWl*tnla I

ARDC _ ._de;

atmosphere. 19_

I , I

;0 .d :0" ' I) ¸;4 L') ¸_ _n _2

Dcns_ / (_n-_m "3)

;4_r _ Per,od o_ ARDC mo_el

=tmo=p_er, le_9 f#
D

/ _.1 \ -- - e,,.,odorE=p,o_..tx /

x / /
) \J N "'--.."
,_o _ so iS

Y_r

A new COESA Working Group was convened in
January 1960. Using data and theories from more
recent satellRe and rocket flights, the Working
Groups prepared a new standard atmosphere that
was accepted by the entire committee on March
15, 1962 (Ref. 5). This new U. S. Standard
Atmosphere depicts a typical mid-Latitude year-
round condition averaged for daylight hours and
for the range of solar activity that occurs between
sunspot minimum and maximum. Supplemental
presentations are being developed to represent
variability of density above 200 km with solar
position and a set of supplemental atmospheres
that will represent mean summer and winter con°
ditions by 15 ° latitude intervals to an altitude of
90 kin.

a. U.S. StandardAtmosphere--1962

The U.S. Standard Atmosphere --1962 was

developed by four Task Groups of the Working
Group of COESA. (Although U. S. Standard
Atmosphere--1962 is the general terminology,
the Working Group considers the region above 32
km as "tentative" and above 90 km as "specu-
lative. ") The recommendations of Task

Gro,,p I for the region from 20 to 90 km were
adopted. However, Task Group IV was appointed
to resolve the discontinuity and inconsistency of
the models prepared by Task Groups II (70 to
200 kin) and Ill (200 to 700 kin). The reports
of Task Groups I and IV (Refs. 6 and 7) have been
used extensively in describing the new atmosphere.

Suggestions agreed upon by the Working Group
were that up to 79. 006 geopotential km (80.000
geometric km using the ICAO gravity relations)
geopotential altitude would be the basic height
measure. Geometric heights would be basic

above this level. Above 20 km (the _op of the
.ICAO Standard), temperature lapse rate is posi-
tive at 1 deg/km to 32 km. This gives a value of
228.66 which is in good agreement wLth measure-
ments. From 32 to 90 kin, the temperature lapse
would be linear in geopotential height with changes
(of whole or half degrees Celsius) to occur at
whole kilometer levels. A 5-kin isothermal layer
(268.66 °K)at 50 km was suggested, and densities

close to 1 g/m 3 and 0.02 g/m 3 at 50 and 30 km

(geometric), respectively were recommended.
Re-examination of constants from those used

previously resulted in new proposed values as
follows:

ICAO U.S. Ext Proposed ! Units

Universal gas constant 8.31436 _ B.31439 8.31470 !joules/g-deg

Speed of sound 331.43 331.316 331.317 m/sec at C# O

Sutherland's constant 120.0 110.4 110.4 ,"
'Z

The new value of the gas constant decreases
temperature values by 0.01 ° (0° C = 273.15 ° K)
and density and pressure values. The differences
are summarized in Table 16 (from Ref. 6). The
column labeled "N" is the adopted revision, while
"H" and "D" refer to earlier revisions. The
speed of sound at 0° C also changes slightly and
the new relationship is

C S = 20.046707T 1/2 mJsec, T in°K

The dynamic viscosity, _, is slightly changed by
the new value for SutherLand's constant, S, so
that

- 1. 458 x 10 -6 T 3/2 / (T +S)

In analyzing the temperature and density obser-
vations an average temperature of 270.65 ° K was
indicated at 50 kin, meeting the requirements of
linear temperature lapse (above 32 kin) that fit
the observed data then placed the isothermal
region at 47 kin. The value of density at 50 km
fellwithin the suggested value of the Working
Group. From 30 to 50 km the new temperature
profile is between the mean annual measured
temperature for high and low latitudes as indi-
cated in Fig. 2 (from Ref. 6). Above the iso-

thermal Layer, two temperature Lapse regions
define temperature to the next isothermal Layer

4
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TABLE 16

Comparison of Properties of ICAO. U. S. Extension, ARDC

1959 Model and U. S. Standard Atmospheres--1962

Height

Geopot U.S. Ext
(kin) 56-58

88. 743 I 196.86
0.0

79. 006 I 196.86

I 0.0

79.0001 196.86

]

0.0

75. 000 196.86*
-3.9

61.000 251.46
-3.9

54.000 278. 76
-3.9

53. 000

52. 000

i

49. 610

48. 000

47. 000

32. 000 i

25. 000

20. 000

I i. 000

o.oooI

Temperature

ARDC

59 "H"

165.66 190.65 180.65
0.0 0.0 0.0

165.66 190.65 180.65
0.0 0.0 0.0

165.66" 190.65" 180.65"

-4.5 -3.2 -4.0

183.66 203.45 196.65

-4.5 -3.2 -4.0

246.66 248.25 252.65

-4.5 -3,2 -2.0

278.16 270.65* 266.65
-4.5 0.0 -2.0

282.66* = 282.66* 2?0.65 268.65
0.0 0.0 -2.0

282.66 270.65 = 270.65*
0.0 _ 0.0

282.66 268.66 270.65
0.0 0.0 0.0

282.66 268.66* 270.65
0,0 +2.5 0.0

282.86* 266.16 270.65*

+3.0 +2.5 +2.8

237.66 228.66* 228.65*

+3.0 +I.0 +I.0

216.66* 221.66 221.65

ICAO 0.0 +I.0 +I.0

216.66= 216.66 = 216.66. 216.65*
0.0 0.0 0.0

216.66" 216.66" 216.65"
-6.5 -6.5 -6.5

288.16 288.16 288.15

Pressure (rob' s x 10 n) / Density (g/m 3 x 10 n)

U.S. Ext A.RDC "H" "N" n _J.S. Ext ARDC

56-58 59 [ 56-58 59 "H" "IN" n

2.258 1.353 1.8980 1.6437 -313.995 2.846 3.4682 3.1698 -3

1.224 1.008 1.0868 1.0364 -2

1.225 1.009

2.452 2.1707

2.0934 2.0372

5.1637 5.1630

5.8320= 5.8320

6.5813

8.7858

1.0673

1.2044

1.0879 1.0376 -2

2.1771 2.1420 -2

1.8224 1.8209 -i

4.5834 4.5748 -I

5.2001 5.1977 -1

5.8997 =5.8997 -I

7.9969 7.9772 -i

9.5880 9.7748 -I

1.0895 1.1090 +0

8.6776 8.6800 8.6798 +0

2.4886 2.5110 +1

ICAO

5. 4749

2.2632= 2.2632

1.01325

5.4748= 5.4748 5.4747 +i

2,2632 +2

1.01325+3

2.165 2.120 1.9859 1.9986 -2

2.167 2.122 1.9879 2.0009 -2

4.3394 4.1176 3.7279 3.7946 -2

2.9002 2.8774 2.5574 2.5108 -i

6.4534 6.4664 5.8996 5.9769 -I

7.1881 =7.1881 6.6934 6.7401 -I

8.1113 7.5939= 7.5939 -I

1.0829 1.0370 1.0268 +0

1.3155 1.2433 1.2582 +0

1.4845 1.4261 1.4275 +0

1.2721 1.3225 1.3225 +I

4.0016 3.946"6 +I

ICAO

8.8035 8.8034 =8.8034 8.6033 +l

3.8392 3,6391 3.6392 +2

1.2250 = 1.2250 1.2250 +3

*Breakpoint in temperature gradient, given in deg/km.

79 km (geopotential). The upper segment 61 to 79

(kin) is based upon observed densities which have

been considered more reliable than measured

temperatures. Adopted temperatures are seen to

be at least 20 ° colder than reported temperatures

near 80 kin. The isothermal layer of 180.65 ° K

above 79 km provides continuity for density in the

region above the isothermal layer. The new density

value at 80 km (geometric) agrees very closely

with the target value. The properties of this por-

tion of the new standard atmosphere are shown on

Table 17 (from Ref. 6).

The basic obstacle to a consistent, continuous

standard atmosphere above 90 km was the de-

velopment of a mean molecular weight (M) profile

for the atmospheric gases together with a mole-

cular scale temperature T M profile with linear

lapse rates which would give the secondary atmos-

pheric parameters in agreement with theoretical

and empirical data.

The boundary conditions applied to the model

were:

(i) The density, pressure and temperature

at 90 km must coincide with those of

Task Group I, namely: density 3. 1698

x 10 -6 kgm/m 3, pressure 1.6437 x 10 -3

millibars, molecular scale temperature

180.65 ° K.

(2) The density at 200 km should lie within

range 3.3 ± 0.3 x 10-I0 kgm/m 3 for_he
mean solar conditions.

(3) The model should agree as closely as

possible with the densities in the altitude

range 90 to 200 km recommended by

Task Group II and based on rocket and

satellite data.
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of the U.

Kilometers

Geomet GeoEot

90.000 88.743

89.235 88,000
87,179 86.000

85.125 84.000

83.072 82.000

81.020 80,000

79.994 79.000

78.969 78.000

76.920 76,000

74.872 74.000

72.825 72.000

70.779 70,000
68.735 68.000

66.692 66.000

64.651 64.000

62.611 62.000

61.591 61.000

80.572 60.000

58.534 58.000

56.498 56.000

54,463 54.000

52.429 52.000

50.396 50.000

48,365 48.000

47.350 47.000

46,335 46.000

44.307 44.000

42.279 42.000

40.253 40,000

38.229 38.000

36.205 36.000
34.183 34.000

32.162 32.000

30.142 30.000

28.124 28.000
26,107 26.000

24.091 24,000

22,076 22.000

20.063 20.000

18.051 18.000

16.040 16.000

14.031 14.000

12.023 12.000

11.019 11.000

10.016 i0.000

8.010 8.000
6.006 6.000

4.003 4.000

2.001 2.000

0.000 0.000

Temperature
Grad

0.0

I
!

t

-4.0

-2.0

t

0.0
0.0

+2.8

i

i

+1.0

0.0

-6.5

TABLE 17

Properties, to 90 kin,
S. Standard Atmosphere-- 1962

Pressure

°K (mb x l0 n)

180.65 1.6437
180.65 1.8917

180.65 2.7613

180.65 4.0307

130.65 5.8836

180.65 8.5883

180.65 1.0376

184.65 1.2512

192.65 1.7975

200.65 2.5444
208.65 3.5530

216.65 4.8994

224.65 6.6776

232.65 9.0034

240.65 1.2017
248.65 1.5889

252.65 1.8209

254.65 2.0835

258.65 2.7190
26285 3.5339

26_].65 4.5749

270.65 5.8997

270.65 7.5940
270.65 9.7748

270.65 1.1090

267.85 1.2591

262.25 1.6294

256.65 2.1203

251.05 2.7752

245.45 3.6544

239.85 4.8430

234.25 6.4610

228.65 8.6798

226.65 1.1718

224.65 1.5862

222.65 2.1530

220.65 2.9304
218.65 3.9997

216.65 5.4747

216.65 7.5045

216.65 1.0287
216.65 1.4101

216.65 1.9330

216.65 2.2632

223.15 2.6443

236.15 3.5601

249.15 4.7183

262.15 6.1642

275.15 7.9496
288.15 10.1325

-3

t
-2

-1

i

t

1

+0

+i

1'

+2

Density

(_.,0_

3.1698

3.6480

5,3250

7.7729
1.1346

1.6562

2.0009

2.3606

3.2504

4.4175

5.9322

7.8782
1.0355

1.3482
1.7396

2.2261

2.5108

2.8503

3.6622

4.8873

5.9769

7.5939

9.7747

1.2582

1.4275

1.6376

2.1645

2.8780

3.8510

5.1867
7.0342

9.6086

1. 3225

1. 8011

2. 4598

3.3687
4.6266

6.3726

8.8033

1.2067

1.6541
2.2674

3.1082

3.6392

4.1282

5.2519

6.5973
8.1916

1.0065

1.2250

-3

I
-2

-I

r

-I
+0

t

+I

r

+1

+2

r
+2
+3

+3

ound Speed

m 102_
s--_" /

2. 6944
2. 6944

2. 6944

2. 6944

2. 6944

2. 6944

2. 6944

2. 7241

2. 7825

2. 8398

2. 8957

2. 9507
3.0O47

3. 0577

3. 1098
3. 1611

3. 1864

3. 1990

3. 224O

3. 2489

3. 2735

3.298O

3. 2980
3. 298O

3. 2980

3. 2809

3. 2464

3.2115
3. 1763

3. 1407

3. 1047

3. 0682

3.0313

3. 0180

3. 0047

2. 9913

2. 9778
2. 9643

2. 9507

2. 9507
2. 9507

2. 9507

2. 9507

2. 9507

2. 9946

3. 0806

3. 1643

3. 2458
3.3253

3. 4029

(m__Dyn Vise

. 102_
-see /

I. 2163
I. 2163

I. 2163

1.2163
i. 2,8_

1. 2163

1.2163

1. 2399

1. 2865

1. 3323
1. 3773

1.4216

1. 4652

1. 5082

1. 5505
1. 5922

1.6128

1. 6230

1. 6434

1. 8636

1 6837

1. 7037

1. 7037
1. 7037

I. 7037

1. 6897
1. 6616

1. 6332

1. 6045

1. 5756

1. 5463
1. 5167

1. 4868

1. 4760

1. 4652

1. 4544

1. 4435
1. 4326

1.4216

1. 4216

1. 4216
1. 4216

1. 4216

1. 4216

1. 4571

1. 5268

1. 5947
1. 6611

1. 7260

1. 7894

***Altitude at which temperature gradient experiences discontinuity.
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(4)

(5)

(6)

(7)

(8)

(9)

At higher altitudes the density should

match satellite density data under mean

solar conditions and agree as closely

as possible with the density values rec-
ommended by Task Group III.

The molecular scale temperature gra-

dients dTM/dZ should be linear and

kept to a maximum of two significant

figures and, where possible, to one

significant figure.

The number of breakpoints or segments

in the TM(Z) function should be kept to

a minimum, consistent with accurate

representation of the properties of a

mean atmosphere.

The value of T at 150 km should be as

low as possible, consistent with the ob-

served density values, to give some

weight to Blamont,s measurement of T

at this altitude. (These temperature
measurements are not consistent with

temperatures deduced from density
measurements. )

The value of dT/dz should approach
zero above 350 km.

The value of T above 350 km should lie

in the range 1500 -r 200 ° K.

b. Properties

The model defined in terms of molecular-scale

temperature as a function of geometric altitude is
shown in Fig. 3 (from Ref. 7) together with the

corresponding defining functions for the ARDC
1959 model and the current U.S. standard atmos-

phere (ARDC 1956). In Fig. 4 (from Ref. i) the

adopted profile (up to 300 kin) is compared with

profiles deduced from several types of observa-
tions.

The gradients dTM/dZ increase steadily from

0 ° K/kin at 90 km to a maximum value of 20 ° K/kin

between 120 and 150 kin, then steadily decrease to
5 ° K/km at 200 km and finally to 1.1 ° K/kin at 600

kin. Because of the requirement that dT/dz tend

to zero above 350 kin, dTM/dZ must be maintained

at a small positive value determined by the rate of

decrease of M in the same region. When dT/dz -- 0

dTM/dZ = - T/M 2 (dM/dz)

where dM/dz is negative

Figure 5 (from Ref. 1) presents density versus

geometric altitude for the new standard compared
with some U.S. and Russian data and the 1959

ARDC Model Atmosphere. A comparison of the

pressure versus altitude curves for the new U.S.

standard atmosphere with other standards is pre-

sented in Fig. 6 (from Ref. 1). Figure 7 (from

Ref. 7) is a comparison of the molecular weight
versus altitude for the different standards. A

table of the defining properties of the 90- to 700- km

portion of the U.S. Standard Atmosphere 1962 is

presented in Table 18 (from Ref. 1). Table 19

(from Ref. 1) shows the detailed properties of

this upper part of the new atmosphere. A brief
outline of the new standard from 0 to 700 km in

skeleton form is presented in Table 20 (from Ref.
1). This table is included along with the data of

Table 19 because of its compact form and be-

cause of the fact that other data is also presented.

TABLE 18

Defining Properties of the Proposed

Standard Atmosphere

Z

90

I00

110

120

150

160

170

190

230

300

400

500

600

700

T M

180.65

210.65

2S0.65

360.65

960.65

1110.65

1210.65

1350.65

1550.65

1630.65

2160.65

2420.65

2590.65

2700.65

L

CKjkm)

+3

+5

+10

+20

+15

+10

+7

_5

+4

+3.3

+2.6

+1.7

+i.I

I

M T

28.966 180.65

28.38 210.02

2_.56 257.00

28.07 349.49

26.92 892.79

26.66 1022.2

26.40 1103.4

25.85 1205.4

24.70 1322.3

22.66 1432.1

19.94 1487.4

17.94 1499.2

16.84 1506.1

16.17 1507.6

z = geometric altitude

T M = molecular scale temperature = TM0/M

T = kinetic temperature

M = mean molecular weight

M 0 = sea-level value of M

L = dTM/dZ, gradient of molecular scale

temperature

2. Densit V Variability

a. Measurements

Variations in density of the upper atmosphere

affect the orbital lifetime and re-entry of satel-
lites. For these reasons considerable attention

has been given recently to evaluation of these
variations.

Tidal variations in the atmosphere are at-

tributed to gravitational variations caused by

the sum and moon. This tidal energy is supplied
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7,7

Z

(kml

9O

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

Z =

H =

TABLE 19

Defining Molecular Scale Temperature and Related Properties
for the U. S. Standard Atmosphere--1962

TM L

(° K) (° K/km)

180.65 I
186.65

192.65 3.0

198.65 1
204.65

210.65 I220.65

230.65 5.0

240.65

250.65

260.65

280.65

300.65 i0.

320.65 I

340.65 I

360.65 i

400.65 I

440.65 I

480.65

520.65

560.65

600.65

640.65 I

680.65 20.

720.65

760.65

800.65

84O. 65

880.65

920.65 i

960.65 i

990.65 I

[020.65 15.

L050.65

LOS0.65
I

LllO. 65
130.65 10.

L150.65 _'

geometric altitude

geopotential altitude

RZ

R+Z

Hp

(kin)

5. 438

5.623

5. 807

5. 991

6. 176

6.361

6. 667

6. 974

7. 280

7. 588

7. 895

8. 507

9.117

9. 731

10.34

I0.96

12.18

13.41

14.63

15.86

17.09

18.32

19.55

20.78

22.02

23.25

24. 49

25.73

26.98

28.22

29.46

30.39

31.34

32.28

33.22

34. 17

34. 80

35.44

P P

(mm Hg (m_. 10 n)(mbx l0 n) n x 10 n) n L°gl0P/Po n L°gl0P/Po

1. 6437 -3

1. 1448

8.0674 -4

5. 7476

4. 1372

3. 0070

2. 2119

1. 6497

i. 2460 1

9. 5205 -5

7. 3527 -5

5. 7609

4. 5908

3. 7127

3. 0418

! 2. 5209

2. 1204 i

1. 8133

1. 5721 i

i. 3787 I

i. 2210 -5

i. 0905

9. 8118 -6

8. 8852

8. 0923

7. 4079 i

6. 8124

6. 2908 1

5. 8310 i
i

5.4233 1

5. 0599 -6

4. 7328

4. 4359

4. 1655

3. 9187

3. 6929

3. 4848

3. 2919 _'

i. 2329 -3

8. 5869 -4

6.0511

4.3110

3. 1031

2. 2554

I. 6591

I. 2374

9. 3456

Ir

7. 1410

5. 5150 -5

4. 3210

3. 4434

2. 7848

2. 2816

i. 8909

I. 5904

1.3601

1. 1792

p
1. 0341

9. 1584 -6

8. 1797

7.3595

6. 6645

6. 0697

5. 5563

5. 1098

4. 7185

4. 3736

4.0678 I

3. 7952 -6

3. 5499

3. 3272

3. 1244

2. 9393

2. 7699

2.6138 I

2. 4691 I

-5.7899

-5.9496

-6.0990

-6.2462

-6.3890

-6.5276

-6.6610

-6.7883

-6.9102

-7.0271

-7.1393

-7.2452

-7.3438

-7. 4360

-7.5226

-7.6042

-7.6793

-7.7472

-7.8092

-7.8663

-7. 9190

-7. 9681

-8. 0140

-8.0571

-8.0977

-8.1360

-8.1724

-8.2070

-8.2400

-8.2715

-8.3016

-8.3306

-8.3587

-8.3861

-8. 4126

-8. 4384

-8. 4635

-8.4883

3.1698:6

2.1368 :

I. 4589 !
i

1.oo8o

7.0428 -7

4.9731 i

3.4924

2.4918

1.8038 l

1. 3233 i

9,8277 -8

7,1512 I
b

5,3196

4.0338

3.1109

2. 4352

i. 8435

i. 4336

i. 1395 i

9.2254 -9

7.5873 -9

6.3252

5.3357

4.5478

3.9121

3.3929 I

2.9643

2.6071

2.3067

2.0522

1.8350 -9

1.6644

1.5141

1.3812

1.2633

1.1584

1.0738

9.9669 -I0

-5.5871

-5.7584

-5.9241

-6.0847

-6.2404

-6.3915

-6.5450

-6.6916

-6.8320

-6.9665

-7.0957

-7.2338

-7.3623

-7.4824

-7.5953

-7.7016

-7.8224

-7.9317

-8.0314

-8.1232

-8.2080

-8.2871

-8.3610

-8.4303

-8.4957

-8.5576

-8.6162

-8.6720

-8.7251

-8.7759

-8.8245

-8.8669

-8.9080

-8.9479

-8.9866

-9.0243

-9.0572

-9.0896

R = radius of earth at 45 ° 32' 40" : 6356. 766 km
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z
(kin)

166
168
170
172
174
176
178
180

182

184

186

188

190

192

194

196

198

20O

202

204

206

206

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

TM L

(°K) (°K/kin)

1170.65 I

1190.65 10.0

t
1210.65

1224.65

1236.65
I

1252.65

1266.65

1280.65 7.0

1294.65

1308.65

1322.65

1336.65

I1350.65

1360.65 I

1370.65

1380.65

1390.65

1400.65

1410.65

1420.65

1430.65

1440.65

1450.65 5.0

1460.65

1470.65

1480.65

1490.65 i

1500.85

1510.65

1520.85 I

1530.65

1540.65

1550.65 I

1558.65

1566.65

1574.85 4.0

1582.85

1590.65

1598.65

Hp

(kin)

36.08

36.72

37.36

37.81

38.27

38.73

39.18

39.64

40.10

40.55

41.01

41.47

41.93

42.27

42.61

42.94

43.28

43.62

43.96

44.30

44.63

44.97

45.31

45.65

45.99

46.33

46.68

47.02

47.36

47.70

48.04

48.39

48.73

49.01

49.29

49.58

49.88

50.14

50.43

TABLE 19 (continued)

P

(mm Hg

(mbx I0 n ) n x i0 n) n

3.1128

2.9464

2.7915

2.6468

2.5113

2. 3841

2.2648

2.1527

2.0474

1.9483

1.8551

1.7673

1.6845

1.6064

1.5324

1.4624

1.3961

1.3333

1.2738

1.2173

1.1638

1.1130

1.0647

1.0189

9.7542

9.3407

8.9475

8.5735

8.2177

7.8721

7.5567

7.2497

8.9572

6.6782

6.4119

6.1577

5.9149

5.6830

5.4614

-6 2. 3348

2. 2100

-6 2.0938

I 1. 9853

1. 8836

1. 7882

1. 6987

1. 6147

1.5357

1.4614

1. 3914

I
1. 3256

-6 1. 2635

1. 2049

1.1494

1.0969

1. 0472

I. 0001

9. 5541

9. 1307

8. 7291

i,
8. 3480

-6 7. 9862

7. 6427

-7 7.3163
I
I 7.oo61

6. 7112

6. 4307

5. 1638

5. 9046

5. 6680

5. 4377

-7 5.2183

5. 0091

4. 8093

4. 6187

4.4366

4. 2626

r 4.0964

-6

i

-8

-6

r

-7

I

-7

P

LOgl0P/P 0 <m_ " lOn)n LOgl0p/p 0

-8.5126 9.2637

-8.5364 8.6211

-8.5599 8.0330

-8.5830 7.5296

-8.6058 7.0632

-8.6284 6.6307

-8.6507 6.2292

-8.8727 5.8562

-8.6945 5.5094

-8.7161 5.1868

-8.7374 4.8863

-8.7584 4.6062

-8.7793 4.3450

-8.7999 4.1130

-8.8204 3.8950

-8.8407 3.8901

-8.8608 3.4975

-8.8808 3.3163

-8.9006 3.1458

-8.9203 2.9852

-8.9399 2.8340

-8.9592 2.6915

-8.9785 2.5571

-8.9976 2.4303

-9.0165 2.3107

-9.0353 2.1978

-9.0540 2.0911

-9.0726 1.9904

-9.0910 1.8952

-9.1092 1.8051

-9.1274 1.7200

-9.1454 1.6394

-9.1633 1.5631

-9.1811 1.4927

-9.1987 1.4259

-9.2163 1.3624

-9.2338 1.3020

-9.2511 1.2447

-9.2684 1.1902

-I0

-I0

-i0

r

r

-i0

-i0

r

-I0

-9.1214

-9.1526

-9.1833

-9.2114

-9.2391

-9.2666

-9.2937

-9.3205

-9.3470

-9.3732

-9.3992

-9.4248

-9.4502

-9.4740

-9.4976

-9.5211

-9.5444

-9.5675

-9.5904

-9.6132

-9.6358

-9.6582

-9.6804

-9.7025

-9.7244

-9.7462

-9.7678

-9.7892

-9.8105

-9.8316

-9.8526

-9.8735

-9.8942

-9.9142

-9.9341

-9.9538

-9.9735

-9.9931

-10.0125
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_

Z

(krn) {

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

294

296

298

300

305

310

315

320

325

33O

335

340

345

TM L

(°K) (°K/kin)

1606.65 4.0

1614.65

1622.65

1630.65

1638.65

1646.65

1654.65

1662.65

1670.65

1678.65

1686.65

1694.65

1702.65

1710.65

1718.65
1726.65

1734.65 4.0

1742.65

1750.65

1758.65

1768.65

1774.65

1782.65

1790.65

1798.65

1806.65

1814.65

1822.65

1830.65 '_

1847.15 _

1863.65

1880.15

1896.65

1913.15 3.3

1929.65

1946.15

1962.65

1979.15 I

H
P

(kin)

50.71

50.99

51.27

51.56

51.84

52.13

52.41

52.70

52.98

53.27

53.55

53.84

54.13

54.41

54.70

54.99

55.28

55.57

55.86

56.15

56.43

56.73

57.01

57.31

57.60

57.88

58.18

58.47

58.76

59.38

60.00

60.62

61.25

61.88

62.50

63.13

63.78

64.40

TABLE 19 (continued)

P

(ram Hg

(mbx I0n) n x 10 n ) n

5.2496

5.0471

4.8535

4.6683

4.4912

4.3217

4.1594

4.0041

3.8554

3.7130

3.5765

3.4457

3.3204

3.2003

3.0851

2.9746

2.8686

2.7670

2.6694

2.5758

2.4858

2.3995

2.3166

2.2369

2.1604

2.0868

2.0162

1.9482

1.8828

1.7300

1.5910

1.4644

1.3491

1.2438

1.1477

1.0599

9.7957

9.0604

-7

-7

r

-7

-7

-7

-8

3.9375 -7

3.7856

r
3.6404

3.5015 -7

3.3687

3.2415

3.1198

3.0033

2.8918

2.7849

2.6826

2.5845

2.4905 r

2.4004 -7

2.3140

2.2311

2.1517

2.0754

2.0022

1.9320

1.8645

1.7998 i

1.7376

1.6778 -7

1.6204

1.5653

1.5122

1.4613

1.4122

1.2976

1.1934

1.0984 i
1.0119

9.3293 -8

8.8086

7. 9499 j

7.3474 l
6.7958

P

LOgl0P/P0(m_" 10n) rt

-9.2856

-9.3027

-9.3197

-9.3366

-9.3534

-9.3701

-9.3867

-9.4032

-9.4197

-9.4360

-9.4523

-9.4684

-9.4845

-9.5005

-9.5165

-9.5323

-9.5480

-9.5637

-9.5793

-9.5948

-9.6103

-9.6256

-9.6409

-9.6561

-9.6712

-9.6862

-9.7012

-9.7161

-9.7309

-9.7677

-9.8041

-9.8401

-9.8757

-9.9110

-9.9459

-9.9805

-10.0147

-10.0486

i. 1383 -I0

i. 0890 I
1.0421

9. 9738 -II

9. 5485

9. 1434

8. 7576

8. 3901 1

8. 0397

7. 7058

7. 3874

7.0837

II

6. 7940

6.5176 -ll

6. 2537

G. 0018

5.7613

5.5316

5. 3122

5. 1025

4. 9021

4. 7105

4.5273

4. 3521 -II

4.1845

4. 0241

3. 8707 i

3.7238

3. 5831

3. 2629

2. 9742

2.7135

2. 4780 _

2. 2650 -11

2. 0721

1. 8973

1. 7388

1. 5949 1

LOgloP/P 0

-I0.0319

-I0.0511

-10.0703

-10.0893

-10.1082

-10.1270

-10.1458

-10.1644

-10.1829

-10.2013

-10.2197

-10.2379

-10.2560

-10.2741

-10.2920

-10.3099

-10.3276

-10.3453

-10.3629

-10.3804

-10.3978

-10.4151

-10.4323

-10.4494

-10.4665

-10.4835

-10.5004

-10.5172

-10.5339

-10.5745

-10.6148

-10.6546

-10.6940

-10.7331

-10.7717

-10.8100

-10.8479

-10.8854
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Z

(kin)

350

355

360

365

370

375

380

365

390

395

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

TM L

(°K) (°K/kin)

1995.65

2012.15

2028.65

2045.15

2061.65

2078.15 3.3

2094.65

2111.15

2127.65

2144.15 1

2160.65 t,

2186.65 I

2212.65

2238.65

2264.65 I
2290.65 2.6

231B.65 ]

2342.65
,

2368.65 i
2394.65

2420.65

2437.65

2454.65

2471.65

2488.65

2505.65 1.7

2522.65

2539.65

2556.65

2573.65 i

2590.65 l
2601.65

2612.65

2623.65

2634.65

2645.65 1. i

2656.65

2667.65

2678.65

2689.65

2700.65 r

H
P

(km)

65.02

65.66

66.30

66.94

67.58

68.22

68.86

69.51

70.16

70.81

71.45

72.53

73.61

74.69

75.78

76.88

77.98

79, O9

80.20

81.32

82,44

83,27

84.09

84.91

85.75

86.59

87.43

88.28

89.12

89.97

90.83

91.47

92.13

92.78

93.43

94.09

94.75

95.42

96.09

96.76

97.42

TABLE 19 (continued)

(rob x 10 n)

8.3866

7.7688

7.2018

6.6810

6.2024

5.7620

5.3567

4.9832

4.6389

4.3212

4.0278

3.5055

3.0571

2.6714

2.2339

2.0517

1.8031

1.5_75

1.4002

1.2371

1.0949

9.7042

8.6110

7.6500

6.8041

6.0585

5.4007

4.8197

4.3058

3.8508

3.4475

3.0893

2.7705

2.4865

P

-8

I

i

r

-8

i

-8

-9

-9

I
i

(mm Hg

x l0 n) n

6.2905 -8
i

5.8271

5.4018

5.0112

4.6522

4.3219

4.0178

3.7377

3.4794

3.2411 '

3.0211 -8

2.6293 i

2.2930

2.0037

1.7543

I
1.5389

1.3525 i

1.1908 1
1.0502

9.2792 -9

-9
8.2124

7.2787

6.4583

5.7380

5.1035

4.5443

4.0509

3.6150

3.2296

2.8883 1

2.5859 -9

2.3172

2.0780 ]

1.8650

L°gl0P/P 0

-10.0821

-10.1154

-10.1483

-10.1309

-10.2132

-10.2400

-10.2768

-10.3082

-10.3393

-10.3701

-10.4007

-10.4610

-10.5214

-10.5790

-10.6367

-10.6936

-10.7497

-10.8050

-10.8595

-10.9133

-10.9664

-11.0188

-11.0707

-11.1221

-11.1730

-11.2234

-11.2733

-11.3227

-11.3717

-11.4202

-11.4682

-11.5159

-11.5632

-11.6101

2.2333

2.0074

1.8057

1.6254

1.4642

1.3200

1.1908

1.6751

1.5056

1.3544

1.2192

1.0983 'r

,r 9.9007 -10

-9 8.9317 -I0

-11.6568

-11.7031

-11.7491

-11.7948

-11.8401

-II.8852

-11.9299

P

.m_" 101 n

1.4641 -Ii

1.3451

1.2368

1.1381

1.0481

9.6595 -12

8.9092
i

8.2233 i
i

7.5957 4

7.0211 i

6. 4945 - 2
I

5.5850

4.8134

4.1573

3.5981

3.1204 I

2.7116 !

2.3609

2.0595

'1
1.7998

1.5758 -12

1.3869

1.2222

1.0783 i'

9.5250 -13
r

8.4238 i

7.4585

6.6115

5.8673

5.2127 P

4.6362 -13

4.1369

3.6943

3.3017

2.9531 i

2.6433

2.3679

2.1227

1.9044 I

1.7097 i

1.5361 -13

LOgloP/P O

-10.9226

-10.9594

-10.9958

-11.0320

-11.0677

-11.1032

-11.1383

-11.1731

-11.2076

-11.2417

-11.2756

-11.3411

-11.4057

-11.4693

-11.5321

-II.5939

-11._549

-11.7151

-11.7744

-11.8329

-11.8906

-11.9461

-12.0010

-12.0554

-12.1093

-12.1626

-12.2155

-12.2678

-12.3197

-12.3711

-12.4220

-12.4715

-12.5206

-12.5694

-12.6179

-12.6660

-12.7138

-12.7613

-12.8084

-12.8552

-12.9017
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TABLE 20

Skeleton of the U.S. Standard Atmosphere--1962

Defining temperature and molecular weights of the proposed U.S. Standard Atmosphere and computed
_ressures and densities, where z = geometric altitude, h = geopotenttal altitude, T = kinetic temperature,

M -- mean molecular weight, L -- gradtent of molecular scale temperature = dTM/dh (below 79 geopotential

kin) -- dTM/dZ (above 79 geopotential kin), T M = molecular scale temperature -- (T/M) M0; and M 0 = sea

level value of M.

Z

(km)

0.000

11.019

20.063

32.162

47.350

52.429

61.591

79.994

90.000

100.000

ii0.000

120.000

150.000

160.000

170.000

190.000

230.000

300.000

400.000

500.000

800.000

700.000

h

(km)

0.000

11.000

20.000

32.000

47.O0O

52.000

61.000

79.000

88.743

98.451

i08,129

117.777

146.542

156.071

165.572

184.485

221.968

286.478

376.315

463,530

548.235

630.536

T M

(°K)

288.15 -6.

216.65 0.

216.65 I.

228.65 2.

270.65 0.

270.65 -2.

252.65 -4.

180.65 0.

180.65 3.

210.65 5.

260.65 i0.

360.65 2O.

960.65 15.

i, 110.65 10.

1,210.65 7.

I, 350.65 5.

1,550.65 4.

i, 830.65

2,160.65

2,420.65

2, 590.65

2,700.65

L

(*K/kin)

5 28.966

0 28.966

0 28.966

8 28.966

0 28.966

0

0

0

i

T

M (°K)

288.

216.

216.

228.

270.

28.966 270.

28.966 252.

28.966 180.

15

65

65

65

65

65

65

65

P

(rob x I0 n) n

10.1325 2*

2.2632 2

5.4747 1

8.6798 0

1.1090 0

5.8997 - 1

1.8209 - 1

1.0376 - 2

0 28. 966

0 28.88

0 28.56

0 28.07

180.

210.

257.

349.

65

02

00

49

1.6437 - 3

3.0070 - 4

7.3527 - 5

2.5209 - 5

3.3

2.6

1.7

I.I

26.92 892.

26.66 1,022.

26.40 1,103.

25.85 1,205.

24.70 1,322.

22.66 1,432.

19.94 1,487.

17.94 1,499.

16.84 1,506.

16.17 1,507.

79

20

4O

40

30

I0

40

2O

I0

60

5,0599 - 6

3.6929 - 6

2.7915 - 6

1.6845 - 6

6.9572 - 7

1.8828 - 7

4.0278 - 8

1.0949 - 8

3.4475 - 9

1_1908 - 9

1.2250 3

3.6392 2

8.8033 l

1.3225 1

1.4275 0

7.5939 - i

2.5108 - 1

2.0009 - 2

3.1698 - 3

4.9731 - 4

9.8277 - 5

2.4352 - 5

1.3350 - 6

1.1584 - 6

8.0330 - 7

4.3450 - 7

1.5631 - 7

3.5831 - 8

6.4945 - 9

1.5758 - 9

4.6362 - 10

1.5361 - 10

to the atmosphere in the high density region and

the diurnal tidal component propagates upward to
about 105 to 305 km where it is damped. The

semidiurnal components of the lunar and solar
tidal variation, because of their shorter period,

are usually detected between 50 and 80 kin. The

maximum density variation resulting from these
tidal effects is of the order of 25%. At 96 kin,

Greenhow and Hall (Ref. 8) have found a diurnal

density variation of about 13% and a semidturnal
variation of about 7%. Other causes of density

variability are solar heating which may be ex-
pected to vary with local time, latitude, season

and altitude (as selective portions of the solar

radiation are absorbed). In addition to gravita-

tional and thermal causes of fairly regular den-

sity variability there may be an irregular com-

ponent analagous to storm systems in the lower
atmosphere.

Nicolet (Ref. 9) indicates that atmospheric den-

sity variations may also be produced by solar

flares and sunspot activity. Sunspot variation ef-

fects on density would be expected to vary from

one year to the next with solar flare activity being
associated with the sunspot activity. It is presumed

that these effects would cause density variations
of the order of 30 to 40% at altitudes of 200 kin.

The effect of the ll-year sunspot cycle on density

has been estimated by Johnson {Ref. 10) as shown

in Fig. 8. The maximum decrease occurs at

about 1000 km where density is lower by a factor
of 100. The effect reverses at 1700 kin. If these

estimates are correct, then the solar cycle varia-

tion may be the largest change tn density.

One of the most useful techniques in determining

densities has been from changes measured in the

orbits of satellites having fairly precisely defined
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elements.King-HoleandWalker(Ref.11) have

determined density from 21 satellites. Figure 9
shows the density ratio (to sea level density) from
these determinations. These data confirm that at

altitudes between 180 and 300 km "the density did
not depart from the long term average of 1957 -

1959 by a factor of more than 1.5- as a result of

latitudinal, seasonal or day-night effects, although

it is possible that larger variations might have oc-

curred over intervals of Iess than 1 day and not

have been detected by this technique (which re-
quires about 10 orbits for a determination).

A grouping of the data from 180 to 250 kmin

Fig. 9 into those points up to January 1959 and

after August 1959 would indicate density curves,

respectively, 10,% higher and 10% lower than the

average shown on Fig. 9. This small decrease

in density with time is attributed to the decrease

in solar activity.

At altitudes between 300 and 700 kin, Fig. 9

shows an increasingly pronounced day-night varia-

tion. The authors note that this is a solar zenith

angle effect and should not be attributed to latitude

or season beyond the fact that solar zenith angle
is related to latitude and season.

In evaluating the large apparent day-night ef-
fect shown, it should be noted that some of the

variation is due to solar activity as the midday

data all refer to early 1959 and the midnight values

to late 1959 and early 1960.

Jacchia (Ref. 12) has found from observations

of satellite motion that a large diurnal variation

in atmospheric density primarily due to solar heat-

ing effects occurs at altitudes greater than 325 km

and decreases at the 200-kin level. This bulge oc-

curs in the general direction of the sun with a 25 °

to 30 ° lag produced by the earth,s rotation. This

atmospheric bulge represents the bulk of the den-

sity variations at altitudes above 200 km with

variations ranging from about 5% of the mean den-

sity at 200 km to about 25% at 800 kin.

A separation of the day-night, seasonal, ter-
restrial (latitude) and solar activity effects has

been indicated by Martin and Priester (Ref. 13)

using observations of Vanguard I. At 660 km, a

factor of 10 day-to-night variation in density was
determined. This is considerably larger than

Jacehia.s value at 800 kin. The value of density
shown in Fig. 10 is a function of the difference in

right ascension L_a of the sun and satellite perigee
(and therefore a function of true local time). The

shift of maximum density at 660 km by 25 ° from

local noon is well defined and in agreement with
Jacchia.

The seasonal and latitude effects are super-

imposed and at 660 km and over latitudes and dec-

linations 0 ° to 30 ° they are each about 1 / 10 of

the day-night effect. The analysis of Discoverer
satellite orbits (Ref. 14) has indicated that the

latitude-seasonal effect was only about 20%.

Kallmann-Bijl (Ref. 15) in a recent survey has

indicated that the separation of yearly, latitudinal,
seasonal and solar cycle effects still remains a

problem and her belief is borne out by the lack of
agreement among different estimates of these ef-
fects.

Data from Vanguard 2 and Sputnik in addition

to Vanguard I data were further investigated (Ref.
16) and yielded the diurnal (plus seasonal) density
variations shown in Fig. 11. At 210 km the diurnal

variation of density is about a factor of 2, at 562
km it is between 5 and 6 and at 660 km it is al-

most I0 as mentioned earlier. The difference in

density between the solid and dashed lines is a
measure of the seasonal effect at each altitude

since

A6 = 6 " 5E)

is the difference in declination between the satel-

lite perigee _ and the sun (9. The seasonal den-
sity decrease at an average_A_ of about 40 ° is

about 5% at each altitude. (Parkyn (Ref. 17) has

determined the ratio of polar to equatorial density

of 0.65 at about 250 kin.) Figure 12 (taken from
Ref. 17) is a model of the diurnal variations of

atmospheric density. The ',wiggle,, at 200 km

was first suggested by Kallmann (Ref. 18) and

derived more exactly and with better definition

by Priester and Martin (Ref. 19) using more data.

The wiggle occurs in the F1 region of the iono-

sphere and is considered as the beginning of the

density "solar effect." It is caused by absorptiop
of the relatively intense solar helium line at 304A.

The diurnal variation of density at 200 km is small
because of the poor heat conduction. The increas-

ing diurnal effect 'fan shape" with altitude results
from the combination of absorbed solar electro-

magnetic radiation and increasing heat conductivity

of the atmosphere. Another density 'wiggle" at

300 to 500 km expected from the absorption of the

584,_ solar helium line is apparently smoothed

out by the large heat conductivity.

The flux of solar radiations (short ultraviolet

as well as perhaps X-rays and particles) which

cause the diurnal density variation are themselves

variables. Therefore a "solar activity effect' upon

density (above 200 km) also occurs. The best in-

dex of this effect is the intensity of radiation (in

the 3- to 30-cm wavelength) from the sun which is

emitted from the same solar regions (coronal

condensations and flares) as the much more highly

ionizing radiations which modulate atmosphere

density.

The relation between density and 20-cm solar

radio waves has been found to be approximately
linear over the range of. values of solar flux be -

tween I00 and 240 x 10 -22 w]m2-cps. If 170 x 10-22

is used as a standard flux, the density variation
due to solar activity is about ±41%. This is over
and above the diurnal variation. It is known that

some of the ionizing solar radiations have their

largest variations in intensity over relatively

short intervals of minutes during solar flares.
Short transients in density that result from the

absorption of these radiations are not distinguish-

able using the relatively long technique of varia-
tions tn satellite acceleration. On the other hand,

some of the sources of increased ionizing radia-

tion are relatively long-lived, as a 27-day periodicity
of density has been detected. This corresponds to

the rotational period of the sun.

An estimate of density at 1518 km has been

made from the orbit of the Echo satellite (Ref. 20).
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z-

The variation in orbital period corresponded to a

mean density of 1.1 x i0-18 gm/cm 3. However,

at this altitude, density variations of 2 orders of

magnitude are indicated, so the value of the mean

is very limited.

At lower altitudes, Quiroz (Ref. 21) has con-

structed a model of the seasonal variation of mean

density as shown in Fig. 13. This author notes

that the variations indicated on this figure join

quite well with the factor of 1,5 at 220 km from

Ref. 11. At altitudes up to 30 km there is con-

siderably more data available. In Refs. 22 and

23, summaries have been prepared and are avail-

able for a number of specific stations and by lati-

tude and season.

b. Variable models from satellite orbits

(Ref. 24)

Jacchia (Ref. 12) and Priester (Ref. 25) both

devised variable models of the upper atmosphere
based on the observed correlation with the deci-

meter solar flux and the angle between perigee

and the sun. An annual variation in atmospheric

density was then discovered by Paetzold (Rcf.

26) who constructed a variable atmospheric model

based on all three effects. A C D of 2 should be

used with these variable atmospheric models.

(Paetzold has recently reported that he now uses

C D = 2.2.) In all the models.mentioned above the

density is calculated as if all the drag were caused

by neutral particles. At the higher altitudes charge

drag may.be important, but the gross effects of
the interaction would be the same in any case for

satellites with conducting skins.

The model atmospheres based on satellite ob-

servations are constructed mostly from accelera-

tion data smoothed over 2-day intervals. There-

fore, these models can give no information about
shorter term fluctuations. Little is known about

short term fluctuations in the upper atmosphere.

Jacchia,s Variable Model, According to Jacchia,

the density of the upper atmosphere is given by

the following formula.

(h) F20 _I+ 0.19 [exp (0. 01887h)p-- P0
t. %..

)
P0 (hl, which Is the density when _ = 180 ° and

F20 = I, is given by

log P0(h) = -15. 733 - 0.006,808,3h

+ 6.363 exp (-0.008,917h).

The quantities appearing in these formulas are

h = height in km (185<h<750)

F20 = 20-cm solar flux in units of 100 x 10-22

w/m 2 - cps

_b = the angle between the satellite and the

peak ot the diurnal bulge of the atmos-

phere. (The bulge is assumed to lag

behind the sun by approximately 25 ° in

Jacchia' s atmosphere, )

p = atmospheric density in slugs/ft 3

(lslug/ft 3 =515.2 kg/m 3)

Priester's Variable Model. Priester's model

is similar to Jacchia's, since both are based on

the correlation with the 20-ca solar flux and the

angle between perigee and the sun. In Priester's

model, the atmospheric density is directly pro-

p6rtional to F20, the 20-ca solar flux, and the

peak of the diurnal bulge lags 1 hr (15 °) behind

the sun.

Paetzoldls Variable Model. Paetzoid's at-

mosp-_ere is one of the more recent modes (July

1961). It also covers the greatest range of al-

titudes (150 to !600 kin), and uses the most depend-

able and readily available solar flux data (the 10-

ca measurements made by Arthur Covington at
the National Research Council, Ottawa, Canada).

Since Paetzold' s atmosphere includes more ef-
fects, it is more complicated than Jacch/a's or
Priester Is.

In Paetzold' s model, the density of the upper

atmosphere, p(h) is described by

._0 - F!o

log _h) = log Ps(h) - i220(h) 120

- a(h) g_a) - O(h) f(O) ....

where Ps(h} is the standard density function given

in Table 21. It represents the density in slugs/

ft 3 (1 slug/ft 3 = 5t5.2 kg]m3)at the maximum of

the diurnal bulge (local time, 8 = 14.00 hr), when

the 10-ca solar flux, F10 is 220 (in units of

10-22 w/m2-cps), and when the annual variation

is at its peak The function i220 (h) represents

the effect of solar ultraviolet emission, which is
correlated with the 10-ca solar flux and with

sunspots. The effect of the diurnal bulge is
represented by 0{h), where

0(h) = 0s(h)

-- 220 - FI0

_A I O(h) • i220(h) 120 + a(h) g(a)

i220(h) + a(h)

2 20- F10 _

-420(_\ 12o ]

All three functions, 8s(h), A lS(h) and A28(h) are

given in Table 21. Below 650 km, the corrections

_iS(h) and _28(h) are small. The function frO)

appears in Table 22. The annual variation in

density is represented by the product g(a) a(h), in

which g_a) is a function of the month of the year,
and a(h) is a function of the height.
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h

(naut mi)

8O

85

9O

95

100

110

120

130

140

150

160

170

180

190

200

210

220

23O

24O

25O

260

27O

28O

29O

3OO

310

320

33O

34O

35O

36O

37O

38O

39O

4OO

410

42O

43O

44O

45O

46O

47O

48O

TABLE 21

The Standard Functions for the Air Density and Its Variations

Ps(h)

(slugs/ft 3)

-12
7. 220 z 10

3. 845

2. 098

i. 347 "

9. 787 x 10 -13

7. 206

5. 135

3. 296

2. 060

I. 423

I. 060 r

8. 046 x 10 -14

6. 087

4.612

3. 507

2. 712

2. 151

1. 714

I. 385

I. 130 ,r

9. 326 x 10 -15

7,901

6. 474

5. 443

4. 608

3. 921

3. 352

2. 873

2. 473

2. 196

1. 938

1. 606

1. 397

1.217

I. 063 1'

-16
9. 300 x 10

8. 161

7. 174

6. 316 '

5. 564

4. 905

4. 333

3. 834 1

lnaut mi = 1.852 km; 1 slug/ft 3 - 515 2
• m3l

log Ps(h) 8 (h)s a220(h) i220(h)

-11.122 -0.009

0.443 -0,014

0.694 -0,018

0,879 -0,023

-12.0133 -0.017

0.1438 +0.032

0.2913 0,070

0.4832 0.049

0.6868 0.054

0.8477 0.094

0,9756 0.133

-13.0957 0.170

0,2167 0.207

0.3369 0.242

0.4553 0.276

0.5671 0.314

0.6705 0.344

0.7684 0.375

0.8604 0.425

0.9479 0.462

-14.0316 0.499

0.1107 0.536

0.1898 0.573

0.2650 0.605

0.3376 0.642

0.4080 0.679

0.4762 0.716

0.5430 0.753

0.6082 0.790

0.6717 0.827

0.7340 0.863

0.7953 0.895

0.8557 0.927

0.9153 0.960

0.9739 0.992

-15.0316 1.025

0.0886 1.053

0.1448 1.080

0.2003 1.108

0.2555 1.135

0.3103 1.162

0.3642 1,188

0.4174 1.213

0,031

0. 036

0,041

0. 047

0.053

0,066

0,079

0. 093

0.108

0.122

0.137

0.152

0.168

0,185

0.203

0.221

0.240

0.259

0.278

0,295

0.312

0. 327

0. 342

0, 356

0,370

0.384

0.397

0.410

0.422

0.433

0.444

0.455

0.467

0.478

0.991

0.498

0.508

0.518

0.528

0.537

0.546

0.556

0.565

0.041

0.064

0.091

0.121

0,156

0.246

0.325

0,356

0. 373

0, 387

O. 398

0.409

0.420

0.431

0.442

0.454

0.465

0.476

0.487

0.498

0.509

0.520

0.531

0.542

0.554

0.565

0.576

0.587

0,598

0,609

0.620

0.631

0.643

0.654

0.665

0.6?6

0.687

0.698

0.709

0.720

O. 732

O. 743

O. 754

a ie(h)

0. 000

0

0

0

0

0

0

0

0

0

0

0

0

0. 001

0. 001

0. 002

0. 002

0. 003

0. 004

O. 005

O. 007

O. 009

O. 010

0. 012

0. 014

0. 016

O. 020

O. 023

0. 028

0. 033

0. 038

0. 044

0. 049

0. 055

0. 061

O. 068

O. 074

0. 081

O. 087

O. 094

O. 101

0. 108

0. 116

20(h)

0.000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
j_
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TABLE 21 (continued)

(Inautmi =1.852km, Islug/ft3 =515.2 km-_l

h

(nautmi_

490

500

520

540

560

580

600

620

640

660

680

700

720

740

760

780

800

825

850

Ps (h)

(slugs /ft3 )

3. 395 i

3.009

2.371

1.875

1.500

1.195

9.477 x 10 -17

7.499

6.049

4.854

3.882

3. 116

2. 538

2, O59

1. 666

1.356

1,115 [

-18
8.692 x 10

6.786

TABLE 22

log Ps(h)

0.4701

0.5223

0.6256

0.7274

0.8278

es(h)

I. 239

I, 264

I, 310

I. 353

I, 396

a220(h)

0. 574

0. 583

0. 602

0,620

0,637

i220(h)

0.765

0.776

0.798

0.819

0.836

z_ le(h)

0.123

0.131

0.145

0.160

0.175

0,9276

-16.0268

0,1254

0.2225

0.3186

0.4137

0.5075

0.5995

0.6905

0.7805

0,8691

0.9566

-17.0649

0.1721

1,435

1.471

1.504

1,536

1.565

1.590

1.611

1,630

1,647

1.663

1.676

1.692

1.708

1.720

0.654

0.671

0.689

0.706

0.726

0.745

0.754

0.768

0.781

0.793

0.804

O. 815

O. 829

O. 843

0.852

0.868

0.885

0.901

0.917

0.932

0.947

0.961

0.975

0.988

1000

1.012

1.028

1.043

0.190

0.206

0.223

0.239

0255

0.271

0.287

0.302

0.316

0.328

0.339

0.346

0.354

0.360

Z_ 20(h)

0

0

-0.002

-0.007

-0.016-0.024

-0.032

-0.038

-0.038

-0 033

-0.024

-0.011

+0.006

O. 029

0. 053

0 077

O 096

0. 114

0.126
I

The Phase-Functions, f(O) and g(a)

fie)

0h0 0. 870

1.0 0.945

2.0 0.980

3.0 0.995

4.0 I. 00O

5.0 0.975

6.0 0.850

7.0 0.655

8.0 0.490

9.0 0.295

10.0 O. 130

11.0 0.055

12.0 0.030

13.0 0. 010

14.0 0. 000

15.0 0. 010

16.0 0.045

17.0 0. 120

18.0 0.210

19.0 0.300

20.0 0. 400

21.0 0.505

22.0 0. 615

23.0 0.740

g(a)

12.0 Mon. 0.120

I. 0 0. 320

2.0 0. 265

3.0 0. 180

4.0 O, 170

5.0 0.300

6.0 0 640

7.0 O. 980

8.0 O. 900

9.0 0.475

i0, 0 0. 485

Ii. 0 O. 025

1,0 . .means the
beginning of the
firstmonth, etc.

The relative amplitude of the annual variation

decreases toward a sunspot mini_num. The prod-

uct [g(a) a(h)] is represented by the equation

_a) a(h) = a220(h) { g(a) +(220 - F) [0.0043

- g(a) o.oo28]}+...

The quantity g(a) appears in Table 22, while

a220(h) is given in Table 21.

Five special examples have been calculated

in Tables 23 through 27 in order to demonstrate

the effect of the different influences. The scale

height H, mean molecular weight "_, and temper-

ature T, are given, in addition to the density p.
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TABLE 23

Standard Model

log p (h) = log Ps (h)

This example contains the greatest values of density and temperature which will occur in an

average sunspot cycle.

_h)

CslugsIft

h (1-_ km---_) H(h)(naut m_ = 5 15.2 (naut m_
(I naut mi = I. 52 km) ftv (I naut mi = 1.852 krn)

80

85

90

95

I00

llO

120

130

140

150

160

180

200

220

240

26O

28O

3OO

35O

4O0

450

5OO

55O

6OO

650

7OO

75O

8OO

85O

7. 220 x 10 -12

3. 845

2. O98

'ri. 347

9. 787 x I0 -13

7. 206

5. 135

3. 296 I

2. 060 i
J

1. 423 i1. 060

6. 087x 10 -14

3. 507

2. 151

I. 385 r

9. 326 x 10 "15

6. 474

4. 608

2. 196

1. 063 _

5. 564 x 10 -16

3. 009 l1. 650

9. 477 x 10 -17

5.450

3. 116

1. 863

1,115 i

6. 786 x 10 -18

10.1

15.6

21.0

25.7

28.5

27.9

27.3

29. 3

34.2

36.7

39.4

43.7

49.2

54.2

57.8

61.4

65.1

68.9

73.4

76. 1

78.6

81.3

84.3

88.0

93.1

99.6

108.5

119.3

133.6

M(h)

28.0

27.8

27.7

27.5

27.3

26.9

26.4

25.9

25.3

24.8

24. 1

23.0

21.7

20.4

19.2

18.2

17.5

16.8

16,1

15.8

15.7

15.6

15.5

15.3

14.9

14.2

13.4

12.5

11,5

T (h)

589

899

1192

1455

1603

1541

1469

1544

1734

1821

1888

1987

2067

2118

2111

2110

2118

2130

2125

2116

2107

2105

2118

2112

2130

2130

2112

2118

2128

j'
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TABLE 24

Solar Flux Effect

log _h) = log Ps(h) - i220(h)

Th£s example represents the mean amplitude at a sunspot minimum, while the diurnal bulge and

annual variation have their maximum values.

h

(naut mi)
(1 naut mi = l. 852 km)

80

85

90

95

I00

110

120

130

140

150

160

180

200

220

240

260

280

3OO

350

4O0

450

5OO

550

6O0

650

700

750

80O

85O

p(h)

(slugs Ift3)

_-_ = 515.2 kg",

x 10 -12

r

x 10 -13

P

x I0 "14

r

x 10 -15

r

x 10 -16

x 10 "17

1

6.525

3.353

1.720

1.028

6.878

4.179

2.449

1,459

8.752

5.905

4.276

2.498

1.372

7.542

4,620

3.019

1.972

1.297

5.685

2.513

1.135

5.847

4.185

1.303

H (h)

('naut mi)

(1 naut mi = 1. 852 km)

9.7

14, 1

18.9

23.3

24.5

25.0

23.8

25.8

29.0

31.5

33.4

36.4

40.2

44.4

47.6

50.4

53.2

55. 9

59.6

61.9

64.0

66.8

70.6

75.8
-18

6.764 x 10 82.5

3.544 92.0

1.963 107.3

1.110 r 131.3

6.343x 10 -19 169.7

I

28.0

27.3

27.7

27.5

27.3

26.9

26.4

25.9

25.4

24.8

24.0

22.8

21.5

20. 1

18.9

17.9

17.1

16,4

16.0

15.8

15.6

15.3

14.9

14.4

13.4

12,2

10.8

9.1

7.3

T(h)

('K)

569

784

1066

1344

1468

1383

1280

1357

1496

1554

1593

1634

1667

1693

1708

1704

1700

1701

1710

1710

1707

1700

1702

1709

1700

1700

1691

1698

1708

Tlr-35
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TABLE 25

Day-Night Effect ( "Diurnal Bulge")

log p{h) = log Ps(h) - es(h_

From this function the day,night variation can be seen. It represents the minimum of the diurnal
variation, while the other influences retain their maximum values.

h

(naut mb
(1 naut mi = 1. 852 kin)

80

85

90

95

100

i10

120

130

140

150

160

180

200

220

240

260

280

300

35O

400

450

500

55O

600

650

700

750

800

850

p(h)

(slugs/ft 3)

7. 373 x 10 -12

3. 962 I

2. 186

1.419

1. 021

6. 788 x 10 -13

4. 399

2. 945

1. 822

1. 163 r

7. 908 X 10 -14

4. 485 I2. 279

9. 931x 10 -15

5.413

3. 174

1. 835

i. 070 "

3. 854 x 10 -16-

I. 254

4. 524 x 10 -17

I. 773

7.429 x i0 -18

3. 274 1
1. 523

7. 681 x 10 -19

4. 166

2. 318

1. 333

H (h)

_aaut rni)

(I naut mi = 1.852 kin)

9.7

14.4

18.4

21.2

23.1

23.4

22.9

24.0

25. 1

26.3

27.6

29.6

31.9

34.5

36.7

38.9

41.1

43.1

45.5

47.8

50.0

52.9

58. 1

68.3

83.5

101.9

131.7

179.5

277.8

._(h)

28.0

27.8

27. 7

27.5

27.3

26.9

26.4

25.9

25.4

24. 7

23.9

22.7

21.3

19.9

18.7

17.5

16.8

16.4

15.9

15.6

15.3

14.9

14.0

12.3

10.5

9.0

7.2

5.3

3.6

T(h)

i _°K)

562

838

1054

1199

1298

1280

1241

I250

1260

1278

1288

1303

1314

1318

1311

1316

1316

1312

1330

1322

1310

1310

1312

1321

1332

1369

1370

1353

1327
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TABLE 26

Annual Effect

log p(h) = log Ps(h) - a(h)

This example gives the density at the annual minimum, while the remaining influences are at
their maximum

h

(_autm_
(1 naut mi = 1. 852 kin)

80

85

90

100

100

110

p(h)

{slugs /ft5

120

130

140

150

160

180

200

220

240

260

280

300

350

400

450

5OO

550

6O0

650

700

75O

800

850

6. 702 x 10 -12

3. 548

I. 912

1.211

8. 678x 10 "13

6. 224

4. 328

2. 671

1.614

I. 085 I

-14
7. 797 x 10

4. 432

2. 397

1.270 i

7. 523 x 10 -15

4. 791

3. 059

I. 988 _,

8. 818x I0 -18

3. 777

1. 725

8. 257 x 10 -17

4. 064

2. 049

I. 045 ,r

5. 524 x 10 "18

3. 073

1. 747

I. 004 'r

H (h)

(_autm b
(I naut mi = 1.852 kin)

7.9

11.6

15.0

18.1

20.4

22.0

22.7

25.0

29.4

31.8

34.8

37.9

41.3

45.3

48.9

51.9

55.0

58.0

60.7

62.6

65.3

68.4

72.0

76.3

82.4

91.4

106.3

128.4

162.8

28.0

27.8

27. 7

27.5

27.3

26.9

26.4

25.9

25.4

24.8

24.0

22.8

21.5

20. 1

18.9

17.9

17.1

16.4

16.0

15.8

15.6

15.4

15.0

14.5

13.8

12.6

11.2

9.5

7,6

T(h)

('K)

469

668

850

1002

1119

1208

1212

1312

1553

1623

I_3

1697

1727

1752

1759

1754

1754

1759

1755

1760

1757

1750

1748

1741

1750

1740

1740

1748

1750
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TABLE 27

Total Va riation

log p(h) = log Ps(h) - i220(h) - e(h) - a(h)

This is the lower limit which will be possible in an average sunspot cycle.

h

(naut m_
(1 naut mi = i. 852 kin)

8O

85

9O

95

100

0(h)

(slugs/ft 3)

(islug= 515.2 _-)
ft 3 m

110

120

130

140

150

160

180

200

220

240

260

280

300

350

4O0

45O

500

550

600

650

700

750

800

850

6. 213 x 10, -12

3. 146

1. 616

9. 738 x 10 -13

6. 365

3. 396

1.7a48

I. 050 i

6. 026 x 10 -14

3. 618

2.318

1. 141

4. 851 x 10 -15

2. 000

9. 621 x 1) -16

5,048

2. 575

1. 329
r

4. 036 x 10 -17

1. 066
1

3. 213 x 10 -18-

1. 035

p

3. 768 x 10 -19

1. 417

r

7. 403 x 10 -20

2. 908

1. 698
I'

9. 625 x 10 -21

5. 405

H(h)

(naut mi_

(lnaut mi = 1.852 km)

7.5

10.3

12.9

14.8

16.5

18.5

18.8

20.5

21.6

22.0

23.3

24.5

26.6

29.4

31.5

33.0

34.0

34.7

37.3

39. 1

41.7

46.3

54.5

72.8

111.0

160.4

254.1

429.4

859.1

M(h)

28.0

27.8

27.7

27.5

27.3

26.9

26.4

25.9

25.4

24.7

23.8

22.4

20.9

19.3

17.8

17.1

16.6

16.2

16.0

15.8

15.3

14.4

12.7

9.8

6.6

4.5

3.96

1.85

1.24

T(h)

429

605

739

841

928

1026

1017

i 1071

I 1099

1091

1098

1087

1088

1098

1091

1084

1080

1080

1085

1094

1107

1117

1108

II02

1118

1071

1079

1080

1115

os(h)

1. 155

I. 219

1.30

1.40

1.56

2.20

2.96

3.15

3. 43

4.01

4.66

6.32

8.53

11.42

15.38

20.86

27.60

35.86

54.4

99.9

173

291

489

668

736

1071

1096

1162

1252
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4. Radiation

a. Solar flare radiations

One of the most extensive manifestations of

solar activity is the chromospheric flare. Flares
are ranked according to their area on the solar

disk and their brightness (in the red line of H_r,

6563 A) as indicated in Table 28 (from Ref. 27).

The frequency of flares of different importance
(or class) is shown in Table 29.

TABLE 28

Flare Characteristics

(rain)

Zlass Average Range

1 .....

1 20 4 to 43

2 30 10 to
90

3 60 20 to

155

3* 1BO 50 to

43O

Duration

Area

Limits

10 -6

Visible

Disk

100

100 to 250

250 to 600

600 to 1200

1200

]
Ha Line

Width at

Maximum

(_.)

1.5

3.0

4.5

8

18

TABLE 29

Flare Frequency

Class
Relative

Frequency

0.72

0.25

0.03

Absolute

Frequency

(R)

0. 044

0. 015

0. 002

The number of flares per year varies with the

cycle of sunspots and is defined by the Wolfe sun-
spot number R, which is

R = k (10g+f)

where f is the number of individual spots, g is the

number of spot groups and k is an instrument and
observer's correction factor. The mean sunspot

period is 11.07 yr with mean maximum and mini-

mum Wolfe numbers of 103 and 5.2, respectively
(Ref. 28). The average time from sunspot maxi-

mum to minimum is 6.5 yr and the time from
minimum to maximum is 4.5 yr. The last sunspot
maximum occurred in 1958 with a record number

of 185. Thus, the next maximum will occur prob-

ably in 1969. However, since there is a periodicity

to sunspot cycle maximum which is not very well
defined, it may be that the next maximum will be

the end of the present period (with the 1969 peak

exceeding the 1958 peak) or the beginning of the

next period (with a sunspot number possibly as low

as 50 during 1969). During 1958 more than 3100

flares of Class I or gre&ter occurred, while the
number of flares during the last sunspot minimum

in 1954 was only 16; none larger than Class 1 were

reported (Ref. 29). Solar flares may have electron

temperatures as high as 2 x 108°K (Ref. 30) as

compared to effective temperatures in the umbra

and perumbra of sunspots of 4300°K and 5500°K0

respectively. Prior to the IGY, high energy par-

ticles from solar flares had been detected by

ground-based measurements. Four such events

;,.,erenoted in the 15 yr preceding 1953. Three
more of these events have occurred since that

time, namely 23 February 1956, 4 May and Ii

November 1960. During rile IGY and IGC-59 (July

1957 to December 1959) 25 additional solar flare

particle events were detected. These particles

were detected by balloons and satellites but were

not energetic enough to produce secondaries de-

tectable at ground level. During this period 707

Class 2 or larger solar flares occurred (of which

71 were Class 3 or 3+). Therefore, although solar

flares of Class 2 or greater have occurred on the

average of once a day during solar maximum,

only 25 times in 2. 5 yr did these flares result in

the arrival of flare particles in the vicinity of the

earth. It should be noted here that during the last

sunspot minimum (1954) no flares of Class 2 or

larger occurred.

The flare particles are mostly protons (alphas

and some heavier nuclei have also been detected)

with kinetic energies extending from a few million

electron volts (Mev) to a few tens of billion elec-

tron volts. These energies are considerably be-

low the energies of cosmic ray particles although

the particle flux is greater than the galactic cosmic

ray flux. The first high energy solar particles

were detected at ground-based cosmic ray (sec-

ondary) monitors and one of the first names given
them was solar cosmic rays. Other names are

"solar proton event, " "sol'at flare radiation event, "

and "solar bursts. " But solar high energy particles

(SHEP) has been offered by a group of researchers

in this field as a standard nomenclature. More

confusing is the terminology "Giant" and "Large, "

sometimes used to describe the type of proton flux.

Proton fluxes from the "Giant" flares of 23 February

1956, 4 May 1960 and II May 1960 were not as large

as from the "Large" flares of 10 May, I0, 14 and

16 July 1959. Furthermore, the radiation doses

from the "Giant" events were not as great as from

the Large events. The only explanation for this

ranking is that protons from the Giant events

produced secondaries in the atmosphere that were

energetic enough to penetrate and be detected at

the ground. A better way to describe these events

is by their differential or integral kinetic energy

fluxes. Shown below are the differential spectra

for two solar events, 23 February 1956 as derived

from Foelsche's plot (l:tef. 31) and I0 May 1959 as

derived from Winckler's observations (Ref. 32).

Fl_re

Model

No. I.

Fl_re

Model

NO. 2

"dN 1 " 2. 563 • I0 "I KE -1"2985 dE; O. SO < E< 130 May

dN2=7. B59x10-1 KE-I" 4460 dE; 150<E<550

dN 3 • 2,957 x 103 KE-2. 5520 dE; 550 <E< 1800

dN 4 " 5. 961 x I0 II KE-5. 040 dE; 1600 <E< 5000

dN 5 • 2.802x 1022 KE "7"850 dE; 5000<E< 10.000

K - _i_ dNi " 5.0 x 104 protorm/cm 2-1ec-|ter

dN.g.39x109 E'4. SdE; 20<E<t0,000Mev
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A reasonably simple yet unambigious ranking

of the severity of these events can be seen directly

from these equations to be the coefficient indicating
the total flux of particles and the exponent indicating

how these are distributed with energy. Figure 14
shows the radiation dose inside different thicknesses

of absorber for these events and clearly shows that
the relative hazard from these events varies with

the amount of shielding provided.

Figure 14 also shows that the radiation doses

to an unshielded astronaut exceed the lethal doses

but are shielded rather efficiently by even small

amounts of absorbers. The shielding afforded by

the materials and equipment of two spacecraft is

shown on Table 30.

TABLE 30

Solar Flare Event Radiation Dose Inside Mercury
Capsule and Apollo Command Module

(Including Secondaries)

Vehicle

Mercury

Capsule

Apollo

Command

Module

Ambient

i0 May 1959

3.8 x 103 rein

60.5 rem

5 x 106 rein

(1.8 x 104 assum-

ing no protons be-

low 20 Mev)

23 Februar_ 1956

48.33 rein

42.5 rem

o
5.4x 10- rein

The greater shielding inherent in the Apollo

vehicle is apparent. However, it should be noted

that the orbit of Mercury is such that the Earth's

magnetic field would shield a large fraction of

these solar particles. In Ref. 32 Obayashi and

Hakura have developed a model of proton cutoff

energies versus geomagnetic latitude during a

solar plasma induced geomagnetic disturbance.

At these times, the normal cutoff energies are

reduced and the solar flare particles are "allowed"

at normally "forbidden" regions near the earth.

Using this model of cutoff energies to modify the

incident solar flare proton spectra results in de-
creasing values of dose from polar to equatorial

latitudes. Satellites which spend little or no time

at magnetic latitudes less than 50 ° will not en-
counter solar flare protons. Correspondingly,

polar orbital satellites will receive the highest

dose. Figures 15 and 16 show dose versus orbital
inclination for the two solar flare events at different

values of shielding. The dose versus latitude cutoff

for the May flare is seen to be much sharper than

for the February flare. This is, of course, due to

its relatively larger number of low energy particles

which are excluded before the higher energy particles.

Also shown in these figures are the free space

proton doses given in Fig. 14 from Ref. 33. It is

seen that even at a 90_ orbit the satellite dose

under 1 gmlcm 2 is reduced to about 40% of the

free space dose. Actually, the doses within

orbital vehicles will be even lower due to shadow

shielding by the earth. This is a function of alti-

tude as shown in Fig. 17.

H -40

One further qualification in the use of Figs. 15

and 16 is necessary because they are plotted in

terms of magnetic inclination. Figure 18 shows

the magnetic dip equator and a great circle approxi-

mation. This latter curve may be used together

with Fig. 17 to estimate the orbital dose.

The following example is given for illustration.
We will assume an orbital inclination of 60 ° , 500 -

km circular orbit extending to 60 ° N over 280 °

longitude. The assumed duration of the February

flare event is about 1 hr as compared to about

1 day for the May event. In 1 hr the magnetic in-

clination of the orbit has changed little, so that

the February flare dose may be read from Fig.
16 at 60 ° + 13 ° (or 73 °). This is about 35 rad

under 1 gm]cm 2. However, during the day's dura-

tion of the May event, the magnetic inclination has
gone to 47 ° and back again to 73 °. Averaging the

dose at these two latitudes gives 1200 rad under

1 gm/cm 2. At 500 km the earth intercepts 0.314

of the incident protons giving 35 (1-0. 314) o.r about
24 rad from the February flare and 823 rad for

the May flare as the final answers. In calculating

dosages from the May 1959 event, the flux of pro-

tons was assumed constant for 30 hr. This gives

a total flux of 3 x 109/cm2-ster above 20 Mev.

In calculating dosages from the February event,
the flux was assumed to decay immediately from

the given value as t "2. This gives a total flux of

1.8 x 108/cm2-ster above 0.60Mev or 6. 33 x 107/

cm2-ster above 20 IVIev. During maximum periods

of solar activity, it is believed that the total yearly

flux of protons with energies greater than 20 Mev

is 109-1010/cm2-ster. Therefore, the maximum

yearly dose would be equivalent to approximately

10
10

3 x I0"g" _ 3.3 times the May 1959 dose or

1010

6.33 x 107 _ 158 times the February flare dose.

However, it is fairly certain that an event such as

that of February 1956 occurs no more frequently

than once every 4 to 5 years, so that the maximum

total yearly dose (during the peak years of the sun-

spot cycle) should be about 3.3 times the May 10,
1959 doses. This may be used to estimate the
hazard relative to mission duration.

b. Van Allen belts (geomagnetically trapped
particle s )

In the vicinity of the earth, there are intense

regions of charged particles trapped in the earth's

magnetic field. In the four years since Dr. Van

Allen confirmed the existence of these regions

from measurements made on the early E_plorer

satellites, a considerable body of data has been

gathered to "map" these regions.

The trapped particles form a generally toroidal
region beginning at approximately 500-kin altitude.

The earth's field is not geocentric and has a number

of signficant anomalies from a dipole resulting in
the radiation belt shape like that shown in Fig. 19

(for part of the "inner" belt). Yoshida, Ludwig
and Van Allen (Ref. 34) have shown that the loca-

tion of the trapped particles is related to the dip

latitude and scalar intensity of the real magnetic
field. In effect, the belt varies over about 800 krn
in altitude and about 13 ° in latitude around the earth.

)
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The belt position shown in Fig. 19 was deter-
mined from the relationships found in the last

reference and with the use of a spherical har-

monic fit to the magnetic field obtained from

D. Jensen of the Air Force Special Weapons
Center. The adiabatic invariant integral has also

been noted by a number of workers in this field

as having a better physical basis for determining
the structure of the belts.

Most recently McIlwain (Ref. 35) has shown

that the magnetic intensity scalar B and the param-
eter L define a practical and accurate coordinate

system for the trapped particles. The parameter

L is related to the adiabatic invariant integral and
would be the equatorial radius of a magnetic shell

in a dipole field. In the real field the physical

interpretation of L is more complex.

The energy spectrum and particle flux for in-
ner belt protons were calculated using the expert-

mental data of Fredenand White (Ref. 36), Van

Alien (Ref. 37), and Van Allen, Mcllwain and

Ludwig (Ref. 38). Figure 20 shows the proton

flux contours at one location over the earth, and

Fig. 21 the differential kinetic energy spectrum

of protons. The peak flux shown agrees with Van
Allen's recent estimates.

The model of electrons, by far the most abun-

dant constituents of the trapped radiation belts,
was determined using flux and spectral measure-

ments of Holley (Ref. 39), and Walt, Chase, Ciadis,
Imhcf and Knecht (i{ef. 40), together with the

Anton 302 geiger counter data from a number of

satellites and space probes (Refs. 41 and 42).

Figure 22 shows the electron flux contours at one
location over the earth and Fig. 2a shows the dif-

ferential kinetic energy spectrum.

This spectrum agrees well in shape with the

recent determination by Pizzella, Laughlin and
O'Brien (Ref. 43) for the inner radiation belt at an

altitude of 1000 kin. The highest flux at this alti-

tude is 5 x 106 electrons/cm2-sec-steradian as

given by Frank, Dennison and Van Allen (Net. 44).

This agrees well with the flux at this altitude
shown in Figs. 22 and 23.

For the outer radiation belt, Van Allen has

given the following peak electron distribution

108 cm "2 sec -1 above 40 Key

105 cm -2 sec -1 above 2 Mev

102 cm -2 sec "1 above 5 Mev

This is two orders of magnitude less in flux than
v an Allen*s earlier estimates of the outer zone

electrons. Extending the new spectrum to 20 Key

gives 2 x 109 electrons/cm2-sec or 1.6 x 108

electron/cm 2-sec-steradian, which agrees closely

with the peak outer belt flux shown in Fig. 22.

Figures 24 and 25 show the electron and
bremsstrahlung dose rates versus aluminum

absorber from electrons at the peak of the inner

and outer regions (Ref. 45). These may be com-

pared with the Van Allen belt proton doses also

shown }n Fig. 14 as a function of absorber thick-
ness for protons at the center of the inner belt.

Proton doses for orbiting satellites may be ob-
tained from Tables 31 and 32 as a function of

orbital altitude, inclination and aluminum absorber

thickness. Due to the belt asymmetry, the dose

on each successive orbit differs. For example,

at an orbital inclination of 40 ° (geographic) and an

attitude of 740 km under 6 gm/cm 2 of aluminum,
the accumulated dose is 0. 0214 rern after the

first orbit and 0. 0249 rein after two orbits. For

integer orbits, the dose accumulation cycle should

repeat itself every 24 hr. The doses in Tables 31
and 32 are 12-hrtotals, so that the orbital lit'etim_

dose may be closely approximated by 2 (number

of days in orbit) (12-nr cumulative nose). -fable
33 from Net. 45 gives dose versus orbital incli-

nation, altitude and absorber thickness for a

satellite exposed to the electrons of the /nner
Van Allen belt.

c. Primary cosmic radiation

Steady-state cosmic radiation values (Ref. 46)

that have been generally accepted for a number of

years (Ref. 47) were based on the belief that the

primary spectrum contained few particles in the

energy region below a fraction of a Bey. This

meant the ionization at geomagnetic latitudes
greater than 60 ° was taken to be the same as that

at 60 ° and this indeed appeared to be true during
1950 to 1952. However, in 1954, a time of mini-

mum solar activity, low energy protons caused
an increase in the ionization levels at latitudes

above 60 ° (Ref. 48), It should be remembered,

though, that the most favorable periods for ex-

tended space flight are these same times of low

solar (but higher cosmic ray) activity, because
of the great reduction in flare occurrences. For
this reason, values of the ionization rate that in-

clude the effect of the increase above 60 ° as

would be expected during a typical time of solar

quiescence are plotted in Fig. 26 as functions of
altitude and geomagnetic latitude, both for near-

earth and high altitude positions of measl_rement

(Ref, 49). Not shown at the scale of Fig. 26 is

that as the surface of the earth is approached,

there is an ionization increase, followed by a

decrease, The increase begins at 130, 000 it,
continues down to heights of 80,000 ft (at 90 °
latitude) or 50, 000 ft (at 0 ° latitude), and has its

source in the shower, or cascade formation of

mesons, nucleons, electrons and high energy

photons, all of which are created by interaction

of high energy cosmic particles with atmospheric

constituents. The decrease in ionization with de-

creasing altitude below 80, 000 to 50, 000 ft comes

about through atmospheric radiation absorption,

while the decrease with decreasing magnetic lati-

tude results from the increased shielding offered

by the earth,s magnetic field against the lowered

energy cosmic particles. Figure 26 shows that the

increase in cosmic detector ionization at increas-

ingly great distances from the earth arises from

a combination of the decrease tn the solid angle

subtended by the earth and the decrease in geomag-

netic field strength, with a corresponding decrease
in the cosmic particle deflection.

An estimate of the biological whole-body radia-

tion intensity as a function of altitude and geomag-

netic Latitude can be obtained from Fig. 26 only
if the conversion can be made from the ionization

Itself, in units of roentgen, to rein, the unit which

gives an idea of the biological effectiveness of the
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TABLE 31

Inner Van Allen Belt Proton Radiation Dose (reins)

OrbRing Aluminum Sphere

Orbital

Inclination

{deg)

2O

4O

Aluminum Shield

Orbital Thickness (gm/cm 2)

555Altitudekm No. irbit8

300 n m[
4
5

6
7

I

2

740 km 3

400 n mi 4
5

S
7

I

2

IIi0 km 3

600 n mi 4
5

8

I

1852 km 2
I000 n rni 3

4
5

i

2
b 555 km 3
I

300 n mi ] 4
I 5

6
7

740 kin 1

400 n mi 2
3

4

5

6
7

III0 km I
600 n m£ 2

3

4

5

6

1852 km i

1000 n mt 2

3

4
6

555 km 1

300 n mi 2
3
4
5

6
7

740 km I

400 n mi 2
3
4

5
6
7

1110 km i

600 n mi 2
3
4
5
6

1652 km I
I000 n mi 2

3

4

5

Reins

1.0 2.0 6.0 10.0 20.0 60.0 I00.0

+0.00372 +0.00272 +0.00145 +0.00104 +0,00062 +0.00024 +0.00014

+0.01852 +0.01354 +0.00720 +0.00517 +0.00312 +0.00120 +0.00070
+0.02203 +0.01611 +0.00857 +0.00615 +0.00371 +0.00143 +0.00083

+0.02744 +0.02006 +0.01067 +0.00766 +0.00462 +0.00178 +0.00103
+0.03642 +0.02664 +0.01417 +0.01017 +0.00613 _0.00237 +0.00137

+0.08091 +0.04455 +0.02370 #0.01701 +0.01026 +0,00396 +0.00230

+0,07267 +0.05329 +0.02835 +0,02035 +0.01228 +0.00474 +0.00275

+0.02093 +0.01530 +0.00814 +0.00584 +0,00352 +0.00136 *0.00079

+0,08120 +0.05938 +0.03159 +0,02268 +0.01368 +0.00528 +0.00307

+0.09957 +0.07282 +0,03874 +0.02781 +0.01678 +0.00647 +0.00376

+0.15308 +0.11195 +0.05956 +0.04276 +0.02579 +0.00996 +0.00579

+0.19437 +0.14215 +0.07563 +0.05429 +0.03275 +0.01264 +0.00735
+0.24586 +0,17981 +0.09566 +0.06868 +0.04143 +0.01599 _0.00930

_0.27285 +0.19955 +0.10616 +0.07622 +0,04598 +0.01775 ÷0,01032

+0.63995 +0,46803 +0.24900 +0.17876 +0.10784 +0.04163 +0,02420

+1.13415 +0.82947 +0.44130 +0.31682 +0,19113 +0.07379 +0.04290

+1.62798 +1.19063 +0.63345 +0.45477 +0.27435 +0.10592 _0.06158
+2.40827 +1.76130 +0.93707 +0.67274 +0.40584 +0.15669 +0.09110

+3. 02077 +2.20925 +1.17540 +0.84385 +0.50906 +0.19655 *0. I1427
+4.13293 +3.02264 +1.60814 +1.15453 +0.69649 +0,26891 +0.15634

+8.14456 +5.95656 +3.16909 +2.27517 +1.37253 +0.52993 +0.30810

+16.08871 +11.76655 +6.26020 +4.49436 +2.71130 +1.04682 +0.60862
_24.51561 +17.92961 +9.53915 +6,84841 +4.13142 +1.59513 +0.92741
+33.35166 +24,39190 +12.97731 +9.31674 +5.62049 +2.17006 +1.26t67

+41.75440 +30.53728 +16.24686 +11.66404 +7.03653 +2.71679 +1.57954

+0.07177 +0.05249 +0.02792 +0.02005 +0.01209 +0.00467 +0.00271

+0.07767 +0.05680 +0.03022 +0.02169 +0.01309 +0.00505 +0.00293
+0.07838 +0.05732 +0.03050 +0.02189 +0.01321 #0.00510 +0.00296
+0.07838 +0.03732 +0,03050 +0.02189 *0.01321 _000510 *0,00296
•0.07890 +0.05770 _0.03070 +0.02_04 +0.01329 +0.00513 _0 :)_238

+0.08052 +0.05889 +0.03133 +0.02249 _0.01356 +0.00523 +0.00304
40.08355 +0.06110 +0,03251 +0.02334 +0,01408 +0.00543 +0.00316

+0.05174 +0.03784 +0.02013 +0.01445 +0.00871 +0.00336 +0.00195

+0.07776 +0.05687 +0.03025 +0.02172 +0.01310 +0.00505 +0.00294
+0,08903 +0.06511 +0.03464 +0.02487 +0.01500 +0.00579 +0.00336

+0.08907 +0.06514 +0.03465 +0.02488 +0.01501 +0.00579 +0.00336

+0.09400 +0.06875 +0.03657 +0.02626 +0.01584 +0.00611 +0,00355

+0.12011 +0,08784 +0.04673 +0.03355 +0.02024 +0.00781 +0.00454

+0.14274 +0.10439 +0.05554 +0.03987 +0.02405 +0.00928 +0,00539

+0.60988 +0.44604 +0,23730 +0.17037 +0.10277 +0.03968 +0.02307

+1.11837 +0.81792 +0.43516 +0.31241 +0.18947 +0.07276 +0,04230

+1.36262 +0.99656 +0.53020 +0.38064 +0.22963 +0.08866 +0.05154
+1.62606 +1.18922 +0.63270 +0.45423 +0.27402 +0,10580 +0.06151
+1.86481 +1.36384 +0.72560 +0.52093 +0,31426 +0.12133 +0.07054

+2.46111 +1.79994 +0.95763 +0.68750 +0.41475 +0.16013 +0.09310

+7.25229 +5.30399 +2.82190 +2.02591 +1.22217 +0.47167 +0.27434

+14.12855 +10.33298 +5.49749 +3.94679 +2.38097 +0.91928 +0.53447

+19.89605 +14.55107 +7,74166 +5.55794 +3.35292 +1.29455 +0.75265
_25.14740 +18,39168 +9.78499 +7.02490 +4.23789 +1.63624 +0.95131
+30.67196 +22.43209 +11,93462 +8.56817 +5,16890 +1,99570 +1.16030

+0.03171
+0.03866
+0.03866
+0.03866
+0.03888
+0.03866
+0.03866

+0.05504
+0.06408
+0.06958
+0.07104

+0.07155

+0.07749
+0.08057

+0.43148
+0.81782
+0.93977

+1.02163
+1.14910
+1.52201

+4.77857
+8. 78610

_11. 22799
_13. 73962
P17. 46029

l

+0.02319 +0.01234 +0.00886 +0.00534 +0.00206 +0.00119
+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0.00146

+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0.00146

+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0.00146
+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0.00146

+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0.00146

+0.02828 +0.01504 +0.01080 +0.00851 +0.00251 +0.00146

+0.04025 +0.02141 +0.01537 +0.00927 +0.00358 +0.00208

+0.04683 +0.02491 +0.01788 +0.01079 +0.00416 +0.00242
+0.05088 +0.02707 +0.01943 +0.01172 +0.00452 +0.00263

+0.05195 +0.02764 +0.01984 +0.01197 +0.00462 +0,00268
+0.05233 +0.02784 +0.01998 +0.01205 +0.00465 +0.00270
+0.05667 +0.03015 +0.02164 +0.01305 +0.00504 +0.00293

+0.05892 +0.03135 +0.02250 +0.01357 +0.00524 +0.00304

+0,31556 +0.18789 +0.12053 +0.07271 +0.02807 +0.01632

+0.59797 +0.31814 +0.22840 +0.13778 +0.05319 +0.03093

+0.68731 +0.36567 +0.26252 +0.15837 +0.06114 +0.03555

+0.74717 +0.39752 +0.28539 +0.17216 +0.06647 +0.03864
+0.84040 +0,44712 +0.32100 +0.19364 +0.07476 +0.04346
+1,11313 +0,59222 +0.42517 +0.25649 +0.09903 +0.05757

+3.49483 +1.85936 +1.33488 +0.80529 +0.31092 +0.18077
+6.42578 +3.41872 +2.45438 +1.48065 +0.57167 +0.33237
+8.21165 +4.36887 +3.13652 +1.89216 +0.73056 +0.42474

+10.04854 +5.34616 +3.83814 +2.31543 +0,89388 +0.51976
+12.76966 +6.79389 +4.87751 +2.94244 +1.13607 +0.66051 '1

j.,
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TABLE 33

Twelve-Hour Orbital Dose (rad) Within Van Allen Belt

Altitude

555 km

(200 naut mi)

740 km

(400 naut mi)

iii0 kln

(600 naut mi)

1852 km

(I000 naut mi)

Orbital

Inclination

(deg) .

0

4O

9O

0

4O

90

0

4O

90

0

4O

9O

Aluminum Sphere Thickness (gin/cm 2)

0.1 1.0 2.0

Electrons

4. 598 x 103

I. 444 x 103

6. 811 x 102

I. 1690 x 104

5. 046 x 103

3. 693 x 103

6. 634 x 104

4. 129 x 104

2. 359 x 104

2. 625 x 105

2. 088 x 105

1. 097 x 105

X-rays

0. 7569

0. 2377

0. 1121

I. 9241

0. 8306

0.6078

I0. 9197

6. 7964

3. 8825

43. 2147

34. 3755

18. 0597

Electrons

i. 137 x 10 -3

3. 574 x 10 -4

1.686 x 10 -4

2. 892 x 10 -3

1. 248 x 10 -3

9. 136 x 10 -4

I. 641 x 10 -2

I. 021 x 10 -2

5. 835 x 10 -3

6. 495 x 10 -2

5. 166 x 10 -2

2.714 x 10 -2

X-rays

0. 2301

0. 0723

0. 0341

0. 5849

0. 2525

0. 1848

3. 3196

2. 066 1

1. 1803

13. 1373

I0. 4502

5. 4901

i Electrons

<i0 -o

i
I <10-5

j

< 10 -4

I. 803 x 10 -4

1. 434 x 10 -4
[

7. 534 x 10 -51
i

X-rays

0.1575

0.0494

0.0233

0.4003

0.1728

0.1264

2.2715

1.4138

0.8077

8.9898

7.1510

3.7569

ionization. The factor of conversion, Relative

Biological Effectiveness (RBE), yields a measure

of the degree of localization, or nonuniformity,

of tissue ionization. Ionization localization along

the path of penetration is singularly noticeable

for heavy (atomic number 6 or greater) particles.

Although all atomic species through iron have

regularly been observed, the biologically note-

worthy heavy constituents of the primary radiation

are carbon, nitrogen, oxygen, the magnesium
and calcium groups, and iron. When these medium

and high energy particles enter tissue, they first
produce an ionization trail of great density. The

high energy particles, in general, undergo nuclear

disintegration during the penetration process,

with a resulting large reduction in specific ioni-
zation, since afterward the ionization is caused

by several particles of reduced charge travelling

in different directions. These primaries which

have a reduced impinging energy have a signif-

icant probability of being completely stopped

through ionization only. This leads to extremely
large specific ionizations near the ends of the

paths, since the rates of energy loss increase

as the particle energies decrease, down to very
low energies. These thindown hits are capable

of causing cell destruction. Their effects in

nonreparable regions of the body, such as certain

brain areas, have not yet been demonstrated.
The RBE conversion from roentgen to rein ob-

tained from a weighted analysis of particle type
and tissue ionization characteristics between 30 °

and 55 ° latitude at the top of the atmosphere and

extrapolation elsewhere, increases with increasing

altitude and geomagnetic latitude, as seen in

Fig. 27. This is explained by noting that at a

position requiring decreased particle penetration
of the magnetic field, there is a slight increase

in the relative number of heavy constituents,

compared with hydrogen and helium. At the

same time, the heavy component energy range

extends to lower values. It must be emphasized,

however, that little actual biological experi-

mentation has been performed to test the validity
of the relation between ionization track density

and the RBE for particles of large atomic

number, which produce the greater fraction of
the unshielded biological intensity.

Shielding against cosmic radiation is not

ordinarily advisable, since it requires thick-

nesses of aluminum greater than 25 gm/cm 2

for heavy particles, and at least 200 gm/cm 2

(400 ib/ft 2 of shielded area) for hydrogen and

helium, which have far higher penetrating power

and constitute about 15 percent of the unshielded

biological dose and 99 percent of the incident

particle number. In fact, the biological dose

increases for shielding thicknesses up to 15

gm/cm 2 for the carbon, nitrogen, and oxygen

group, up to i0 gm/cm 2 for magnesium, up to

6 gm/cm 2 for calcium, and up to 5 gm/cm 2 for
iron.

An estimate of the effectiveness of shielding

against cosmic radiation is shown in Fig. 28
taken from Wallner and Kaufman (Ref. 50). A

comparison with the curves shown in Fig. 14

shows the relatively slow decrease of dose with

absorber thickness for cosmic rays as compared
to other space radiations. The dose peak at

about 10 gm/em 2 is due to the increase of ionization
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ratebeforesignificant numbers of particles are

stopped in the absorbing material.

d. Penetrating electromagnetic radiation

Previous estimates of the high energy end of

the solar system indicated intensities of the order

erg/cm 2 °of 10 -4 -sec below 8A. Recent measure-

ments indicated that during a solar flare (class

2+) this intensity increased to about 10 -2 erg/

2 A ascm -sec with 2 the lower limit of the radi-

ation detected (Ref. 51). More recently, meas-

urements have indicated that X-ray flashes during

solar flares had energies as high as 80 kev (0. 15

(Ref. 52).

During a class 2 solar flare on 20 March 1958

an intense burst of electromagnetic energy was
recorded which lasted 18 seconds (or tess) (Ref.

53). This was determined to have an intensity

of 2 x 10 -4 erg/cm2-sec above 20 kevand

peaking in the region of 200 to 500 key (0.06 to

0. 025 _). Measurements during a class 2+ flare

on 31 August 1959 indicated a peak intensity of

4.5 x 10 .6 erg/cm2-sec ('- 20 key) arriving at the

top of the earth,s atmosphere (Ref. 54). The

spectrum decreases in photon count by a factor

of 10 for an energy increase of about 20 key.

Although these photons are Quite penetrating (the
half-thickness value of aluminum for 500 key

photon is 3.9 ca) their intensity is so low as to
produce an insignificant dose (of the order of

10 -5 roentgen from the March 1958 event), oin-

tensity enhancements in the region of 8-20 A were

also observed during the August 1959 event. In

this region about 1 erg/cm2-sec was measured.

This would result in a much greater dose than

the less intense higher energy photons; their

penetration is very much less. The half-_hickness

values are less than 10-1 cm of aluminum.

A solar X-ray spectrum from a class 2+ flare

is shown in Fig. 29 taken from Ref. 30. X-rays

with energies in excess of 20 kev appear to be
emitted only for short periods (a few minutes)

during large flares. The X-ray dose rate to an

unprotected man from a flux as shown in Fig. 29
would be about 3 tern/hr. However, since the

emission lasts for much less than 1 br we may

conclude that high energy solar electromagnetic
radiation will not be of concern to space flight.

Saylor, et al. (Ref. 55) point out that ultraviolet

light on bare skin can cause severe burns and
even skin cancer. It will therefore be advisable

to use windows or shutter arrangements to filter

the otherwise unattenuated solar ultraviolet rays.

In space there will be no warning glare of scattered
light to alert the observer that his line of sight is

approaching the sun. An inadvertent glance at the

sun could cause temporary vision failure and ten

seconds of exposure would cause permanent

retinal burn. These authors conclude that pro-

tection of the eyes against sunlight is a necessity.

e. Radiation damage thresholds

Of all the components of a space vehicle,

man has the lowest threshold to damage by

ionizing radiation as shown in Table 34.

TABLE 34

Radiation Damage Dose Limitations

• People

Semiconductor

Electronics

Elastomers

Plastics

Metals

Ceramics

Roentgen Equivalent

102 (sickness) 103 (lethal)

106 (damage) 107 (failure)

10 8 i010

10 7 10 8

10 8 10 9

1015

1017

Ref. Nucleonics Sept 1956

More detailed treatment of radiation damage
mechanism are shown in Refs. 56 and 57 and

in the very comprehensive Radiation Effects
Information Center Series of Battelle Memorial
Institute.

Semiconductors are seen to be the secon_

easiest damaged component. This is caused

by the fact that their properties arise from their

form of very nearly perfect single crystals.

Most metals and ceramics used for structural,

electrical or magnetic applications are already

in a disordered polycrystalline form and their

properties are only moderately changed by

further disorder (ionization).

It should be noted that certain types of sensing

elements may give erroneous readings due to

spurious signals from the Van Allen or other

radiation environments. While this does not

represent damage by radiation, it is neverthe-

less undesirable and can be easily avoided by

proper selection, design and calibration of these

devices.

As contrasted to actually "reading" unwanted

signals from ionizing radiations in sensitive

'_front end" components it is known that electronic

components and circuits may operate improperly

while in the presence of large fluxes of ionizing
radiation. Measurements made under conditions

simulating a nuclear explosion in space have indi-

cated that the threshold of susceptibility to these

effects is at peak dose rates of 106 to 107

roentgen per second. This again is greatly in
excess of what will be encountered from the

natural radiation environments.

The radiation problem therefore reduces to

protection of the crew.
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Maximum allowable radiation doses for

manned space flight have been revised upward

from 25 rem considerably in the past year.
Presently the Apollo maximum allowable emer-

gency dosages are as shown in Column 4 of

Table 35 from Ref. 58. The normal mission

dosages are as shown in Column 3. These

values are more meaningful than the single so-

called '%vhole body" value used previously.

TABLE 35

Radiation Dosage

Skin body dose

O. 07 mm depth

Skin body dose
extremitie s,

hands, etc.

Blood forming

organism

Eyes

4. Meteoroids

5 Year Dose Average Year Maximum Single Acute Design Dose
(rein) RBE Dose (rad) Exposure (rad) (rad)

1251630

3910

271

271

1.0

2.0

235

559

54

27

500

700

200

100

by the meteor or satellite-borne microphone

175

Empirical data on meteoroids has come
either from optical and radar meteor obser-

vations or from impact detectors on board

rockets and satellites. In the first type of ob-

servation, velocity and luminous intensity history

are directly measurable. The mass and density
of the meteoroid is then determined using the

drag equation, the shape of the light curve and

the vaporization equation. Due to the variety

of assumptions and dependencies in this analysis,
there is a large uncertainty in flux estimates

from the same type of data. The relation between

meteoroid mass and visual magnitude is shown
in Fig. 30 from an early survey (Ref. 59). The
relation between mass and flux is shown in

Fig. 31 from a later survey article (Ref. 60).

The flux uncertainty is dealt with in a number of

other survey, articles (Refs. 61, 62 and 63), and

an examination of the assumptions employed in
the analysis procedure will show why it is as

large as 103 . The best known model of the

meteoroid environment was developed by
Whipple in 1957 and summarized in Table 36.

The following equation fits the distribution
presented by Whipple in 1957.

-12 -1
¢_ = 1.3x10 m

where ¢ is the flux [m2-sec of particles with mass

m grams and greater. This was revised by
Whipple (Ref. 64) in 1960 to

¢ -- 10-12.6 m-1. 166 to include empirical

data from rockets and satellites. A recent evalu-

ation of rocket and satellite data (Ref. 65) (obtained

from acoustic detectors) obtained

= 10-17.0 m-1.70 applicable between

masses of I0 -10 to 10 -6 grn. These distributions

are shown in Fig. 32 taken from the last cited
reference. It should be noted that meteoroid

masses of greatest interest to space vehicle de-

signers lie between the mass regions measured

5O

25

techniques. Observations of meteors simulated

by shaped charge firings from an Aerobee Rocket

(Ref. 66 ) have indicated thai Whipple may have

underestimated meteor luminous efficiencies.

This may be accounted for by a downward revision

by an order of magnitude in mass (Ref. 67) of the

1957 flux estimate of Whipple so that

= 1.3x lO-13m'l

Various investigators have put forth penetration

models--some based on empirical equations derived
from test data and some based on theoretical con-

siderations and most all giving the penetration in a

thick target. Since structural skins are usually

made of aluminum alloy materials, a good basis
of comparison is the penetration of meteorites into

aluminum. Four penetration equations were in-
vestigated to obtain a comparison of the meteorite

penetrations given by the different equations. These
equations were:

where

a. Whipple, s equation

This equation is given in (Ref. 63) as

1 I/3 El/3
p = gl(_- _ )

P = penetration in a thick target

g 1 = constant of proportionality

E = meteorite energy

p -- targetdensity

E = heat to fusion of target material

For a meteorite of diameter (d) moving at a

velocity (V) cm/sec and with a meteoroid density

PM = 0.05 gm/cm 3 and , = 248 cal[gm Whipple's

equation is

J

@
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TABLE 36

Data Concerning Meteoroids and Their Penetrat£ng Probabilities

F. L. Whipple, Ref. 5

Meteor
Visual

Magnitude

0

1

2

3

4

5

6

7

8

9

10

11

I2

13

14

15

16

17

18

19

20

21

22

23

24

25

28

27

28

29

30

31

Mass

{g)

25.0

9.95

3.96

1.58

0.628

O. 250

9.95 x 10 "2

3.96 x 10 -2

1.58 x 10 -2

49,200

36,200

26,600

19,600

14,400

10,600

7,800

5,740

4,220

Assumed

Radius Vel
(_) (km/sec)

28

28

28

28

28

28

28

28

27

3,110 26

2,290 25

1,680 24

1,240 23

910 22

669 21

492 20

362 19

266 18

196 17

144 16

106 15

78.0 15

57.4 15

39.8* 15

25.1" 15

15.8" 15

10.0" 15

6.30* 15

3.98* 15

2.51" 15

1.58" 15

1.00 15

6.28 x 10 -3

2.50 x i0 -3

9.95 x 10 -4

3.96 x 10 -4

1.58 x 10 -4

6.28 x 10 -5

2.50 x 10 -5

9.95 x 10 -6

3.96 x 10 -6

1.58 x 10 -6

6.28 x I0"7

2.50 x 10-7

9.95 x 10 -8

3.96 x 10 -8

1.58 x 10 -8

6.28 x 10 -9

2.50 x 10 -9

9.95 x 10 -10

3.96 x 10 -10

1.58 x I0 -I0

6.28 x 10 "11

2.50 x I0-II

9.95 x 10 -12

KE

(erss)

1.0 x 1014

3.98 x 1013

1.58 x 1013

6.31 x 1012

2.51 x 1012

1.00 x 1012

3.98x 1011

1.58 x 1011

10
5.87 x I0

2. 17 x 10 I0

7.97 x 109

2.93 x 109

1.07 x 109

3.89 x 108

1.41 x 108

5. i0 x 107

I. 83 x 107

6.55 x 106

2.33 x I06

8.20 x 105

2.87 x 105

1.14 x 105

4.55 x 104

I. 81 x 104

7.21 x 103

2.87 x 103

1.14 x 103

4.55 x 102

1.81 x 102

7.21 x I0

2.87 x I0

i. 14 x 10

Pen. No. Strik-

in AIt ing Earth

(cm) {per day)**

21.3 --

15.7 --

11.5 --

8.48 --

6.24 --

4.59 2 x 108

3.38 5.84 x 108

2.46 1.47 x 109

1.79 3.69 x 109

1.28 9.26 x 109

10
0.917 2.33 x I0

0.656 5.84 x I0I0

0.469 1.47 x I011

0.335 3.69 x i0II

0.238 9.26 x 1011

0.170 2.33 x 1012

0.121 5.84 x 1012

0.0859 1.47 x 1013

0.0608 3.69 x lO 13

0.0430 9.26 x 1013

0.0303 2.33 x lO 14

0.0223 5.84 x 1014

0.0164 1.47 x lO 15

0.0121 3.69 x I015

0.00884 9.26 x 1015

0.00653 2.33 x 1016

0.00480 5.84 x 1016

0.00353 1.47 x 1017

0.00260 3.69 x 1017

0.00191 9.26 x lO 17

0.00141 2.33 x 1018

0.00103 5.84 x 1018

* Maximum radius permitted by solar light pressure.

** These No. based on entrance to atmosphere at 100 km approx

*** Includes earth t s shading effect of I] 2

! qE "t 113
t P =_---_'_r) ; = = 447 x 778.3 ft lb/ib for AI

No. Striking
3m (Radius)

Sphere

(per da_,)***

2.22 x 10 -5

6.48 x 10-5

I. 63 x 10-4

4.09 x 10-4

I.03 x 10-3

2.58 x 10-3

6.46 x 10-3

i.63 x 10 -2

4.09 x 10 -2

1.03 x I0 -l

2.58 x I0 "I

6.48 x I0 "I

1.63

4.09

I.03 x I0

2.58 x 10

6.48 x i0

1.63 x 102

4.09 x lO2

I.03 x 103

2.58 x 103

6.48 x 103

I.63 x 104

4.09 x 104

I.03 x 105

2.58 x 105

6.48 x 105
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P
t =

where

1.08 x 10 .4 V 2/3

P = penetration in thick target

d ffi meteorite diameter

V = meteorite velocity in cm/sec.

Whipple, s equation is theoretical and is
believed to give penetration depths for hyper-
velocity impacts that are too high.

b. Kornhauser' s equation

This equation is given in (Ref. 68) as

0.09

h = K2 (_) 1/3 (1._--)
0

where

h =

K 2 =

T=

E =

penetration (depth of crater)

constant of proportionality

kinetic energy of projectile

modulus of elasticity of target
material

E 0 = reference modulus

This equation yields

h
= 0.282x 10 -4 V 2/3

which is identical to %Vhipple, s except that the
value of the constant is lower.

c. Summer, s equation

This equation is an empirical equation based
On experimental test data using many different
projectile and target material combinations. As
given in Ref. 69, the equation has the form of:

HP 'pptp 2/3 (_) 2/3= 2.28 ( )

where

P = penetration in a thick target

d = diameter of projectile

pp = density of projectile

Pt = density of target

V = projectile velocity

C = speed of sound in target material

For Whipple, s meteorite density of pp = 0.05

gm/cm 3 an aluminum target density of Ptj --

2.8 gm/cm 3 and C = 5.1 x 105 cm/sec, the

equation reduces to

P =
d" O. 243 x 10-4 V 2[3

The agreement between this constant and that of
Kornhauser is noted.

d. Bjork' s equation

This is a theoretical equation developed by
Bjork (Ref. 70)using a hydrodynamic model to
explain hypervelocity impact. He derived equations
for the impact of aluminum projectiles on alumi-
num targets and also iron projectiles on iron
targets. In Ref. 71, Bjork gives the penetration
of an aluminum projectile into an aluminum target
as:

P -- 1.09 (m v) 1/3

where

P = penetration in cm

m ffi projectile mass in gm

v -- impact velocity in km/sec

Bjork in Ref. 72 states that the use of a correction

factor of the for is subject to a great

deal of conjecture as it rests on no theoretical
basis. He also stated that he would favor the

value of ¢ = 1/3 and 0 = 1/3 ina general pene-
tration equation such as:

p _-K3mII3p:*pe(*- o

equating the general and empirical relations.

1.09 (my) I/3 = g3m1/3 pt -1/3 (_ t/3

For aluminum targets, Pt = 2.8 gm/cm 3 and

C = 5.1 km/sec, K 3 = 2.63.

Thus we may write

P = 2.63ml/3 pt_l/3 (_)1/3

Then, letting "d" equal the meteorite diameter

in cm and its density pp = 0.05 gm/cm 3 yields

d 3 1/3 pt-l[3 (_ 113P = 2.63 (g pp)

P vl/3
a- = 0.322

where

P ffipenetration = cm

d ffimeteorite dia= em

V = meteorite velocity = kln
sec

'i
J
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This probably stretches Bjork, s work more

than he would care to see done but it is necessary
to obtain a comparison with the other formulas.

e. Engineering model

For purposes of evaluating meteoroid effects

upon propellant storage vessel design, the follow-
ing model has been recommended (Ref. 73).

(1) The integral mass flax of particles

is given by

- 2 ,
= i0 -13 m 10/9 hits/In isec, by

particles of mass m gm and

greater. Approximately 90% of
the meteoroid flux is assumed to

have a density of 0.05 grn/cm 3.

The effective flux used in com-

puting probability of hits is there-

fore reduced by an order of magni-

tude to compensate for the very

low density meteoroids which will

not follow the given penetration

law.

(2) The particle velocity (v) is 30 km/sec.

(3) Penetration of impacting particles into

a single thickness of steel is given by

P = I. 5 (my) i/3 cmi

(4) Aluminum is half as effective as steel

in withstanding penetration.

(5) The use of spaced sheets (Whipple

bumpers) allows a reduction factor,

Bf = 5, in the total thickness required

to withstand penetration.

(6) Particle density, (p) is 3 gm/cu om.

(7) The area exposed to meteoroids is

the total unshadowed surface area of

the object. The shadowing can be ex-

pressed in terms of an effective area

by computing a factor to be multiplied

by the actual area. This reduction

factor will be in the ratio of a sphere

with a conical segment removed to a

sphere. The center of this sphere is

the spacecraft and the conical segment

is that volume intersected, as an ex-

ample, by the Earth. Consider the

following sketch

(
Earth

where

u=sin

Then

-I Ro/R"

Sf = 1 - 1/2 (i - cos u)

-I
1 + cos (sin Ro/R )

= i -
2

The integral mass flux thus becomes

: 10 -14 m -I0/9 hits/m 2 sec

N (> m) = 8.64 x 10-10m -10/9hits/m2-day

Eliminating the constant meteoroid velocity

(30 krn/sec), and cxprcssing the penetration law

in terms of mass gives

p3

m = I-D-I?-_ -

as the mass in grams required to penetrate X cm

of steel. With the flux and penetration expressed

only by mass, it is convenient to combine the two

relationships, obtaining

N (>m)= 8.64 x 10 -10 (p3/1Gl.25)-lO/9

-7
= 1.46 x 10

p10/3

hits per square meter per day capable of pene-

trating P cm of steel. The reciprocal of this
relation is the average number of days between

penetrations. To determine the thickness re-

quired so that an area of A meters is not pene-
trated on the average for at least T days,

3/lO
P = (AT • 1.46 x i0 -7

8.901 /10,
P = _ (AT) 3 cm of steel

This relationship is convenient to use for purposes

of design after the effects of the time distribution
of meteoroid encounters have been included. The

Poisson distribution model has been used to elabo-

rate on meteorite encounter probabilities. This
distribution which is valid for uniform masses of

low density is

K - t

o
Pkt = K'

I

where t is any selected interval, and -_ is the

average number of penetrations per day. Thus

the probability of any number, K, penetrations

during time, t can be estimated. To determine

the probability of no penetrations during T days
(T = t) the relation reduces to

Pkt = e-1 = O. 368
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sothattheprobabilityis 0.388that there will be

no penetrations within the average number of
days between penetrations. To find the time at

the end of which the probability of no penetrations
is 0.99.

0.'99 = e -tIT

t = -T In 0.99

t = 0. 0101T

For 0.95 and 0.90 probabilities, the correction

factors are, respectively, 0.05 and 0. 10. For

example, the average time between penetrations

for a 93 m 2 steel surface 2.5 cm thick is about

1.6 x 106 days. There is a 0.368 probability

that there will be no penetrations by the end of
this thne. For this structure, the limiting time

for 0.99 probability of no penetrations is I. 6 x

104 days; for 0.95 probability, 8 x 104 days; and

for 0.90 probability, I. 6 x 105 days.

Correspondingly, if the probability for no
penetration of X thickness within T is 0. 368, then

the thickness required for a 0.99 probability of

no penetrations in T days is

(Pkt at O. 99) 10/3 - plO/3
O.UTIYr

Pkt at O. 99 = 3.97P

for 0.90 probability.

Pkt at 0.90 = h 96X

More generally

In (prob) - -t (1.46 x l0 -7) A

p10/3

The relationships between exposed area and

tLme, aluminum thickness and uenetration prob-
ability are illustrated in Fig. 33.

C. CONVERSION DATA

1. Definition of Time Standards and Conversions

(Ref. 74)

Time measurement may be based upon the

period of motion of a stable oscillator, the decay
of a radioactive isotope, or the period of any
celestial body relative to the observer. The latter

is the body chosen sometimes referred to as the
time reckoner and a clock in most astronomical

•research. The particular day is defined to be the

time span between two successive upper or lower

transits of the given time reckoner across the
celestial meridian of the observer. Noon is the

time of upper transit (the transit in the northern

celestial hemisphere). Angles measured in the

equatorial plane of the celestial sphere from the
observerls meridian, O, westward are called

local hour angles (see following sketch}. Thus

O_ is the local hour angle of vernal equinox. Then

local time of day is the hour angle of the time

reckoner for days beginning at noon. Since an

international agreement in 1925, astronomical

time is reckoned from midnight, so that the local

time of day based on this origin is

T =_+12 h

where _" is the hour angle of the time reckoner.

Because astronomers refer to two time reckoners,

the sun and vernal equinox, there are two kinds of

days; the solar day and the sidereal day.

tl North celestial

pole

/_ _Observer_s

// _k meridian

\ _,f'- Greenwich

(/.,.))/.-

I

The sidereal day is the interval between two

successive upper transits of vernal equinox.

Because this time reckoner is a point on the
celestial sphere, an infinite distance from the

earth, the sidereal day is the period of earth
rotation" relative to inertial space. Because side-

real time is the hour angle of vernal equinox, it
is given at any instant by the right ascension of

a star that is crossing the observer, s meridian
at that instant. The best value for the sidereal

day is 86164. 091 mean solar sec.

The solar day, the interval between two suc-

cessive upper transits of the sun, is 3 m 56 s

longer than the sidereal day because the earth

moves almost one degree each day in its orbit

around the sun. Thus, the solar day is not ex-
actly equal to the period of earth rotation. Also,

the apparent sun (the sun we see) is not a pre-

cisely uniform time reckoner because the orbit

of the earth is slightly eccentric and the eliptic

is inclined about 23 ° to the equatorial plane. Be-
cause the apparent sun is a nonuniform time
reckoner, the mean sun is used to measure civil

time. The time unit is the average of the apparent

solar days, the mean solar day and its length is
defined to be 86400 mean solar sec. The differ-

ence between apparent and mean solar time is

called the "equation of time, " ET:

ET = AT - MT = rA-VM = AM- AA

where

AT = apparent time

MT = mean solar time

J
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_'A = hour angle of apparent sun

VM = hour angle of mean sun

A M = right ascension of mean sun

A A = right ascension of apparent sun

Civil time, CT, is mean solar time measured

from midnight,

CT = _M + 12h

The local civil time at the Greenwich meridian

is known as universal time, UT, or Greenwich

mean time, GMT.

The difference in local time at two places for

the same physical instant is the difference in

longitude, k:

T 1 - T 2 = k 2 - k I

where k, in the astronomer's convention, is meas-

ured positive westward from the Greenwich merid-

ian. This equation applies for T measured in any

system of local time, i.e., civil, apparent solar

or sidereal times. For example,

LMT : LCT = UT - k

F_teen degrees of longitude corresponds to an

hour of time difference, so that for local mid-

night at Greenwich, the corresponding local times

at k = 15 = W and 30 ° W are 11:00 p.m. and 10:00

p. m., respectively. The local time increases

for eastward longitude changes.

Since local civil times are the same only along

a given meridian, some confusion is avoided by

the use of time zones. The earth is divided into

24 zones, each fifteen degrees of longitude wide.

In the middle of each zone, at the "standard me-

ridian, " local time differs from Greenwich time

by an integral number of hours. The time read

on a clock at any place, i.e., standard time, is

the local civil time of the standard meridian

nearest the clock. Standard time differs in some

places from zonal time where boundaries are

twisted to suit geographical and political bounda-

ries.

Greenwich civil time is generally the system

employed in astronomical almanacs. Therefore,

conversions required most often are standard to

GMT and GMT to standard. The conversion from

a zone time to GMT is effected by dividing the

longitude (in degrees) of the observation site by

15 and obtaining the nearest whole number. This
value is added to the zone time for sites west of

Greenwich and subtracted for sites east of Green-

wich.

k o

GMT = ZT ± -_

The same rule applies for conversion of standard

times, except that the irregular boundaries for the

time zones must be utilized.

The preceding discussions provide the basis

for an appreciation of the measurement of time

intervals; however, in order to relate any two

events in time it is necessary to refer them to the
same time reference. For earth satellite prob-

lems this requires only that an epoch be selected
and that the universal time be recorded at the in-

stant. A record of time by days and/or seconds

from this epoch thus relates all of the events. In
other problems where two or more bodies are in-

volved such an arbitrary solution of the time origin

for one body may lead to unnecessary complexity
due to the fact that all of the various time scales

must be correlated each time a computation is

performed. To avoid such a situation the Julian

day calendar was established by the astronomers.

This calendar takes the origin to be mean moon

4713 years before Christ and is a chronological

and continuous time scale, i.e., days have been

counted consecutively from this date to present.

This practice avoids problems resulting from the

nonintegral period of the earth (365. 2563835 mean

solar days) and the difficulties of months of differ-

ent length. On this cale_;dar January 0 (i.e.,

mean noon January I) 1900 is 2415020 mean solar

days. Tile conversiun of other dates in the later
half of the 20th century is facilitated by Table 37

obtained from The American Ephemeris and
Nautical Almanac.

2. Review of Standards of Length and Mass

For many engineering purposes the conversions

between units of measure need be known only to

two or three significant fibres. For this reason

a general unawareness of the definition and use of

these units has resulted and is evidenced by in-

consistencies in the lkermture. The purpose of

this section is to redefine a set of units and specify

accepted conversions from this set to other com-

monly used systems.

a. Standard units

The United States' system of mass and measures

has been defined in terms of the metric system

since approximately 1900; it was refined in metric

terms in 1959. Therefore, care must be exercised

to assure that proper standards are used for all

precise computations. Before going further it is

necessary to obtain an appreciation for the bases
for measurement.

The meter was originally defined to be I/I0 ?

part of 1/4 of a meridian of the earth. A bar of

this length was constructed and kept under standard

conditions in the Archives. Since subsequent meas-

urements of the earth proved this definition to be m-

correct, a new international standard, the Prototype

Meter, was defined to be the distance between

two marks on a platinum-iridium bar at standard

conditions. This bar was selected by precise

measurement to have the same length as the bar

in the Archives. National standards were also

produced and compared to the Prototype Meter.

In October 1960, at the Eleventh General Con-

ference on weights and measures, the meter was

redefined to be 1,650,763.73 wavelengths of the

orange-red radiation of Krypton 86. However,

the bar standards are also maintained because of

the ease of measurement.

The kilogram was originally defined to be the
mass of I000 cubic centimeters of water at its

maximum density (i. e., 4 ° C). However, at the

time the Prototype Meter was defined, the kilo-
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TABLE 37

Julian Day Numbers for the Years 1950-2000
(based on Greenwich Noon)

Year Jan. 0.5 Feb. 0.5 Mar. 0.5 Apr. 0.5 May0.5 June0.5 July0.5 Aug. 0.5 Sept. 0.5 Oct. 0.5 Nov. 0.5 Dec. 0.

1950 243 3282 3313 3341 3372 3402 3433 3463 3494 3525 3555 3586 3616
1951 3647 3678 3706 3737 3767 3798 3828 3859 3890 3920 3951 3981
1952 4012 4043 4072 4103 4133 4164 4194 4225 4256 4286 4317 4347

1953 4378 4409 4437 4468 4498 4529 4559 4590 4621 4651 4682 4712
1954 4743 4774 4802 4833 4863 4894 4924 4955 4986 5016 5047 5077

1955 243 5108 5139 5167 5198 5228 5259 5289 5320 5351 5381 5412 5442
1956 5473 5504 5533 5564 5594 5625 5655 5686 5717 5747 5778 5808
1957 5839 5870 5898 5929 5959 5990 6020 6051 6082 6112 6143 6173

1958 6204 6235 6263 6294 6324 6355 6385 6416 6447 6477 6508 6538
1959 6569 6600 6628 6659 6689 6720 6750 6781 6812 6842 6873 6903

1960 243 6934 6965 6994 7025 7055 7086 7116 7147 7178 7208 7239 7269
1961 7300 7331 7359 7390 7420 7451 7481 7512 7543 7573 7604 7634
1962 7665 7696 7724 7750 7785 7816 7646 7877 7908 7938 7969 7999
1963 8030 8061 8089 8120 8150 8181 8211 8242 8273 8303 8334 8364
1964 8395 8426 8455 8486 8516 8547 8577 8608 8639 8669 8700 8730

1965 243 8761 8792 8820 8851 8881 8912 8942 8973 9004 9034 9065 9095
1966 9126 9157 9185 9216 9246 9277 9307 9338 9369 9399 9430 9460
1967 9491 9522 9550 9581 9611 9642 9672 9703 9734 9764 9795 9825
1968 9856 9887 9916 9947 9977 *0008 *0038 *0069 .0100 .0130 .0161 .0191
1969 244 0222 0253 0281 0312 0342 0373 0403 0434 0465 0495 0526 0556

1970 244 0587 0618 0646 0677 0707 0738 0768 0799 0830 0860 0891 0921
1971 0952 0983 I011 1042 1072 1103 1133 1164 1195 1225 1256 1286
1972 1317 1348 1377 1408 1438 1469 1499 1530 1561 1591 1622 1652
1973 1683 1714 1742 1773 1803 1834 1864 1895 1926 1956 1987 2017

1974 2048 2079 2107 2138 2168 2199 2229 2260 2291 2321 2352 2382

1975 244 2413 2444 2472 2503 2533 2564 2594 2625 2656 2686 2717 2747

1976 2778 2809 2838 2869 2899 2930 2960 2991 3022 3052 3083 3113
1977 3144 3175 3203 3234 3264 3295 3325 3356 3387 3417 3448 3478
1978 3509 3540 3566 3599 3629 3660 3690 3721 3752 3782 3813 3843
1979 3874 3905 3933 3964 3994 4025 4055 4086 4117 4147 4178 4208

1980 244 4239 4270 4299 4330 4360 4391 4421 4452 4483 4513 4544 4574
1981 4605 4636 4664 4695 4725 4756 4786 4817 4848 4878 4909 4939
1982 4970 5001 5029 5060 5090 5121 5151 5182 5213 5243 5274 5304
1983 5335 5366 5394 5425 5455 5486 5516 5547 5578 5608 5639 5669
1984 5700 5731 5760 5791 5821 5852 5882 5913 5944 5974 6005 6035

1985 244 6066 6097 6125 6156 6186 6217 6247 6278 6309 6339 6370 6400
1986 6431 6462 6490 6521 6551 6582 6612 6643 6674 6704 6735 6765
1987 6796 6827 6855 6886 6916 6947 6977 7008 7039 7069 7100 7130
1988 7161 7192 7221 7252 7282 7313 7343 7374 7405 7435 7466 7496
1989 7527 7558 7586 7617 7647 7678 7708 7739 7770 7800 7831 7861

1990 244 7892 7923 7951 7982 8012 8043 8073 8104 8135 8165 8196 8226
1991 8257 8288 8316 8347 8377 8408 8438 8469 8500 8530 8561 8591
1992 8622 8653 8682 8713 8743 8774 8804 8835 8866 8896 8927 8957
1993 8988 9019 9047 9078 9108 9139 9169 9200 9231 9261 9292 9322
1994 9353 9384 9412 9443 9473 9504 9534 9565 9596 9626 9657 9687

1995 244 9718 9749 9777 9808 9838 9869 9899 9930 9961 9991 *0022 *0052
1996 245 0083 0114 0143 0174 0204 0235 0265 0296 0327 0357 0388 0418
1997 0449 0480 0508 0539 0569 0600 0630 0661 0692 0722 0753 0783
1998 0814 0845 0873 0904 0934 0965 0995 1026 1057 1087 1118 1148
1999 245 1179 1210 1238 1269 1299 1330 1360 1391 1422 1452 1483 1513

2000 245 1544 1575 1604 1635 1665 1696 1726 1757 1788 1818 1849 1879

1900 Jan 0.5 ET

1950 Jan0.5 ET
- Julian Day 2,415,020.0 = Greenwich
= Julian Day 2,433,282.0 = Greenwich

Noon, January i, 1900, a common epoch

Noon, January I, 1950, another common epoch and

first entry in this table
\

/
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gram was redefined to be the mass of the Proto-

type Kilogram and, as was the case with the
Prototype Meter, national standards were obtained

by comparison to the Prototype Kilogram. This

unit has not been changed to date though proposals
have been made to base the measurement on some

atomic standard. The conversion from mass to

force is accomplished by the standardized con- "

stant go = 9. 80665 m/sec 2.

Effective July 1, 1959, the English speaking
people defined their standards of length and mass

in terms of the metric system of units. This was
accomplished through the defini*ion of an inter-

national yard and an international pound.

1 yard = 0.9144 meter

1 pound (avdp) = 0. 453,592,37 kilogram

These two units constitute the basis for all measure

with the exception of those accomplished by the

U.S. Coast and Geodetic Survey which continues

to use a foot defamed by the old standard:

or

1200
1 foot = _ meter

3600
1 yard = _meter

= 0. 91440182 meter

Of course, other units of length, area, volume,

etc., can be related by their definition to these

more basic units. These second generation units

(for example: statute mile, nautical mile, etc. )

are in general peculiar to particular regions and

thus only a few will be discussed in the following

paragraphs.

The astronomical unit (AU) is defined as the

mean distance from the sun to a fictitious planet

whose mass and sidereal period are the same as

those used by Gauss for the earth in his determina-

tion of the solar gravitation constant. This defi-
nition enables the astronomer to improve his knowl-

edge of the scale of the solar system as more ac-

curate data become available but does not require
recomputation of planetary tables since angular

data can be computed with an accuracy .of eight or

nine significant figures. The best value of this

unit is presently 149.53 x 106 krn and the mean

distance from the earth to the sun is presently con-

sidered to be I. 000,000, 03 AU.

The nautical mile was originally defined to be

one minute of arc on the earth' s equator. On this

basis the best value of this unit appears to be ap-

proximately 6087 feet. Various attempts have been
made to adopt a standard length, e.g., the British
nautical mile was defined to be 6080 feet and the

U.S. nautical mile was defined to be 6080.20 feet.

In 1954, it was agreed to standardize the nautical

mile by defining it in terms of the meter. As a
result, the international nautical mile was defined

to be 1852 meters, or, based on the conversion
between feet and meters at the time, 6076. 10333

feet. But with the redefinition of the foot (1 foot =-

0.3048 meter) as of July 1959, the nautical mile
changed once again to 6076. 11549 international feet,

approximately. This value has been accepted by
the National Bureau of Standards and all respon-

sible agencies.

The statute mile = 5280 international feet.

The meter was previously defined; however,

many units of length have been defined based on

the prime unit and related by powers of 10. Ac-

cordingly the following prefixes have been intro-

duced and are generally recognized:

tern, meaning 1012

giga, meaning 109

mega, meaning 108

ldlo, meaning 103

hecto, meaning 10"

deka, meaning 101

deci, meaning 10 "

-7

centi, meaning i0 "

milli, meaning l 0- 3

micro, meaning I0 "8

nano, meaning 10 .9

-12
pico, meaning i0

The yard = 0.9144 meter

- 3 international feet

The foot = 0.3048 meter

12 international inches

The inch - 0.0254 meter

- 103 mils

The micron -- 10 -6 meter

The angstrom = I0 -I0 meter

3. Mathematical Constants

= 3. 141,592,653,6

2_ = 6. 283, 185,307, 2

3_ = 9. 424,777,960, 8

lOgl0 v = 0.497,149,872,7

loge_ = 1.144,729,885,8

e = 2. 718,281,828,5

lOgl0e -- 0.434,294,481,9

2
e = 7,389,056,102

logel0 = 2. 302,585,091

1[_ = 0.318,309,886,0

1/2_ -- 0.159,154,943,0

1/3_ = 0.106,103,295,3

360/2_ = 57,295,779,51
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1 le

1/e 2

= 0.367,879,441,0

= 0. 135,335,283, 1

4. Time Standards

10 -7
1 second =

3. 155,692,597, 47

times the Besselian (tropical,
solar) year at 1900.0 and 12 hr

ephemeris time

1 mean solar sec _ (1 + 10 .9 ) ephemeris
seconds in 1960

sidereal day = 86,164. 091 mean solar

seconds

sidereal year : 365.256,333,5 mean

solar days

sidereal year = 3. 155,814, 9 x 107 mean

solar seconds

5. Conversion Tables

Ready conversions for the more generally
used units of astronomical measurements will

be found in the following tables:

Table

Table

Table

Table

Table

Table

Table

38--Length Conversions

39--Velocity Conversions

40--Acceleration Conversions

41 - - Mass Conversions

42--Angular Conversions

43--Time Conversions

44-- Force .Conversions

TABLE 38

Length Conversions

International

AstrouomLcal Um_! Na_['.cal M_lem

I Amlro_amicl/ Un_z • 1 80. 737. Smx 10 _

1 Intlrnattorm/ Nau_tcal MLle • 1. 238. 57._5x 10 .8 1

° I Statute ML1e - 1.0TS. 29._2 x 10 -8 0. 868. 97_. 242

I Meter - 0. d$8.77T___3x t0 "I1 0.539.954.803.10 .3

I Inter'amtJon_l Yard • 0.611.$29, 9xL0 "1| 0.493. T36. S01x10 "3

1 lattrl_tiomal Foot - 0.2O3. 843,._3 x 10-11 0.164. 5?8. B33 x 10 -3

I _nternational Inch • 0.169, 850,_.._4 x L0 "12 0.137.149. 0_8.10 "¢

Statute Mtles Meters

92.911.5_21 L06 _¢9.5_6_S x 109

I. 1_0. 779. 447 t652"

1 L$09. 344*

0.621. 371. lg2z 10 "3 t

0. 568. Ldl. 816 x l0 "3 0.41¢4"

0.164. 393, 939* l0 -3 0. 3048"

6. tST.826. 262,10 -4 0. O254*

Znceraa[Lonal Internatlona! Inter r_tioaal

Yards Feet Inchel

163.524.3,10 _ 69_0.572._5z 109 584.687..._4z lO _0

2075.37[. 666 60;6.115. 464 77. 913.385. 826

I_SO* 626O* 63. 34O*

1.043. g13.244 3.760. 434. 44_ 39.370. 0T6.740

1 3* 34"

0.333°333._33 1 tZ*

0.027.7_I. TT7 O. O63.333.333 1

TABLE 39

Velocity Conversions

ht ersutttonsl
Aatronomica_ Units Astrmlomics_ Units Nsutiesd MUds

_r Men SolAr D_r per Slder_ D_ 7

L Aatrm_o_lmal Unit per
Ml_a _ De1 " 1 I. 002. 737, 80

I AitrmNmical Ualt per

$Mm'eal Day - 0. $1)7, 269.5"/ l

I Internatim_l Nautical

MUd per Earn" - 0. a�T,]S8,_ z 10 -6 0._8.07_. 1 z t0 "6

1 _tatuto Mile W H_tr • 0.:1Si. 610.___3 z 10 "8 0.3SS, 01T,_S _ t0 "6

I Kilometer pea" [_m," * 0.160, SOE. 8 z 10 "$ 0.140.946. i z 10 .6

I _ per Se_mad • O. STT. 683.e z lo "6 o. $?8.40S,_, _ z 10 "d

I Foo( per $ec_d • O. IT6,_ 0_.._ z 10 "_ 0. L?$. _02.._8 x l0 "e

--UadsrUned dilitte ars _mmttmmble.

*D_ eu_t c_mm'sl_ fa_a-.

St_tuteMflee

___5__°_

3+$S4.07._9_z 306 3.6_1.31___3z 106

3.6S4,6_._8z |0 $ 3.660. 74.__3x 106

! 1.|60,77_.44T

0.648.9T6. _46.6 !

O.$39, 668, 603°d 0.6_1,3?1. L66

t.943.844, 461 _. 286.438.288

0.592,_83,600 0.681,618.181

Ktlo_etersp_r Meters per

Hour Second lePer per Second

6.230._* 106 ;.730.63._.2_x l08 S.67%8]._.18z ;0 e

6.2t3.280x l04 1.72d._07z 10 ! $.66_,46....8x 106

1.$68e 0. 514°t44.644 ]._6T, 809.656

1.60_. 344* 0.44T. 040* 1.468. 648.848

! 0. 277. TT?. 777 0.411.344,61S

3._00. t $.$60, 83_. 8BS

1.087._80. 0.3048* 1

II-54

4



I--
/ TABLE 40

Acceleration Conversions

TABLE 41

Mass Conversions

Earth Mass

t Solar Mass • l 3_2. %___0

I Earth Ma_s = 3.088,052x it] _ I

! Moon ._lass • 3._97.32_0 x ;0 `8 _.229,1_ x 10"2

I Slug - 7.346,1_8 x t0 "29 0.244,25x 10 `23

1 Kilogram • 5.033.7_33 x 10 "31 0. I_7._ x 10 -24

I Pound (avdp) • 2. 283, 2_66x 10 "31 6. 759. 15 • 10 -25

I Ounce (av_p) • 1,427,0.4 x [0 -32 0,474,4_7 x I0 "26

_Underltned digits are questlonable.

*Denotes exact conversion factor.

It0 • _.80665" meterusec " 32. 174, 048, _ ft/sec 2

Pounds O_nces

Moon Mass 51ugs K ilo_rarns (avdp) Iavdp)

._;,_._C _.J_,._5 • I_29 _,)8_,_, , _030 4.3_9._0 x 1030 70,075,___ x !_30

l 5.932,!3 x I021 7, ]44,L_ X !022 IS. $91,(_)x t022 259.0R_ x 1022

0. 198, 72 x 10 -21 l 14.593.902,376 32. I_4.048, 555 514, 784. _77. 0

O. 136, I_6X I0 -22 6.852, t76.612 • 10 .2 t 2.204,522,621 35.2_/3.961.94

0,617,6_33 x i0 -23 3. I08.095,016 X 10 .2 0.453,592, 37" l 16.0_

0.386.01 Z I0 -24 1.942.559,395 x [0 "3 0.283.495.231 • 10 -2 0.962,5* [

Revoltlttons

1 Revolution . l

i [_dian • 0. 159,154.943

I Degree = 2.777,777,777 x 10 .3

I MLnulte or'Arc = 4.629,629,62_ x 10 .5

1 Second of Arc - 7. 716. 049. 382 x 20 .7

I Angular MLI • 1. 5625 x 10 "4*

*Deootes exact conversion

TABLE 42

Angular Conversions

RadLans

8. 283,185,307

1

2.745,329,252 x 20 *2

2.908,882,088 X 20 `4

4.848,136,812 • 10 "6

9.817,477.040 • 10 .4

Minutes Seconds

of Arc of Arc An&,ularM_Is

360.* 21,600.0# 1.296,000.0" 6400.*

57.295,779,511 3,437.746,771 206,264.806,236 1018.591,636

1 60.0* 3,600.0# 17.7.777,777

1.888.866.666 x 10 .2 1 60.0_ 0.296.206,296

2.777,777,777 • 10 .4 0.016,866,868 1 4.938,271,605 • 203

5.6250 x 10 .2* 3,375* 202.5* 2
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TABLE 43

Time Conversions

Solar Year Julian Year Mean Solar Da_ Sidereal Di_ Mean Solar Sec Sidereai 5ec

I Solar or 1 0.999,978.641 365,242,198 366.242,198 3. 155.692,59 x lO 7 3. 164.332,37 x 107
Besseltan Year

1 Julian Year 1.000,021.358 ! 365. 25" 366 250,r_0" 3. 155.760 = x 107 3. :64. _00. :6 x I_ ?

i Mean Solar Day • 2.737,909,26 x l0 -3 2.737,850,707 x 10 -3 l I 002,737,90 06400* _6636.555

1 Sidereal Day 2.730o433.bi x 10 -3 2.7J0,375,42 x I0 3 _. v97,2fi�.57 l 8o154.0_i _64u_j _

I Mean Solar Sec = 3. 168,876.46 x I0 -8 3. '68.808.79 X 10 _8 I. 137.407,40 x 10 .5 I. 150,576,27 X 10 -5 l I. 002,737o00

i Sidereal Sec 3. 150,224. 38 _ IC'_ 3. 160,156,58 _ 10 -8 !. 154,247, i8 x 10 -5 I. 137,%07o40 x I0 -5 0._97,26_,37 1

"Exact Conversion

TABLE 44

Force Conversions

K_ (force) Pound (force)

1 Kg Force 1 2.204,622,621

1 Pound 0. 453, 592,370, 1 1

1 Newtoa 0. 101,971,621,2 0.224,808,943

1 Poundal 1.409,808,183 x 10-2 3.108,095,501 x 10-2

1 Dyne 1.019,716,212 x 10 -6 0.224,808,943 x 10 -5

• Exact conversion

Newton Poundal Dyne

9.806,65* 70.931,635,35 9. 806,65 x 105.

4.448,221,62 32. I74,048,6 4.443,221,52 x 10_

1 7.233,013,85 10 _

0.138,254,954 I 0.138.254,954 x I05

10-5 7.233,013,85 x 10-5 l
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ILl. ORBITAL MECHA2_ICS
4

SYMBOLS

a Semimajor axis

A Right ascension

b Se miminor axis

e Eccentricity

E Eccentric anomaly

f Force per unit mass

F Force or hyperbolic anomaly

g Acceleration due to gra-_ty

h Angular momentum

i Inclination angle of the orbit to the equatorial

plane

l Moment of inertia; integral

K Kinetic energy per unit mass

L Latitude

m Mass

M IVlean anomaly

n Mean motion (mean angular velocity)

p Semiparameter or semilatus rectum

P Potential energy per unit mass

r Orbital radius

r a Apogee radius

r Radius to semiminor axis
m

rp Perigee radius

i" Radial velocity

F Radial acceleration

t Time

tp Time of perigee passage

T Kinetic energy per unit mass

U Potential energy per unit mass

v Velocity

va Orbital velocity at apogee

Vp Orbital velocity at perigee

i} Components of position

Angle of elevation above the horizontal plane

_3 Azimuth angle measured from North in the

horizontal plane

Y Flight path angle relative to local horizontal

Total energy per unit mass

e Orbital central angle between perigee and

satellite position

Angular velocity

8" Angular acceleration

A Longitude (positive for East longitude)

U Earth's gravitational constant I. 4077

x 1016 ft3/sec 2 (398,601.5 km3/sec 2)

v Angle between the ascending node and the

projection of the satellite position on the

equatorial plane

Orbital period over a spherical earth

¢ Orbital central angle between the ascending
node and the satellite (8 + _)

Argument of perigee

I_ Longitude of ascending node

_2 Rotation rate of the earth (2_r rad each
e

86164. 091 mean solar sec
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A. INTRODUCTION

Thepurposeofthischapteris to presentdata
pertainingtothemoreelementarylawsandcon-
ceptsof orbitmechanics.Thebulkofthematerial
consistsof graphsandtabulationsofformulasfor
motionin ellipticalorbits. In additior_abrief in-
troductorytreatment is given of the theoretical

background. Many excellent books are available

in the areas of analytical dynamics and celestial

mechanics (see the bibliography at the end of the

chapter). Therefore this chapter will only treat

the material in outline form with no particular

attempt to present a generalized and rigorous
treatise on classical mechanics.

B. MOTION IN A CENTRAL FIELD

To a first approximation the earth can, dy-
namically, be considered as a point mass located

at the geometrical center of the earth. This im-
plies that the mass distribution of the earth exhibits

spherical symmetry, an assumption that does not

strictly hold true and will be discussed further in
the next chapter. Additionally, the earth's mass

will be considered infinite with respect to that of

a satellite movin_ in its gravitational field. Finally_
no additional forces will be assumed to act on the

satellite. Under these assumptions the gravitational

force F = -_- (_ = the earth's gravitational con-

r

stant) acting on the satellite will be directed toward

the stationary center of the earth. The ensuing

motion will be planar.

In a rectangular coordinate system (in the plane

of motion) as shown in the sketch below (assuming

m to be constant), we get

f
X

F
X U X

m --'_- c°s8 = - fc°s 8 = - f r
r

(1)

F

fy -- Ym -- ---'_r sin 8 -- - fsin8 -- - f_r =_"

(2)

F

vX

The motion is, however, more easily found in a

polar coordinate system (r, 8) as shown in the
sketch below.

In this system:

F

m =-f= --_ =_" " r02
r

(3)

F0-- =8 =r{f +2{_b = 1 dm r _}- (r20) (4)

III-2
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FS_F r

From Eq (4) it follows that:

r20 = constant = h (5)

This constant is the angular momentum defined from

vector mechanics. Substituting Eq (5) in Eq (3) re-

sults in

h 2

_." _-__--_ f.
r

1 it follows that
Now letting r = -_

/ d 2
h 2 U 2 U_ U 2f -- [u + = u

\ _e2}
(6)

where time has been eliminated by:

i du 0 = - h du
U U

and

_-" :- h_- t (_ : - h2u 2d2u
de-_

Equation (6) can be written

d2u u
+U =

d8 2 V

the solution to which can be recognized as:

u +Ccos (8 - 8 0 )U--h--z

or in terms of r the solution is

r --

h2
u

h 2

1 +-- C cos (8 - 8 0 )

- p
1 + e cos (O - 8 O)

(7)

The last form of Eq (7) is the standard form of a

conic with the origin at one of the foci. From

Eq (7) it can be seen that the semiparameter p

h 2
(semilatus rectum) is p = -- and the eccentricity

h 2

e is-_-- C = pC. If e < 1 the conic is an



ellipse;if e : 0 it is a circle; if e = 1it is a parab-
ola,andif e> 1it is anhyperbola.

C. LAGRANGIANEQUATION

Theprecedingintegrationof theequationsof
motionis basedonanelementaryapproach.At
thispointa brief digressionwill bemadeintothe
moregeneralLagrangiantechniqueoftenusedin
orbitmechanics,andencounteredin ChapterIV.

TheLagrangianequationfor aconservativesys-
temis:

d-T - _ = 0 (8)

where the Lagrangian is L = T - U, T is the
kinetic energy of the system and U the potential

energy. The q's are generalized coordinates.

For a two-body central force case the Lagrangian

is (in polar coordinates) L = T - U = ½ m (i _2 + r2_ 2)

- U (r). With ql = O and q2 = r we get:

d 8(__._e) _L d [mr2g_T -_ =_ :0 =pe (9)

9 •

where PO : m r- e is the an_lar momentum of the
S 'j,'S :e _Yl

and

t77- : o

or, since

8U - F(r)

d (mr) - mr{) 2 - F(r)
Hi" =

(I0)

From Eq (9) it follows that r 2 8 = constant. (This

is commonly referred to as the law of areas. )

The orbit can be found by eliminating t from

Eq(10). FromEq (9)

2 d0
mr i_" = Pe

we can conclude that

d Pe d

mr

and

dt--_ = "--W _'gmr

Substituting this in Eq (i0) we get:

2

Pe d f Pe _) Pe =r-'ff d-@km-----_-r - _ - F(r)

1
or using u =

(II)

2 2
U

P8 d2u + I : + F _ : rn_u
n]

which, since PO = hm, is identical to Eq (6).

D. ORBITAL ELEMENTS

Equation (7) for the conic which embodies

Kepler's first law defines the planar orbit of the

satellite when the constants p, e and _0 are prop-

erly evaluated from a set of initial conditlons,

such as V, r and 7, where Y is the Iqight l'a_h

angle as shown in the sketch below. Note that
• 9

()r = V cos Y and hence Or" : r V cos 7 = h =

constant =

t <"
/

!
The three constants p, e and 80, or any of a number

of equivalent sets of constants, describe completely

the geometrical properties of the ellipse in the plane
of motion. From a kinematic standpoint one more

quantity is needed to specify the position of the
satellite in its orbit. Frequently this specification

is given in the'form of the time of perigee passage,
although a knowledge of the position at any time is
sufficient•

Finally the plane of the satellite orbit must be

described with respect to some reference plane.

This description requires that two additional quanti-
ties be specified, for example, the inclination of the

orbital plane with respect to the reference plane and
the orientation in the reference plane of the line of

intersection between the two planes. The complete

specification of the orbit therefore requires knowl-

edge of six quantities, commonly called six elements
of the orbit. Under the simplifying assumptions

made in this chapter with respect to the dynamics
of the orbital motion, these elements will be con-

stants, whereas in the actual physical situation they

will generally be varying as functions of time.

A set of orbital elements in common usage is:

Semilatus rectum -- p

Eccentricity = e

Time of perigee passage = t
P

[II-3



Inclinationoforbit plane(with respect to

earth.equatorial plane) = i

Argument of perigee (with respect to ascend-

ing node) = _J

Longitude of ascending node (with respect to

vernal equinox) = _.

E. MOTION IN THREE DIMENSIONS

From the solution of the orbit as expressed in

= P an expressionthe orbital plane, i.e., r 1 +e cose'

can readily be obtained for the three-dimensional

description of the motion in any coordinate system.

For this purpose define a coordinate system (x, y,

z) in the orbital plane with the x-axis pointing

toward perigee, the y-axis pointing in the direc-
tion of r at 9 = 90 ° , and with the z-axis completing

a right-handed Cartesian coordinate system. In

this system the defining equations for the motion

are x = r cos 8, y = r sin 8 and z = 0. To trans-

form these equations into the (x',y', z') system

shown in the sketch, the following transformation

applies: z'

whe re

re =_--_ (i + e cos 8)

and

•r=e sin8

Similar expressions are found for the other coor-

dinates. To reduce this description in inertial

space to one of position relative to the rotating

earth the following transformation is required

ix iothe,ilIilcos
zrJL 0 0

where _ is the rotational rate of the earth and
e

t is the time since the x -axis, being in the prime
r

meridian, passed the x' -axis, the x' axis is ori-

ented toward th_ vernal equinox

z north)
r

z_ r y _

_y'

X f

x'] ['co.nco,

I l-,mnco, l.m_

y'[, |sin n cos w

I l-co."coal.inw

z:J Lsin i ,m

- sin _ cos i COS W

- sin t_ein _ - cos Nein

+ COB _'_COB i COB w

Bin t COB W CO8 i

Hence, since x = r cos 8, y = r sin 8, z = 0,

x' = A' r cos e + B' r sin 8, etc., etc.

where

A' = cos _cos w - sin f2cos i sin w

and

B' ffi- cos f_sin v - sin f_cos i cos w

Now, Since the orbital elements _, _ and i are

constant for this discussion the velocity com-

ponents are:

_' = A'.(i" cos 8 - r sin 8 b) + B' (i" sin 8+

r cos 8 b)

r x
r

The sketch also shows the right ascension A

and the geocentric latitude L.

A = arc cos
X !

_r 2 - z'

and

Z !
L --arc sin = arc sin zD- r

The longitude relative to the prime meridian

measured positive in the direction of rotation is
thus A =A - Q t.

e

F. PROPERTIES OF ELLIPTIC MOTION

Before progressing to a detailed discussion of

the motion, two general properties should be con-
sidered.

i
/

_J
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C
Equation(5): r20 = r (r0) = 2dA = h -- constant

expresses the conservation of angular momentum
and is a consequence of the fact that the moment
of force about the center of motion is 0. It is also

the equivalent of the "Law of Equal Areas" known

as Kepler's second law. It is a general law of

central motion (i. e., for any force directed toward

a fixed center of attraction and hence having zero
moment about this point) since it was obtained with-

out recourse to any specific force law. Since

1 (tO) is the differential area dA swept by the

i
radius vector, one obtains A = -ffht + constant,

and hence, Kepler's second law: the radius vector

of any given planet sweeps through equal areas in

equal time.

The time v to complete a revolution can easily

be found since the area of the ellipse is Irab and

since b = av_p, one obtains

2_" a3/2

Hence, Kepler's third law: the squares of the

periods of the planets are to each other as the

cubes of their semimajor orbital axes, or

2 3
_'I al

=
o o,J

"r 2 - a 2

It also follows from Eq (5) that 0 = h or
r

the angular velocity is inversely proportional to

the square of the radius vector.

An important integral of the equations can be

obtained by multiplying Eq (1) by 2 k and Eq (2)

by 2y, and adding them.

2xx +2"#y = 2f (x x+ v_)
- "7

or

'-d'i- + = - "_ "aT +Y

f d (r 2) _- . 2f_= -FHi

If now f is a function of r only, the entire equa-

tion can be integrated to yield:

• 2 2 v 2 ¢
x + _ = = - 2 f(r) dr + constant =

J

2 V(r) + c,

where V(r) in a physical problem is a single valued

function of r. This equation is known as the "v'is

viva" integral. The velocity is, in other words,

only a function of the distance from the center of
attraction . V (r) is the potential of the force f(r)

u_(in our case, f (r) =--_- ). Thus, V(r) and
r

r

v 2 = 2__uu+ constant, where the constant is found
r

to be equal to - ;z/a for elliptical motion, zero for
parabolic motion, and + u/a for hyperbolic motion.

In terms of the initial conditions v and r, the mo-

tion is elliptical, parabolic or hyperbolic depend-

ing on whether v 2 - 2__U is negative zero or
r

positive, cespectively. This equation is inde-
pendent of the initial flight path angle _. Fc-

elliptical orbits the resulting semimajor axis is

given by

or

r_ (t: ig. t)
a - 9

2U - rv-

I.V =

For a circular orbit r = a and the circular orbit

velocity is given by

V C = Ua_--.

For a parabolic orbit a is infinite and the so-
called escape speed or parabolic orbital velocity

becomes

V = _2V-:_- .
esc

So far onlv the geometry of the orbi[ has been

determined, and it has been obtained through the

elimination of time from the equations.. To com-

plete the solution /or etliptlc motion, timt • is
reintroduced by substituting the area integral

}2 _ = h = tua (1 - e 2)

[Eq (5)] , into the "vis viva" integral which in
polar coordinates for elliptic motion takes the
form:

2 . 2 r2 2 2 1
v =r + _ =_(7-_).

Thus

b = -_- = _ -(a- r)
ar

or

r dr
dt --

l a e 2 - (a - r) 2

Now, introducing the mean angular motion

n =
27r - 1

laT a

III-5



resultsin theequation

ndt = r dr
a _a2e 2 _ (a - r) 2

To clean up this equation a new variable E is

introduced defined by a - r = ae cos E from which
r = a (1 - e cos E} and

n dt = (1 - e cos E) dE.

This equation is integrabie and yields upon inte-

gration

n (t - t o ) : E - sin E

This equation is commonly referred to as Kepler's

equation.

Because of the importance of and general interest

in circular velocity, period and the mean angular

velocity (mean motion), these quantities have been

computed and presented in various forms in Figs. 7
and 8 and in Table 9 in both English and metric units.

The quantity E is called the eccentric anomaly
(anomaly = angle or deviation). Its geometrical

significance is shown in Fig. 4. The angle @ is

referred to as the true anomaly. The quantity

n(t - t o ) is the angle which would be described by

the radius vector had it moved uniformly at the

average angular motion. It is called the mean

anomaly and designated by M = n (t - t ).
o

Hence, M = E - e sin E. 2"his transcendental

equation in E is known as Kepler's equation. Time
from perigee passage for elliptical orbits is now
obtained from:

a#t - tp M = (E - e sinE).

The solution of Kepler' s equation for time

as a function of position is direct since there

exists a unique value of E for each value of r or

8. However, the reverse determination (for

position as a fianction of time) involves the solution

of Kepler's equation for E. This solution is trans-

cendental and thus requires iteration for conver-

gence to the proper value of E. The best form of

this iteration (assuming that a reasonable estimate
of E is available) is Newton's method which is ob-

tained directly from the Taylor series expansion
of M as a function of the estimate of E and the

mean anomaly. All higher order terms are neg-
lected.

M = M o +_- (M) &E + ...

or

M - M 0

aE --_
_l_ (M)

M - M 0 (E 0
= _-

1 - e cos E

- e sin E 0) + M

I - e cos E 0

This form can be further modified to yield the new

estimate of E directly by substituting

E = E +z2JE
n+l n

e (sinE n - E n cos E n) +M

i - e cos E
n

This series solution converges very rapidly and

generally requires only two iterations for six or

seven significant figures (given a two-place esti-

mate). Since one means of obtaining such an

initial estimate is a graph or nomogram, a nu-

merical solution of Kepler' s equation may be found

in Fig. 2.

A peculiar property of elliptic orbits is that
the velocity vector at any point can be broken into

components, V b and V d (V = V b + _"7"d), such that

V b is constant in magnitude and perpendicular to

the radius from the point of attraction to the instan-

taneous point in the orbit and V d is constant in

magnitude and continuously directed normal to the
major axis of the ellipse. This behavior is illus-

trated in the following sketch.

Since _'d is constant, only-Vb contcibutes to the

acceleration, and solely by a change of direction,
i.e., the acceleration must be radial and such that

a = a r = - Vb_

where (3 is the angular rate of the radius vector.

But, the acceleration at any point can also be ob-

tained from the gradient of the potential function

(which, in the case of a spherical homogeneous

earth, or one constructed in spherically concentric

homogeneous layers is _).

L_ae uf

aplidel _

v b Vd r

Vd V r

The re fo re

-at = Vb8 = r_ or Vb = _r

Now since the acceleration is directed toward

the center of mass, the moment with respect to

this center must be zero, or

2 °

r O = constant = h = r V cos y

III-6
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Thisequationis recognizedastheequationfor
conservationofangularmomentum,or thearea
law.
Thus

Vb = u = u _ u _ _-_- rVcosy

The second component of the velocity, V d,
can be evaluated from the law of cosines.

9 Vb 2 V2 V cos 7V d" = + - 2V b

This equation reduces to the following upon

substitution

Vd = _V2 +U ( 1 - 2) = eV b

The quantities V b and V d can also be evaluated

from the sketch when it is noted that

Vp = V b + V d

= V, - V dVa o

Now assuming that the apogee and perigee radii
are known

vb.

= U _ . eV bVd

The total energy in the orbit can also be related

to these fundamental quantities. This is accom-

plished as follows:

Potential energy = _ U_
unit ma s s r

v .
= - -_- -_-_ - -KE -_a

Total energy _ Kinetic energy
unit mass unit mass

+ Potential ener_,
unit mass

U _ Vb2 - Vd 2

2a 2

This representation of the orbit also offers a
simple means of determining the direction of the

line of apsides of the orbit . The line of apsides

is determined from the preceding sketch by

sin ¥ tan V
tan

V b r _ 1

V cos y p

G. LAMBERT'S THEORE.M

In Chapter Vl, the problem arises of determin-

ing an ellipse from a given time interval between

two points on an arc of the ellipse as described by

the two radius vectors terminating on the arc.

From Kepler's equation and the definition of the

true anomaly, one obtains

n At = E 2 - E 1 - e (sin E 2 - sin E 1)

,(.
cos \ er 2/- cos \ er 1]'

From these equations the ellipse can be deter-

mined. The simultaneous solution of these equa-

tions for a and e is, however, very difficult since

the numerical iterative solution is quite sensitive

to the accuracy of the first estimates of a and e.

This problem is circumvented by the use of Lain-

bert's theorem which can be _ieveloped as fo_h-,ws:

Let

Thus

2G = E 2 + E 1 and 2g = E 2

r 1 = a(1 - e cos E 1 )

r 2 = a(1 - e cos E 2)

-E 1

r 1 + r 2 = 2a(1 - e cos G cos g)

Let C be the chord joining the extremes of r 1

and r 2 as shown in the following sketch.

IIl-7



C2-- (a cos E 2 - a cos El)2

+ (b sin E 2 - b sin El)2

But the quadratic forms in cos E 1, cos E 2 and

sin E 1, sin E 2 can be reduced to functions of G

and g to yield

C 2 = 4a 2 sin 2 G sin 2 g

+ 4a 2 (1 - e 2) cos 2 G sin 2 g

Now introducing a new variable h defined as follows:

cos h = e cos G

leads to

0 2 = 4a 2 sin 2 g (1 - cos 2 h)

C = 2a sin g sin h

and

r 1 + r 2 = 2a (I - cos g cos h)

Now introducing two new variables

= h+g

5 = h-g

enables the following equations to be written

1 1
cos _(_ + 5) = e cos _(E 2 +E 1 )

+ r 2 +C = 2a(1 - cos (h+ g))r 1

4 a sin 2

+r 2-c : 2a {l-cos(h-g)}r I

5
= 4 a sin 2

These equations serve as the definition of the

quantities E + 6. But

n (At) = E 2 - E 1 - e (sinE 2 - sin E 1 )

--(, - 6)- 2 sin½ (,- 6)cos½(, + 6)

= , - 6 - (sin _ - sin 6)

which is known as Lambert's theorem.

This form of the time equation may seem to

have no major advantages. Closer exa_nination,
however, shows that for the case where the At is

specified for transfer from r 1 to r 2 through a

given Ae, and it is desired to find the unique ellipse

whose parameters are a + e, this form may prove
preferable. This conclusion is based on the fact

that for this case only one variable of interest a

appears explicitly though it is necessary in the

process to solve Ior the auxiliary parameters
+ 6. One source of possible error is the selec-

tion of the proper quadrants for the angles _ and 5.

This selection may be accomplished by referring
to the following statements.

6
(I) sin_ is ÷ (a) the arc includes perigee

and the chord intersects

the perigee radius

(b) the arc excludes perigee

and the chord does not inter-

sect the perigee radius

(That is, sin 5/2 is positive when the seg-

ment of the ellipse formed by the arc anU

chord does not contain the center of mass.)

(

(2) cosy is + (a) the arc contains perigee
and the chord intersects

the apogee radius

(b) the arc does not contain

perigee and does not inter-

sect the apogee radius

(That is, sin _/2 is positive when the seg-
ment of the ellipse formed by the arc and

chord does not intersect the apogee radius.)

(3) 0<½(<

(4) - y < y a <

More detailed discussions of the reasoning for

selecting these quadrants are presented in Ref. 1.

Graphical solutions to this form of the time

equation are also possible. One such solution was

prepared by Gedeon (Ref. 2). Let

2s = rl+ro+C

and

C 2 = r 2 + r2 2 - 2r lr 2 cos,X8

III-8
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Now define a function w

w=± _1-C/S

where the + sign is utilized if/xe < _ and the

- sign is for A0 > 7r.

Expanding the previous solution nat in a power

series for the case that the empty focus falls out-
side of the area enclosed by the arc and the chord

yields

I_-_ _l-(W)2n4"3 (_a)n&t = A n

n=O

AO=I

A n =

1.3.5 . . . (2n - i) _ (2n - i):

2.4.6.8... 2n 2r_

focus

_ter

In a similar manner, a power series representa-
tion can be obtained for the case in which the arc

and chord enclose the empty focus

_-[[" ,/2 _ I+(W) 2n+a
nat -- t_t J p] 'S'2a _3/2 - An

n=0

n]

Force cente_

where the A
n

above.

are the same as those defined

Graphical presentation of this material is

found in Figs. 9 and 10.

H. THE N-BODY PROBLEM

The previous discussions have been directed

toward the description of the motion of a particle

[n the gravitational field of a mass sufficiently

large that the perturbation due to the particle is

completely negligible. Indeed the attractions of

all other masses on both the particle and the

central mass were neglected. The discussions
of this section are intended to provide the

generalizations which are possible in order that

the discussions of perturbation methods of

Chapter IV will be appreciated.

Consider the differential equations

n - ;j_-" (ri - )

m i r i : - G m i/_ m.- j ---'3--
r..

j = 1 13
j#i

This set is of the order 6 n due to the fact that

there are 3 n coordinates (xiY iz i) expressed as

second order differential equations. A rigorous

solution thus involves the simultaneous solution

of the n second order vector equations.

Since these forces are all conservative, it is

also possibIe to express the totaI force acting on

the vehicle as the gradient of a work function.
Let

F i = - _i U

Then

• = m._. = 8U
Fxl 1 1 - x_f7.

1

.. 8U

Fy i = miY i = _

aU
Fzi = mi_ i = - _ i = 1 ..... h

1

multiply FxibY x, Fy ibyy, FzibY z and add

n

i=l

m i {xixi +Yi#i + z i£i) :

_n

>._ au xi+N #i+N
i=l

But if a potential exists, U is a function of the 3n

variables x i, Yi' zi alone. Thus, the right-hand

side is the total derivative of U with respect to t.

Thus, upon integration

III-9



'Z2 mi (xi 2 + _'i 2 + zi 2) = -U + constant

or

T + U = constant (energy equation)

Now, potential energy is the amount of work re-

quired to change one configuration to another.

Thus, since the bodies attract each other ac-

cording to the law of inverse squares, the force
between bodies is

-- G i m i m-
F = - J 2..

2 ij
rij

Thus, the work is moving along the radius rij is

r..

J dr.wij = - G mira j @
r..

r(0)ij t3

= - Gmimj [r_ 1It j

Now if r (0) is _ , all possible system configura-
tions are included. Thus

am. re.

w.. = ]" _

1j r..
1j

Now the total work is the double summation of

the individual works

n n

ZZ Omm=U =1 z __
W T r..

j=l i=1 1j

#j

The one-half arises from the fact that if i and j
are both allowed to assume all values, each term

in the series will appear twice in the equation.

Now following an argument of Moulton (Ref. 3),
it can be stated that since the potential function

depends solely on the relative positions of the n

particles and not on the choice of origin, the
origin can be considered to be displaced to any
new point, yielding:

r] --

ro --_+ag+_

Thus

n

au au
ill i

where

ax.
1

x!l = x.+a;l _-_--=i

But U does not involve a explicitly, since it is a

function of relative position thus upon dropping
the prime which is now of no value

n

g-fiT -0

i:l t

n n

Similarly for a U and _ .

i= I 8Yi i= 1

Thus

n

"2.
m. r. =0

//_ l l

i=l

n

m i r i : C

i:l

and

n

V m.r. =_t÷B

i=l

But_ m i __r-"i is by definition M R which is the

product of the total mass of the system and the

position vector for the center of mass. Thus

This equation states that the center of mass obeys

Newton's law F = ma(where F = 0 -- the resultant

force) and moves with a constant velocity in a

straight line under the assumption that there are

no net forces acting on the center of mass. This

integral introduces six constants of integration

to the system requiring 6 n such constants. Now
consider:

.°

mi ri : _i U

r ix m ir i: r ix _i U

n n

r i x m i r i : r i x _i U

i:l i:l

But the forces occur in equal magnitude and

opposite directions for any given pair of masses.

Thus, the right-hand side of the equation is zero
when summed over all the masses and

IlI- 10



n

r i x m i r i = 0

i=l n

:Z
i=l

n

d _ x m i r i)= _-_ (ri

i=l

Thus by direct integration once again it is seen

that the total angular momentum is conserved

n

( x m i r i) = h

i=l

Since this is a vector equation, three additional

constants have been introduced.

One more relationship between the coordi-

nates and velocities can be obtained from the

energy integral, the general form of which was

presented earlier. Thus, ten integrals exist. These

ten are the only integrals known and are the only

integrals available from existing algebraic func-

tions. Thus, the general solution of the n body

problem requiring 6 n integrals is at this time

impossible even though several operations can be

performed to eliminate two variables, the line of

node and the time. (The latter simplification is

obtained by expressing each of the coordinates as

a function of a given coordinate.) The sole excep-

tion to this rule is the 2-body problem.

Consider the equations of motion

m I r I = - G m I m 2 3

rl2

m2 r2 = -Gml m2 3

r12

Changing origin to the center of mass by sub-

stituting

R1°rl- Ro

R2 = r2 - RO

yields

mlR 1 = -Gmlm 2

-t R2 _ RI

m2R 2 = -Gmlm 2

",2

But the center of mass satisfies the equation

m IE1+ m 2E2 : 0

or

- m--!RI
R 2 = - m2

Substitution of this equality eliminates _2
the equations

R1 : Gm 2(I+ -22)

= -G(m I + m 2)

"-- _2

R 2 = -G (m I + m 2)

where

from

ml _ M R1
= (I + _22 ) R1 -

Thus

R1 °-7

With this substitution, the differential equations

become uncoupled in the coordinates, But these

equations are immediately recognizable as the

differential equation for a conic section with the
center of mass at the focus. Thus, as before,

the solution will be of the form

P1

R 1 =
1 + e I cos 01

P2

R 2 =
1 + e 2 cos O2

But it is important to note that the elements of

these conics are not the same though they must

be related. Indeed, the effective masses as seen

by the two bodies will be different. This latter

requirement is the result of requiring that the
line between the two bodies contains the fixed

center of mass at any time. However, it is

possible to obtain a set of six constants of in-

tegration a 1, e 1, i1, _1' ill' t01 and a dependent

set a 2, e 2, i2, e20 f12 and t02whichwillproduce

Ill-l I



the desired motion. This is accomplished by
considering various elliptic relations and the

geometry of the plane of motion. To illustrate

the relationships, consider the requirement that
the mean motions be the same.

n I -- n 2

Pl P2

--3-=---3-
a I a 2

I

al = (_2] m2• a2 = ml a2

The other elements are determined in an

analogous fashion.

I. SERIES EXPANSIONS FOR ELLIPTIC ORDITS

Many of the solutions to trajectory problems

can be greatly simplified by utilizing approximate

forms for the parameters involved. The general

forms of several useful series are developed in
this section, and a list of expansions is given in

Table 6 (see Section K).

Kepler's equation can be rewritten as

E = M + e sin E (12)

By Lagrange _s expansion theorem, this expres-

sion can be developed (see Goursat and Hedrick,

"Mathematical Analysis, " Vol. I, p 404) in powers

of eccentricity, e.

E = M+ n dn-ie (sln n M) (13)

n=l

From Eq (12) it follows immediately that

E-M
sin E = --

e

Therefore,

t n-I d n-1
e

sin E = _.. dMn---__ (sln n M)

n = 1 (14)

To obtain the expansion for cos E, the auxiliary

integral function I is needed.

I _- f (E-M)dM

S _ endn-ln:= - dMn_-_ (sln n M) dM

n=l

= t en fd dn-2- _, _ (sln n M)

n,,l

t e n d n-2 n
= - _ _ (sin M)
n= I

(15)

From Eq (12) by integration,

f ;I = - (E - M) dM= - e sin E dM

-e S slnE (I -e cos E)dE

2E) dE= - e (sin E - _re sin

and using an arbitrary integration constant c,

2
e

I = c + e cos E - "4" cos 2E (16)

but integrating Eq (15) with respect to dM,

21r 2= 2w

.] IdM, = - dM + [' osine term dM
. ,)

0 0 0

0

(17)

Similarly, from Eq (16),

2r: 2Tr

f(cj IdM =

0 0

, )+e cos E -_-- cos 2E (I - e cos E) dE

Equating Eqs (17) and (18),

21, e2 2= 2 3;
0 0

(18)

dE

2} 2 - ec + -_-> cos-- + (e J

+ -_- cos 3E dE

E -3_ cos 2E

As for the complete integral, all the cosine terms
are zero; it follows that,

2
e

c=-- 4-

Finally, the auxiliary integral function becomes

2

I = e cos E +e (I - cos 2E) (19)
_k

/

/
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Next,Kepler'sequationis expressedina
functionalform:

F(E, e, M) • E -e sinE - M = 0 (20)

The derivative of E with respect to e is found

by the use of Jacobians as follows:

dE Fe sin E

-6%" "" _EE = "1 e cos E (21)

Differentiating, Eq (19) yields

dl
- cos E +_ - _ cos 2E

dE 2 dE
: e sin E _ + _- sin 2E _ (22)

Substituting Eq (21) into Eq (22) and collecting

terms yields

dI
_- = cos E (23)

Finally, the expansion for cos E is found from

Eqs (23) and (15) as

n-i d n-2
e

COS E " - _ _ (slnnM)

n-I (24)

d'l _ dO_ote:_ iF) - F dM and _ iF) - F

From the basic equations of orbital mechanics,

-_ = 1 - e cos E (25a)a

From Eq (24), it follows that

_'r 1 + £-_ _en dn-2.- _ (sin_ M)
dM

n=l

Squaring Eq (25a),

= I +_- -2e cos E + e

Comparing Eq (28a) with Eq (19),

2= l+e -2I

and immediately from Eq (15),

(25b)

cos 2E

(26a)

(26b)

(_) 2 e2 t en dn-2- 1 + + 2 n'. dMn- 2 (sln n M)

n = 1 (27)

From Eq (20),

dE FM 1 _- a

_ = --_E = i - ecos E r

From Eqs (13) and (28),

n d n
a e -- (sin n _I)

' ? = 1 + , _ dM n
n=l

(28)

(29)

It is known that

-- = COS E - e
a

a

(30)

Combining Eqs (30), (24) and (14).

t n-I d n-2
x = -e - e (sin n ,_,I)

n=l

(31)

e (sin n M_ IL_2)
a /.i. n : dMn-I

n = _

The relationships between the true anomaly and

eccentric anomaly are expressed as follows:

sin E _I - e 2 dE
sin O = 1-e cos E = d'-_

cos 8 : 1 -e cos E : - _ (33)

The first equation follows from Eq (21) and the
second by Eq (25a)

d /r\ dE -cos E + e

_-] = -cos E + • sin E _ = 1 -e cos E

Substituting Eqs (13) and (25b) into (33),

slnO- t en-I d"-1

cos 0

(sin n M)

/_ CK':'TTT-.dMn-1
n = 1 (34)

n-I dn-2-- - ne (sln n M)

n -- 1 _ _ (3_)

The general form derivation of the time anomaly

is somewhat more complicated and will not be

attempted here. If a finite number of terms is

carried, it follows from Eq _33) that

dO - _-'e2 _11-e 2 (a) 2
(I -e cos E) z =

HI-13



and after multiplying out

follows by integration

2

(r) , the true anomaly

2

dM

Such an expression up to the sixth power of eccen-

tricity has been derived by Moulton,

This concludes the derivation of the series

expansions in powers of increasing eccentricity.

In general form these series are presented in

Table 6-1a. The results are given in Section K

in Table 6-1b for eccentricities up to sixth and
seventh powers.

Table 6-2a gives the n-th power of sin M in

order to simplify the use of the general equations

for expansions up to e 13. Table 6-2b indicates

the determination of numerical constants for the

expansions.

The general forms of the Fourier-Bessel ex-

pansions are given in Table 6-3a with the cor-

responding expansions of Bessel functions in

Tabie 6-3b. Table 6-4 gives the Four{er-Bessel

series expanded up to the seventh powers of ec-

centricity.

It has been shown by Laplace that for some

values at M, the series expansions may diverge
if the eccentricity e exceeds 0. 662743 . . .

For small eccentricities, the convergence is
rather rapid. Table 6-5 presents the series for

small values of e (e 2 << 1) as a function of mean

anomaly. Finally, Table 6-6 presents the

variables as a function of the true anomaly rather
than the mean anomaly.

J. NOMOGRAMS

Many of the formulas of the previous sections

are of sufficiently general interest to warrant

numerical data being prepared for use in pre-
liminary orbit computation. Accordingly, a set

of figures will be presented relating the parameters
which have been discussed. Use will be made in

this presentation of the techniques of nomography
(Refs. 3 and 4) and of more conventional forms

of presentation.

Before presenting the data however, it is de-
sirable to discuss the basis for construction of

a nomogram. If the equation can be expressed as

a determinant with the three variables separated

into different rows of the determinant and if by

manipulation, the equation can be put in the fol-

lowing form

fl (_) f2 (a) 1 /

fl (_) f2 (_) ii[ = 0
fl (Y) f2 (N)

Then a home)graphic presentation is ob%airted by

plotting the values of fl (a) versus f2 (a), fl (#I)

III-14

versus f2 (£) and fl (Y) versus f2 (_) on linear

graph paper, It is important to note that the

same scale must be utilized for each of the three

curves. It is also important to note that the

shape of the scales thus generated is defined en-

tirely by the functional forms within the deter-

minant,

By utilizing this technique, the equations de-

fining the two body problem have been analyzed.
The type of presentation is considered to be, in

many ways, superior to any other available be-

cause of the fact that interpolation anywhere other
than on a graduated scale is eliminated, and by the
fact that more than a nominal number of variables

may be handled without losing simplicity or accu-

racy of presentation. The homograph obtained

for equations of three variables, generally results

in three arbitrarily curved scales, U, V, and W,
as shown in this sketch.

V1

U1 _._

U

W

V

For the simpler cases, the scales may be simply

three parallel straight lines, or two straight
scales plus one curved scale. In all cases, how-

ever, the solution procedures remain the same.

Given any two values of the two independent

variables, say U = U 1, and V = V I, a straight

line drawn between the two given points intersects
the third scale at the desired value of the unknown

function (W = W1). The straight line (U 1, V1,

W i) is called the index line or lsopleth. It is

immaterial which two variables are given and
which is considered to be the unknown function.

Four or more variables will generally result

in a sequence of 3-varlable nomographs as shown

in the following sketch.

V q scale
U

W X



Ungraduated auxiliary scales (e. g., scale q in the
given example) are employed, and the number of

auxiliary scales is N-3, where N = number of all

the variables (e. g., N = 4 in the present example).

A special case of the four-variable solution

exists for equations of the form

These equations may be expressed in the form of

a proportional chart Illustrated belo;v.

U

X

: : :/,XI I/_

[Ui T t/ ¢ l

/

W

V

Given any three values of three independent varia-

bles U = U 1, V =V 1, W =W 1, the unknownX = X 1

is found as follows:

(1) Connect U 1 and V 1 with a straight line.

(2) Draw a straight line through W 1 and the

intersection point T 1, reading X 1 on
the X scale.

K. TABLES OF EQUATIONS OF
ELLIPTIC MOTION

Because of their applicability, the equations

of elliptic motion have been collected and are pre-
sented in the form of tables. The tabular content

is as follows:

Table 1 Elliptical Orbit Element Relations.

This table presents a large number of

formulas relating the various fixed

parameters defining the ellipse. The

index to Table 1 (next pag e) is a key for

locating equations of a given parameter
in terms of other parameters. For ex-

ample, parameter b is expressed in

terms of parameters a and e in Eq (20)
of Table 1.

Table 2 Time Dependent Variables of ELliptic
Orbits.

This table gives the relationship between

the time varying parameters of the el-

lipse. The index (next page)is a key to
Table 2.

Table 3 Elliptic Orbital Elements in Terms of

Rectangular Position and Velocity Co-
ordinates.

This table is so brief that no special

index is required.

Table 4 Elliptic Orbital Elements in Terms of

r, V, _.

This brief table enables one to deter-

mine the orbital elements from given
kinematic initial conditions.

Table 5 Miscellaneous Relations for Elliptic
Orbits.

This table contains some of the special

expressions not readily classified under
the other tables such as energy relation-

ship, time relationship and certain

angular relationships.

Table 6

Table 7

Table 8

General Forms of Series Expansions in

Powers of Eccentricit3:

This table presents a variety of series

expansions as follows:

(la) General Terms of Series Expan-

sions in Powers of Eccentricity

7
(ib) Power Series Expansions up to e

(Eq 6-I to 6-11)

(2a) Expansion of Powers of Sin M

(Eq 6-12 to 6-24)

(2b) Pascal' s Triangle and Its Modifi-

cation

(3a) General Forms of Fourier-Bessel

Expansion (Eq 6-25 to 6-36)

(3b) Expansions of Jn (he) (Eq 6-37)

7
(4) Fourier-Bessel Expansion up to e

(Eq 6-38 to 6-49)

(5) Expansions for Near-Circular

Orbits (Eq 6-50 to 6-61)

(6) Expansions in True Anomaly and

Eccentricity (Eq 6-62 to 6-76)

Hyperbolic Orbit Element Relations.

This table gives the basic parameters

for the hyperbola as follows:

(1) Hyperbolic Orbit Element Relations
Basic Constant Parameters (Eq
7-1 to 7-56)

(2) Time Variant Hyperbolic Relations
(Eq 7-57 to 7-68)

Spherical Trigonometric Relations.

This auxiliary table expresses the re-

lationship between the various geometric
elements of the three-dimensional orbit.

An index to this table is found (next page),

Indexes to some of the tables follow.
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IndQx to TabLe 1

i_ r a 22 1" 43

_ _P 2_ 46

23 t 44

a_ v i 24 45

a_ Vp
b_ • t

b_ _ 2 47

b_ r a 3 4_ i

b_ rp 4 49 i
b_ v

b_ vp

e, p i? _ ze

e, re. _t 6 3T

e. rp ]? 7 SO J

e, v z a 29 !

e, Yp 9 3o i

_' _a L2 33 52 ;

15 3S !? S9
r L , v L

%° _= l? 31 5Tp
r;), Vp 18 31 t S8

I

va, vp 19 4,0 ! 54
i

fll_re aviflable

x1 - _%, xp
p = r vJ. P I • ",1
61 1"SO it 9Sl llS 138

I "J I -'
a3 ] lOL 12o I 140
13a 100_ 130t l|
s= I e=/ I :=t I 141

63a ' aLa I 120a

S4 83/ 103 _42
85 84 103 _22

6_ 85 104 t23 I 143

88 105 124 r 144

(17 104 12_ t 145

68 87 125 I 146

a8 _OT I 12T 147

09 %Oil ? 128 146

70 80 [OOa [30 [4P

7_, 90 to9 150

72 el 110

H[
131

92 I 132 |51
SZal

152 .93 [ [12

94 ] I13 133

_3 I 134
13a i 120a _53_

I4 I 114 t54 ;

])_,s.115 i$3a I

_| j $5 155

t 153=

'? 91 I 1311

7| 97 I 11$

NOTE:

Th2s Lndex _o Table 1 is a key f_r tocatinl equations of • riven
r= eer',n_er_s_ • rmees, re e, at, m-

_ndex to Table 2

Pa_aa';

eters If(E) f(r) i f(_')

2* 31

t(v)

4

10 12 if 13

11" I

.o
r

V

i

19 20 24

21" 21"

• 22* 25*

23*

29 30 32 33

31"

37 t 38 42

39

40*
41"

t6 _ 4T 51 52

48 49*

49*

5O*

?57 t 63 66 67
63

88 60"

59 61'

60_ 64.

61_ 65*

70 ?1 73 T4

?3*

77 78 79 80

X 1 •f(a, e, X 2)

f(-_)S t f(e)82,76 rle) _ 114 t 16 18
15e 17

11"

15"

28 27 28

22* 23*

25*

34 35 36

31"

43 44 45 •

40* 41"

53 56

54

55

50*

t 68 69

64*

65.i

- %
81 82 83

*l_lnction of more than one tlme-dependen_ vs.'table

tFi_tre available

See Note with Table 1

Index to Tab1, 8

Pa._a-

meters i

f(i. L)

(t, _)
(i, v)
(i, _)
(L, _) z

(L, v) 4

(L, ¢) 6

(_, _) 7

(_, ¢) 9

(v. ¢) to

(i. L,/_)

(i, L, _)
(i, L,d_)

(t,_, v)

f(t. _, ¢)
(t, v,¢)

(L, _, v) 2

(L, B,_p) 3

(L, v, ¢) 5

(_, _, ¢) 8

See Note with Table 1

11

14

16

17

19

20

12

13

15

18

21

24

26

27

29

v

31 41

34 44

46

36

37 47

49

39

50

40

30

32 42

22 43

23 33

45

35

25

48

38

28

TABLE I

Elliptic Orb'it Element Relations

(see Fig. 4)

b

= b 2 _ h 2

P
p(1 - e z)

2 b 2r +
a

a

1"
a

==

I"

• P

(Fig. li)

(Fig. 12)

(Fig. 12)

(1-1)

(z-2)

(I-3)

(z-4)

(1-5)

(z-s)

(1-7)
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TABLE 1 (continued)

a- _-_v tT..T___/1- e
a

-7-,z-
p

2
r

8.

2
r

P
=-_ _p

p

r r

ap
p

= g

va (2_-_ - va)

= #

Vp (_p- Vp)

r +r

a _2_=---T

# r
a

2
2# - r v

a a

I

i --1_/ra2 2v-4"V--(ra Vp + vp + 8_r a)
P

+ Va 2 + 8#rp)vT_a (rp v a p2

_rp
2

2# - r
p Vp

v a Vp (Fig. I)

b -a_]l - e 2

• _r a (2a- ra)

= _/r (2a-r)
P P

2_-a 3/2 va

#+av 2
a

• 2%_- a 3/2 vp

(1-8)

(1-9)

(I-I0)

(i-II)

(l-lla)

(I-i2)

(I-13)

(z-14)

(i-i5)

(i-is)

(1-17)

(I-18)

(1-19)

(1-2o)

(1-21)

(1-22)

(1-23)

(I-24)

(1-25)
III-17

b = ---a---

_l- e 2

I - e

._+e
" rp _'I-:"6

. # (1 - e) 3/2
2

v (i +e) I/2
a

= # (1 + e)3/2

2 (1 - e) 1/2
Vp

='_v (_)3/2
a (2# - Va_-_)

=_ ra p

ra Va2

=V2 # _ ra Va2

= a a 2 Vp 2 + 8#r a - r a Vp]

= P 2v
p a

+ 8#rp - rp Va]

• _2_ rp3 vp22
- rp Vp"

= 2#

(v a + Vp) _Fa Vp

• _1 -_ (Fig. 11)

(i-26)

(1-27)

(1-28)

(I-29)

(I-30)

(1-31)

(1-32)

(1-33)

C1-34 )

(1-35)

(I-36)

(1-37)

(1-38)

(1-39)

(1-40)

(I-41)

(1-42)

r
a

= -- - I (Fig. 12) (1-43)
a

• 1 - rp (Fig. 12) (I-44)
a



e =

TABLE i (continued)

2
H-av a

_+a v a

(i -45 )

2
av -_

s" P

2
a Vp +_

2 b 2r -
a

b2.r 2
= P

b2+r 2
P

(1-46)

(1-47)

(1-48)

(i-49)

. _ _p__ (1-5o)
r
a

-----P- i (i-si)
r

P

. 4.
2

+ _

= bl-e 2

2b 2 r
a

=

b2+r _g

2b 2 r

bz+'P'2
P

" r (1 - e)
a

= r (1+e)
p

= 1 - v i_'a (!-52) = _ I_e> 2

r - r V - V

a p _2_ an =
"_V

r a -$- rp Vp a

2
r v

= i- a a

(1-54)

HI- 18

(1-55)

1 Iv _ra2 v 2+8.ra- 2_-raVp2/(1-56)= _ P P

1 (24_ 2 _r 2 v 2+8.rp)(1.57)= _ +rp va -v a p a

2
rp v= P_E_P__ - i (1-5a)

h= _ = r 2 b (1-59)

b 2

a

(1-6o)

(1 -61 )

(1-62)

(1-63)

• a (i - e 2) (Fig. 11)

r

s __a (2a- r a)
a

r

- -_ (2a- rp)

2r r

a p

2 2
r v

a a

= 4_ - Vp
2

+ 8Dr a + rVp a

_ [4_+rp Va2-Va_/rp2 Va 2

2 2
r v

p p

= 4.

(I-63a)

(1-64)

(I-65)

(i-66)

(1-67)

(l-6B)

(1-6{})

(I-70)

(1-71)

(1-72)

(1-73)

(t-74)

Vp 2 ] (1-75)

+8_rp] (i-76)

(1-77)

(1-7a)

,/3
b 2

r a = a +_& -

=a(l+e)

•ap
r

p

(FIE. 12)

(1-79)

(1-80)

(t-81)

(1-81a)

}
J



r
a

TABLE I (continued)

=2a-r

P

= 2_a

/J+av
a

2a 2 Vp 2

= ' 2

/_+a v
p

- P

b 2

r

p

= _(1-e)

'I
a

_ u(l+e) 2
2

v (i - e)
P

r p
P

=_T -p
P

P

a

2_rp rp
+ ---2- - _--

V
a

1_ v

=_P__
V a

r

= P

2U 2 " I
r V

p P

= 2_
Ya (v a + Vp)

(1-82)

(1-83)

(1-84)

(i-85)

(I-86)

(1-87)

(1-88)

(1-89)

(1-90)

(1-91)

(1-92)

(i-93)

(1-94)

(1-95)

( 1-95a)

(1-96)

(1-97)

r

P

III- 19

= a - _a 2 - b 2 (I-98)

= a (1 - e) (Fig. 12) (1-99)

= P (1-100)

= a._.pp (_-lOOa)
a

2a - r (i-i01)
a

2a
- (1-102)

1 +-2-_
a v

a

2a ( 1 - 103)
2

a. v

I+ P

= b l-e

= P

9

= b"

r
a

- P
T+e

I - e
= r

a TW-6

= _ (i - e)2
2

v (1 +e)
a

_ _(l+e)

V

p

Pr a

a

v

p

2 2
F V

a a

2
2/z - r a v a

r(--4_- _ _2_ra r aa + --_--_-
V

P

= 2U

Vp (v a + Vp)

(i-i04)

(1-1o5)

(i-106)

(1-107)

(1-108)

(1-109)

(1-ii0)

(l-ill)

(1-112)

(i-i13)

(i-ii4)

(I-i15)

(1-116)



V
a

TABLE 1 (continued)

a

P

"_-r 2_b2
a (b2 + ra z)

yb 2 (b2P+ rp _-)

._f_ (z-e)

._/_(I-e)
r&

r_(1 - e) 2

P (i + e)

l-e

P

r
a

(i-117)

(1-118)

(i-119)

(1-120)

(I- 12Ca)

(1-121)

(I-122)

(I-123)

(l-124)

(1-125)

(1-12B)

(1-127)

(1-128)

(1-129)

(1-13o)

(I-131)

(1-132)

v
a

= 2,_'_- Vp

(r a + rp)

r

2
2_ - r v

P P

rp Vp

V
P

va

rp

\ rp /

2L17
a

' 3
[ 2p r a

=_b 2 (r 2 + b _)

Ir 2_ b 2
= P (rp 2 + b _')

-_-_ (I + e)

._/_ (1 + e) 2

_r a (1 - e)

(I-133)

(I-134)

(1-135)

(1-136)

(I-137)

(1-13B)

(1-139)

(!-:4o)

(1-1404)

(1-141)

( 1-142)

(I-143)

(1-144)

(1-145)

(1-146)

(1-147)

(1-148)

III-20



V

P

E

TABLE 1 (continued)

/l+e_

• v a _-_-/

r

p

= _-_ - V a

=i 2_ ra
P (ra + rp)

r v
= a a

r

P

2
2_ - r v

a a

r v
a a

v__ + 2_ Va
7"-- "2-

P

(1-149)

(1-150)

(1-151)

(1-152)

(1-153)

(1-153a)

(I-154)

(1-155)

TABLE 2

Time Dependent Variables of Elliptic Orbits
(see Fig. 4)

-I a-r

\: <Fi,.13) (2-2)

c°s" 1 we * e -_a(l-e2){ "2]

, , 211/e*e[ 2 e 2__a (1 -e 2) _,

(2-3)

= cos (2-47

-cos'l [1_ _1- (1 - e2) sec2 y)](2-5)

(_I- e2 sin 8 )" sln-1 + e cos B (Fig. 14) (2-6)

co8"IFe+c°se ]" L1 + e cos 0 (Fig. 14) (2-7)

S m

r I

F_.I e_ 1/2 ]2 tan-I L _'_:) tan _- (Fig. 14)
(2-8)

[_a (1 - e2)] 1/4)]

a (I - e cos E) (2-10)

i 2 sin E (2-1 1)
= a - e

. _a (1 - e 2) (2-12)

. _2] I/2± [ 2 e 2 _a (1 - e 2)

2_a (Fig. 15) (2-13)
av +/_

" a [I± _1-(1-e2, sec2 ¥] (Fi.g. 17)

(2-14)

= a (1 - e 2) tan _/ (2-15)
e sin B

a (1 - e2)
1 _- e COS 8

(Fig. 1(3) (2-16)

2r r

a -Prp) COS v (Fig. i3)(r a + rp) + (r a (2-17)

[_ ]1/2
. a (I - e 2) (2-18)

--e sin E (2-19)= i -e cos E

±_I2ar-r2 -a2 (l-e2_• z (2-20)
ar

. a (1 - • 2) (2-21)
r

. la (I - e 2) tan _(
r

i a (1 - e 2) II r" 2 ' tan
r a(l-e )]

_4_av 2 - (av 2 +D)2 (1 -e 2)" ± 4_a

- vslny

(2-22)

0 (2-23)

(2-24)

(2-25)

III-21



TABLE 2 (continued)

la _ (1 - e 2) tan 2 y I/2

" ± (2-26)

[1.yi-(1- e2)_e_2

" e la (i"- _]1/2e2)| sin e (2-27)

= ±I 2_8 112 _1/2} 1/2ff,,a(1_e2)]1/4-'_'[ "_ (1-e2
(2-28)

e (cosE -e)
= -_ (2-29)

a (I - e cos E) 3

" _ la(l'e2)-rl (2-30)
3

r

- _-_ cos 8 (2-31)
r

+ (,

(2-32)

I_v2+_)2 lav2 #I
8_a2 +_)(l-e 2)- 2 (2-33)

(1-e 2)- (1 ±¢ - (1 - e 2) sec 2 Y)I

a2 [1±fi - (1 - e2) sec2 y] 3

(2-34)

. ue (1 + e cos (})2 cos e

2 e2)2a (I-
(2-35)

(2-36)

III-22

_(I + e cos E)

" Ya (1 e cos E) (2-37)

=¢/2 - 1/ (Figs. I (2-38)

and 15)

Ca (1 - e 2)
= (Fig. 18) (2-40)

r COS y

,,4//J (1 + 2e cos 8 + e 2)
T r (1 + e cos e) (2-41)

= _ (l+e 2) ±2 _[ge 2- a (1 - e 2)_"

a (! - e2)

_ (2-42)

t,! '/21_ 1/1 - (1 - e 2) se_ 2 'C (2-43)
1 ± _l (1 e 2) see 2

(I + e 2 + 2e cos 8) 1 112

a (1 - e2) J

1/2
2 1/2 _ e2)_ I/41

(2-44)

I/2

(2-45)

1/2

-ll/a 2 (I - e 2)

- cos Vr (2a - r) (Fig. 17) (2-47)

-14[ rarp

= cos _r (ra +rp
-r) (Fig. 17) (2-48)

%

-1 (_/ua (1 - e 2)
(Fig. 18)

= CO8 V" r V / (2-49)

r-

= tan-1 LI1
i

r-

= ± tan-ll_

U

.-, t=.-1_ 2-(av2+,)2 (l_e2,l)
\ (_+.) (i-_ 2)

r ) tan 8] (2-50)
a(1-e 2)

(2-51)

(2-52)

(Fig. 19)



F--

TABLE 2 (continued_,

#s_o )Y • tan "I _1+e cos _ (Fig. 201 (2-53)

=sin-1 (e---slnS--\_+2e) e+e2 (Fig. 20) (2-54)
COS

-1( l+ecos8 1 (Fig. 20)(2-55)= COS .......

\_l+2e cos O+e 2/

._ t=-' {_':_/2_"(1-e2_/4:(I- o2)-["_"-e2'3_1/2

- I} 1/2 (2-56)

-I /cos E -e_ (Fig. 14) (2-57)
= COS \1-e cos E/

[_) "_ _-]= 2 tan "I tan (Fig. 14)
(2-58)

(sinE 1_--02_
= sin-1 \1-e cos E / (Fig. 14) (2-59)

-,(_E_o_=el) <=-_o,: COS - '@'

= sLn-i <a r-_e sinE) (2-61)

[

_,[_.-e',-_]ffi cos (Figs. 12 & 13>
er

(2-62)
r'2r r -r (r +r )7

(2-63)

=sLn-1 [a(1-e2)tanY]er (2-64)

"tan'l [: (l-e2)tan'(1-e2)- r ] (2-65)

.s,n"{_--['";'"]'"} ,,-°°,
• cos 2_e

-,[:_io,,_,._o.,Voo.',-,,-e',}]= COS 062

(Ftg. 20) (2-88)

.oo,.,[:_.{1.3 "".,}]
(2-69)

1/2

(a__) 1/2 (1-e 2 )
=

(1-e cos E) 2

2
F

_/_" (I+e cos 0)= 3
F

= /_ ± /_e 2 r2]

[_a3 (1_02)3] I/2

1/21

(2-70)

(2-71)

(2-72)

1/2

(2-73)

(av2+p) 2 _pa (1-e2)] 1/2
= (2-74)

4_ 2 a 2

[A=a (I-e2)] 1/2= (2-75)

82 [1± ¢1- (l-e2) sec2 y] 2

"[83 " ]IZ12(l'e2)3. (I + e cos 8)2 (2-76)

1/2

U 2e (l-e 2) sin E (2-77)
=- -T

a (l-e cos E)4"

(2-78)

=-2_ [a (1-e2)]'5121ul/2

±[/_e2-a (1-e 2) r 2] 1/2} 3 (2-79)

•, -_ -- (1-e 2) [2/_av2
L2_a J

_ (a2v4 +p2) (l_e2)_

1/2

. ± 2_ (l-e2) tan

a3 [1±_1-(l-e 2) sec2y] 4

(1+e 2)

(2-80)

(2-81)

2pe (1 +e cos 0) 3 sin 0 (2-82)
== - 3

a 3 (1-e 2)

2 0 2/3 (
= _: _2a (1-e2)B 1/2 [/_a (l-e2)] 1/4a (1-e 2)

-.-:,I_'"-e'_"-'_""_'__I'_'
X2-83)

III-23



TABLE 3

Elliptic Orbital Elements in Terms of Rec-

tangular Position and Velocity Coordinates

-1]2

a = [2 (x 2 +y2 + z 2)

: tan-1 (_)

e -- l--V xy-y_)2+(x__-z£) 2

][ z2)-I12 1 (._2_z - zy) 2 2 (x2 +y2 + .__

(3-3)

____I_ (x 2 +_2+z2)] -1

(3-i)

(3-2)

-I ;/y)[(@- + =)2
(y;_:7>2]}

tan-i \yx n -XYn/ (3-5)

=Cot-I [/_ Cosa -_ _in_.] (3-s)z z

L = sin -I [z (x 2 +y2 . z2) "1/2] (3-7)

y )2+(xz- )2 _
(3-8)

Cx y2 2r = + + z (3-9)

v =¢x 2 + _2 + _2 (3-I0)

x " r [cos (_ + 6) cos f2 -COS isln (_+6) sinai

(3-11)

y -r [eos(_+6) sin_÷coslsln(_+_)cos_]

(3-12)

z " r sin ( w + 6) sin i (3-13)

x - [cos 6 (cos m cos_ - cos Isln_slnw)

+ sin 6 (-sin m cos f_

] P (3-14)- cos i sln_ cos0J ) 1 + e cos 6

y - [cos 6 (cosu_slnf2+ cos i cos f2 sln m)

+ sin 8 (-sin _ sin

] P (3-15)+ cos i cos _cos m) 1 + e cos O

z - [cos 6 sin i sin m

+ sin B sinlcos _)] _ +e Pcos B (3-16)

- cos i sin _ cos _0) (3-17)

- sin 6 (cos m cos _ - cos i sin_ sin w)]

y -_p Ocos %+e)(-sinw sln_

+ cos i cos _ cos ,_)

- sin O (cos _ sin _ + cos i cos .qsin m)]

(3-18)

Z "_" [(COS _ +e)sinicos m-sin6sin isin_]
(3-19)

y =sln -I [(x_x +yy+zz)(x2 +y2 +z2)-I/2 (x2

+_2 _)-i/2]
+ (3-20)

e =cos -I [(XXp + yyp + ZZp) (x2

z2 )-1/2 )-1/2](3_21 )+ y2 + (Xp2 + yp2 + Zp2

¢ :'COS-I [(XX n + 5rYn + ZZn) (x2

- z2)-1/2 )-1/2]+ y2 + (Xn 2 + Yn 2 + Zn2 (3-22)

= cos (XnX p + yny p + ZnZp) (Xn2

2 2) -1/2 (Xp2 2 2) -1/2 ]+Yn +z n +yp + Zp

(3-23)

where:

n : node

p = perigee

\xz - xz /

(3-24)

TABLE 4

Elliptic Orbital Elements in Terms of r, v, ¥

r
a

rV 2 (Fig. 15) (4-I)
2 -

r (Fig. 15) (4-2)= -rc-_

2 2

b = r cos ¥
2_

_---_-1
(4-3)

(r cos y)2

2

-_-i

(4-4)

III-24



I

Q

r
a

_i Q (2 Q) cos 2= - - y (Fig. 19) (4-6)

(r v cos ._)2 (Fig. 18) (4-7)

Q cos2
r "_ (4-8)

(vV.__/2 2_- rv (Figs. 15 and 19)
c/ _ (4-9)

r_ + _ _--i (rvcos,/)2 (___2__
2 -- --

(4-10)

__Q + - Q (2 - Q) cos2_ (4-ii)

_P " -rJ - -_ (rvc°_'d2 (_--_--)
2

(4-12)

= _ - - Q (2 - Q) cos 2 v. (4-13)

Va rv cos y - F (_ - --h--

(4-14)

]= U + 1 (rveos_)2 2 v 2
vp rv cos_ - -;- (_- -7 )

(4-16)

v [i _ Q(2 Q) eos2¥] (4_17)

K

TABLE 5

Miscellaneous Relations for EUiptic Orbits

= _a - (5-i)

(see Eqs i-i through 1-19 for parametric
variations of a)

=K+P

v 2

2
V

"-2-

(5-2)

(5-3)

(5-4)

M = E - e sin E (Figs. 2 and 22a to i) (5-5)

(see Eqs 2-1 through 2-9 for parametric
variations of E)

n .2_
v (Fig. 7) (5-6)

- Cp--a -3/2 (5-7)

(see Eqs 1-1 through 1-19 for parametric
variations of a)

P

M
--m

t-t (5-8)
p

= - _ (5-9)
r

r = a (see Eqs 1-1 through 1-19 for parametric
m variations of a)

(5-10)

M
t = _ +t (5-Ii)

n p

83/2
= _ (E - e sin E) + t (5-12)

p
(see Eqs 2-1 through 2-9 for parametric
variations of E)

Vc = _u_'- (Fig. a} (5-13_

/see Eqs 2-10 through 2-18 for parametric
variations of r)

v = V}-v (5-14)
e c

= _ (5-15)

Ym

8
m

(see Eqs 2-10 through 2-18 for parametric
variations of r)

= sin -1 (_ e) (5-16)

(see Eqs 1-41 through 1-59 for parametric
variations of e)

tan -I (-_) (5-17)

Ir a - r \

" tan-1 /2_a rp ) (5-18)

,, cos -1 (-e) (5-19)

" sin-1 (a-_ (5-20)

= 2_a_--" (TableFig. l)gand (5-21)

(see Eqs 1-I through 1-19 for parametric

variations of a)
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TABLE 6-1a

General Forms of Series Expansions

in Powers of Eccentricity

(see Fig. 4)

E
n_l en d n-I= M+ n-T-_ (stnnM)

(e-i)

sinE-=
n=_l n-I n-I

e d (sinn M)
-'-K] dM n--U'f

(6-2)

cos E e n-1 d n-2= - _ _ (sin n M)
aM--

n=l

(6-3)

n dn -2
8

= I + [E_f_! _ (sln n M) (6-4)
n,'l

2

m 1 +e 2 +2 t en dn-2

/I n--T'. _ (sln n M)

n = 1 (6-6)

n d ne (sin n M) (6-6)

X

a en_l dn-2
= --e - _ _ (sin n M)

n = 1 (6-7)

Z
R _ en-1 dn-1

= n.--T--" _ (sln n M)
n • 1 (6-8)

sin 8 t en'l dn'l= (sln n M)

n = 1 (n - I) : dMn-I (6-9)

cos e ne n- 1 dn-2=- (.E-_ ! _ (sinnM)
n=l

(6-10)

e == e- dM (6-11)

NOTE: Diver_ence for • > 0.662743...

TABLE 6- lb

7
Power Series Expansions up to e

2

E = M + esinM+_.,-., sin2M

3

+ _ (32 sin 3M -3 sinM)

e 4 (43
+ _ sin4M -4-23 sin 2M) +

4:z
_conttnued)

TABLE 6- ib (continued)

5
S

+ _ (54 sin 5M - 5-34 sin 3M + 5-2 sin M)

6
+ e

(6 5 sin 6M -6"4 5 sin 4M + 5-3-2 5 sin 2M)

7
+ e (76 sin 7M - 7-56 sin 5IV[

+ 7.3" 3 6 sin 3M - 7"5 slnM)

+ ..... (Fig. 2)
(6-12)

e .

sty E = sin M + 2"sm 2M

2

+ _ (3 2 sin 3M -3 sin M)

3

+ e
(4 3 sin 4M - 4"2 3 sin 2M)

4

+ e (54 sin 5M - 5. 34 sin 3M + 5"2 sin _!}

5
+ •

6.,2--7 (65 sin 6M - 6.45 sin 4M + 5-3"26 sin 2M)

e 6

+7.'-_2 (76 sin 7M - 7-56 sin 5M

+7-3-3 6 sin 3M -7-5 sinM)

7

+ e
.,--72(8 7 sin 8M - 8"6 7 sin 6M

+ 7"4-4 7 sin 4M -8"7"2 7 sin 2M)

+ ..... (6-13)

cos E = cos M+_ (Cos 2M-I)

e2
+ _ (3 cos 3M -3 cos M)

2!2 =

3
e

÷
e 4

5

+

(4 2 cos 4M-4"2 2 cos 2M)

(5 3 cos 5M- 5" 3 3 cos 3M + 5"2 cos M)

(64 cos 6M - 8"44 cos 4M + 5"3"24 cos 2M)

(continued)
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TABLE 6-ib (continued)

5
+ e cos 5M

(75 cos 7M - 7" 55

+ 7-3.3 5 cos 3M -7"5 cos M)

7
e cos 6M.+ _ (86 cos 8M- 8.86

7.'2'

+ 7" 4' 46 cos 4M - 8'7"26 cos 2M)

+ ..... (6-14)

O = M+2esinM+l-_ - sin2M

3
e (13 sin 35/[ - 3 sin M)

"1"2-.

4
+e

_ (103 sin 4M - 44 sin 2M)

5

+_'_0 (1097 sin 5M - 645 sin aM + 50 sin M)

6

+ _'_0 (1223 sin 6M - 902 sin 4M * 85 sin 2M)

7

e (47,273 sin 7h_[ - 41,699 sin 5M

+ 5985 sin 3M + 749 cos M)

+ .... (6-15)

sin8 = VI-r'_-e2 i'inM+e sin2M

2
e

+ _-(32 sin 3M - 3 sin M)

e 3 , 23
+ _ _43 sin 4M - 4' sin 2M)

4
e

+ _ -(54 sin 5M - 5"34 sin 3M + 5-2 sin M)

5
e , 25+ _ _65 sin 8M - 8"45 sin 4M + 5-3" sin 2M)

5.'P

6

+ _ (76 sin 7M- 7" 58 sin 5M

+ 7" 3" 36 sin 3M - 7"5 slnM)

7
e

7.4.47

(87 sin 8M - 8" 87 sin 8M

sin 4M - 8" 72 sin M)

(6-16)

cOB O

TABLE 6-1b (continued)

= cos M+e (cos 2M- i)

3e 2

+ _ (3 cos 3M -3 cos M)

4e 3

+ _ (4 2 cos 4M - 4" 2 2 cos 2M)

5 e 4 (5 3 cos 5M 5" 3 3

+ _ - cos 3,'vl

+ 5.2 cos M)

+ 6 e 5 (6 4 cos 6M - 6"4 4 cos 4M
5! 2 _

÷ 5"3"24 cos 2M)

7 e 6 (75 cos 7M - 7" 55 cos 5M

+ 7"3"35 cos 3M - 7"5 cos M)

8e 7

+ _ (8 6 cos 8.M - 8"6 6 cos 6M

* 7"4"46 cos 4M - 8"7"26 cos 2M)

÷ .....
(6-17)

2

r = 1 -e cos M -_ (cos 2M - i)
a

3
e

- --------w-(3 cos 3M- 3 cos M)

2!2"

4

e cos 2M)
-_ (42 cos 4M- 4" 22

e 5

-_ (53 cos 5M-5"33 cos 3M + 5-2 cos M)

e 8
- _ (6_ cos 6M- 6"44 cos 4M

5 t.2 v

+ 5" 3.24 cos 2M)

e 7 (75
-8.t---- T cos 7M - 7"5 5 cos 5M

+ 7.3"35 cos 3M- 7"5 cos M)

(6- 18)
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a
= 1

r

TABLE 6-1b (continued)

2
• 1 - 2 e cos M e (cos 2M -3)

3

-_(3 cos 3M-3 cos M)

4
e , 22

- _ _42 cos 4M - 4- cos 2M)

5
e

5,2v- (53cos5M

- 5"33 cos 3M + 5"2 cos M)

8
e

- _ (6 4 cos 6M

6 44- • cos 4M + 5' 3" 24 cos 2,_I)

7
-_ (75 cos 7M - 7"55 cos 5M

7! 2 °

+ 7-3"35 cos 3M - 7-5 cos M)

2
+e cos M +e cos 2M

3
e

"(33cos 3M -3 cos M)
3!2"

4
e cos 2M)

4.1---_2 (44 cos 4M - 4-24

5
e

(55 cos 5M - 5" 35 cos 3M

+ 5" 2 cos M)

6

+ _ (66 cos 6M -6"4 6 cos 4M

+ 5"3"2 6 cos 2M)

7

+_ (7 7 cos 7M 7.5 7
- cos 5M

+ 7"3"37 cos 3M - 7"5 cos M)

Jr , ....

2
= I+ 2 e cos M+_ (5 cos 2M + I)

3
+e (13 cos 3M +3 cos M)

(J-tO)

(5-20)

TABLE 6-1b (continued)

4

+ _ (103 cos 4M+ 8 cos 2M+ 9)

5

+ _-,_(i097 cos 5M - 75 cos 3M+ 130 M}COS

b
+ _ (1223 cos 6M - 258 cos 4M

+ 105 cos 2M+ 50)

7
e

+ 2-370-4-0-(236,365 cos 7M

- 83,105 cos 5M+ 17,685 cos 3M

+ 13,375 cos M)

Jr (6-21)

X

a-"= "e + cos M +_- (cos 2M - I)

2
e

+_(3 cos 3M-3 cos M)

3
@

+ _ (4 2 cos 4M - 4"2 2 cos 2M)

e 4
+ _ "_53 cos 5M -5"3 3 cos 3M+ 5"2 cos M)

4:24

5
+ e (6 4 44_.- cos 6M -6- cos 4M

5! 2 _

+ 5" 3-24 cos 2M)

+

6,_2(75 cos 7M- 7"55 cos 5M

7"3"35 cos 3M- 7-5 cos M)

e 7 (86
+ _ cos 8M- 8.6 6 cos 8M

+ 7"4"46 cos 4M- 8-7.26 cos 2M)

(6 -22)

2
+ e

"t32sin 3M -3 slnM) +

(continued)
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TABLE 6-1b (continued) TABLE 6-1b (continued)

t"

3
e

+ _ (43 sin 4M - 4-23sin 2M)

4

+ e (54 sin 5M - 5" 34 sin 3M + 5"2 sin M)

5_ 2_

5
e

+ _ (65 sin 6M - 6" 45 sin 4_I

+ 5"3"25 sin 2M)

sln 2

sin 3

sin 4

sin 5

sln 6

sin 7

sin 8

sin 9

6
(76 sin 7M - 7" 56 sin 5Me

+ 7-3-3 6 sin 3NI - 7-5 sin M)

7
e

+. 8.-_,/- 2 (8 7 sin 8M - 8"6 7 sin 6M

+ 7.4,4 7 stn4M-3"7-2 7 sin2M)

+

M =

M =

M ,,

M =

M "

(6 -23)

TABLE 6-2a

Expansions of Powers of Sin M

(I - cos 2M)

(3 sln M - sin 3M)

(3 - 4 cos 2M + cos 4M)

_ly (10 sin M - 5 sin 3NI + sin 5M)

(10 - 15 cos 2M + 6 cos 4M - cos 6M)

2 4 6

e e l'3e- 1- T --T-.-.-._-Tw4_

8
1.3-5 e

" 2;4-6-8" "" ' "

2 4 6 8
e e e 5e

= i--_---_-"T_-

7 e I0 21 e 12

"2"5"6"--- "['T'0-'/'_r- -''' (_-24)

M (35 sin M - 21 sin 3M + 7 sin 5M - sin 7M)
I

(35 - 56 cos 2M + 28 cos 4M - 8 cos 6M + cos 8M)M

1
M = _ (126 sin M - 84 sin 3M + 36 sin 5M - 9 sin 7M + sin 9M)

1

sin 10 M - _- (126 -210 cos 2M + 120 cos 4M -45 cos 8M + I0 cos 8M -cos 10M)

1
sln 11 M ffi _--0-,/T(462 sin M - 330 sin 3M + 165 sin 5M - 55 sin 7M + II sin 9M - sin IIM)

1
sin 12 M = (462 - 792 cos 2M + 495 cos 4M - 220 cos 6M + 66 cos 8M - 12 cos 10M + cos 12M)

2D-4X

sin 13 M = _./_i (1716 sinM - 1287 sin 3M + 715 sin 5M -286 sin 7M + 78 sin 9M - 13 sin IIM + sin 13M)
4096

NOTE:

The numerical coefficients are easily obtained from the Pasca/' s triangle (cut in half), as shown in Table 6-2b.
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TABLE 6- 2b

Pascal's Triangle and its Modification

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 I

7 21 35 (35) (21) 7

8 28 56 70 (56) 28 8.1

1

1

Note: In the Pascal's triangle, each term is the

sum of the two terms immediately above it (e. g. 0

35 + 21 = 56). The coefficients for the expansions

of sinnM in Table 6-2a result if the Pascal' s

triangle is cut in half as shown below.

I n The Coefficients of Expansion of sln n M

I
0

1

2

3

4

5

6

7

8

1

1 1

1

3 4 1

10 5 1

10 15 6 1

35 21 7

35 56 28 8

1

1

...

TABLE 6-3a

General Forms of Fourier-Bessel Expansion
(see any reference on celestial mechanics,

e. g., Smart)

1E - M + 2 _" Jn (he) sin n M (G-25)

n=l

_, 1 j (ne_ sln n M (5-26)
2

sin E = _- _" n ' '

n=l

1

cos E =-_- e

co •

7 di }+ "-2" _ J (ne) cos n M
n

z__ n

n=l (6-27)

@ ,, M +_ n2 sinnM _ f In[ Jn+k (ne)

n=l k- -_ (6-28)

where
p..

f _ 1- _l-e 2
3 5 7

. = _. + ._ + e . 5 ee IT " TT_ +'''
1_ -29!

sine = 2 _ . _" _t_" _ n (ne) sin n _[
n,,1

(6-30)

cos@ = .e +2 (ie "e2) _ Jn (neicos nM

n=l (6-31)

r _ e 2e
_.- 1+- 2- - I d l(ne)}cosn M/__ n-_ _ Jn

n=l
(6-32)

r) - 1 + - 4 Jn (ne) cos n M
z...., n (6-33)n=,l

ar " 1 + 2 _ .Tn (ne) cos nM

n-I

(6 -34)

_- "--_-- + 2 -_ _" Jn (ne) cos n M

n=l n (6-35)

= _2 1__e2 _ _=1 J (ne)slnnMn (6-36)

n=1

Note: Divergence for e> 0.662743 ...
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J (×)=
n

J1 (e) =

J2 (2e)=

J3 (3e) =

J4 (4e) =

J5 (5e) =

J6 (6e) =

57 (7e) -

j8 (Be) =

v

El (e) =

!

J 2 (2e) =

J3 (3e) =

!

J4 (4e) =

l

J5 (5e)

!

J 6 (6e) =

!

J 7 (7e) -

!

'18 (8e) =

TABLE 6- 3b

Expansions of Jn (he)

(-1) k n + 2k
X

_-_ 2 n+2k k! (n + k)!
k=o

3 5 7
e e _. e e

2- "i_- _4- - _ +" " "

2 ._ 6 e 8+h- -'rm *'"
3 5 7

9 e 81 e 728 e
-2T- - W + yU:-T477- ....

2 e 4 8 e 6 8 e 8

-3---- -FS-- + --/y-....

825 e 5 15,625 e 7

" 18,432 + " " "

6 8
81 e 729 e

-3-if--- _+...

7
117,649 e

92, 1_0 ' ' "

8

_'"--I_l 3 e 2 5 e 4 7_+-'51_- " +" " '

3 5 7
2e

+ _-- - . ..e --T-'-- _y +

27 e 2 405 e 4 65103e
_+

8 e 3 16 e 5 64 e 7
--3- 5---+---45---.-

3125 e 4 109,375 6

• , + ° o °
= _ " 18,432

243e 5 729 e 7

T- ---TU--- +...

6
823,543 e

92,160

7
4096 e

_ , . .

(6-37)

TABLE 6-4

7
Fourler-Bessel Expansions up to e

3 5 7

E = M +(e-_ + _ ---_r + ...') sin M

+( 2 _+_ .... ) sin 2M

)+ -_ + _ - . . . sin 3M

(_ 4e6 + ) sin 4M+ - ---_ . .

5 7

+ (_ . _--+ ...) sin 53_

+(2_ .... ) sln6M

16,807 e 7 )
+ \ 46,080 - ... sin 7M + . . . (6-38)

e e esin E = 1 -_-- + _ --_ .... sin
7v[

3 5 7

+(_ - _-+ _-_ -_--+ ...)sin 2_I

(3--_ 27e4 243 e6 )+ "I-_ + _ .... sin 3.A'I

3 e 5 )+ _._ 4 4e 7"_ + o'-_'--" ''' sin4M

(16,807 e 6 .) sin 7M
+ \ 46,080 " ""

tl_o^ \7
+ ,._o = _...] sin8M+ ..... (6-39)

e

cos E = - _-

(_ _ e5 e 7 )+ " + IB" " f81) +..
cos 2M

+

(continued)
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TABLE 6-4 (continued)

+(-_2. 4__+ 567e 6
" ...) cos 3M

+(_.. 2e 5
" 5"-+_4_7" )cos4M

÷/ 125 e 4 4375 e 6
\ -33T/'--" -y2-£T --÷ ...)cos 5M

"_+...) cos 6M

+(_6....) cos 7M

÷ (128e7 )\_'.,. cos 8M +
..... is-40)

0 = M+ 2e._.4_+ 5
-9%'-- ÷ + • • • sin M

4" _ - ...) sin 2M

"_+ ... sin 5M

..... (6-4t)

sine = (1 7e2._+ 17 e4 _._6 )-l'_f-- " + .,, sin M

+...)stn2M + (_.e_ 2 207e 4

+ 3881 e 6 )_" ... sin 3M

.... 9Z16 --+ .-. sin 5M

+ ( 1024 e 7
\"YI'Y--- "'..) sin 8M + ..... (6-42)

H[- 32

TABLE 6-4 (continued)

cos 0 =-e + /i 9 e 2

25 e 4

+ --Ig'/C "_ZI_ 8 +...) cos M +(e-_3r_ 3

+_ 2 e7+
"'-'4"5"-- ,..] cos 2M

+ _9._2 .__ _ 3969 e 8 )' _" ... CoS 3,_,I

÷(.V_ 3 " _12 e5 64..,. e 7
" .,. )cos 4M

+/825 e 4 30,625 e 8 \

\-3qT/--- " -'9"2"I"6--- + ... ) cos 5M

"-I-0"5--- + .-, cos 6M

( 117,649 e 6+

\ 46,080 -...) cos 7M

/I024 e 7
+

_ " / cos 8M +
..... {6-43)

r

2 ( , 3e 3=l+_- - e T

+ _ - + • • cos M - 2

4 e 6
-_- + I-_''-.) cos 2M

.(3._ 45e 5 567e 7
-_ +'ST'2"g- " "'') cos 3M

-(-¢- +...)oo., 
" (_4"- 4375e7

+...) cos 5M

.(S_ ....)cosSM

" (_/''...)cos 7M -
..... (6-44)

5 7

) ,.... e

6

-...) +
(continued)



TABLE 6-4 (continued) TABLE 6-4 (continued)

9e5Sle7 )+ - _ + _'6_" -''" cos 3M

+ - _+ ... cos 4M

(21_ 625e7+ - _ + .. ) cos 5M

cos 6M

(6-45)

= i+ e- +

e + cos M + e 2 e e
"_'_Tg" "'" "T +_4"

- ...) cos 2M

(_ 81e5 729e7 )+ -_ +_ -... cos 3M

(4__ 16e6 + ) cos4M
+ "-'T_ "'"

(62_ 15,625e7 + ) cos 5M+ - 9216 ....

_...)

+ (i17, 649e7 )\ 46,080 - ... cos 7M + ..... (6-46)

+ ... ) cos M

+ + _-+ + ... cos 2M

+ - --6"4--+ _ - ... cos 3M

+ (continued)

+ - _+ ... cos 4M

(10_ 16,621e 7+ " 4608

+...) cos 5M + (121_ -...)cos 6M

...) cos 7M + ..... (6-47)

X

3e (3_5e 4 7e 6=--2-+ I- +TPT -YY_

+ ...) cos M +

5 7 )
e _ + cos 2,_I+T_" - "'"

+ ._ + _ - ... cos 3M

( e3 2e5 8e7 ) cos 4M+ "3- --5-- +-CY "'"

)+ - _ ÷ ... cos 5M

(8_ 31e7 + ) cos 6_I+ "'T_- "''

)
+ \ 46,080 -''" cos 7M

+ (__7 ....)cos 8lVI+ ..... (6-48)

y
a 5e2 lle4 457e6 ) sin Ml-IV --T_--_jT1T-.--

+ - + -_ + ... sin 2M

(3_ 51e4 543e6 ) sin 3M+ - -U/8-+_ ...

+ -T + '- ... sin 4M

 0 5e0 )+ - _+ ... sin 5M

(2__ 135e7 + )sin6M ++ --_- ...

(continued)
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TABLE 6-4 (continued) TABLE 8-6 (continued)

16,807e 6 1+ \46,080' -... sin 7M

< 12867 ) sin 8M + ..... (6-49)

TAB LE 6- 5

Expansions for Near-Circular Orbit (e2 < < I)

E = M +e sin M +...

sine = sin M + _ sin 2M + ...

cosE = -_ +cosM4-_cos2M+

9 = M+2e sinM*...

sin 9 = sin M + e sin 2M + ...

cos 6 = --e + cos M + e cos 2M + ...

(r)_- = 1 -ecos M -...

(6-50)

(6-51)

... (6-52)

(6-53)

(6-54)

(6-55)

(6-56)

(6-57)

(6-58)

a) 2 = I + 2e cos M + ... (6-59)

3ex = - + cos M + cos 2 M + .(6-60)
_" T ""

_- = sin M + e sin 2 M + .... (6-61)
a z

sin E

TABLE 6-b

Expansions in True Anomaly and Eccentricity

2

=e-esine+£ C sin2e

3 30)+ ...-_-- (sin 0+ _ sin (6-62)

2
e e

= sin 6 - _ sin 26 - -_- (sin 6 - sin 30)

3
- _ sin 46 - ... (6-63)

o

cos E
e

cos 6 +_ (1 - cos 26)

2 3

-_- (cos e -cos 36)÷ eT (6-64)

2
COS E u e (cos 8 - cos 30)cos 2 8 4-_

2

o(-+-_- 2 cos 26 + cos 46 _-

3

+ _ (3 cos 36 - cos 5e)
o

(6-65)

M (9- 26 sin 8 +_e 2 sin 28

i e3-_- sin 36 + ...

2

l -e cos e -_ (I - cos 2e)

e 3
--_- (cos 3e - cos e) - ...

(6-66)

(6-67)

a

F
= i + e cos 6 + e2 + e3 cos

2

(6-68)

(6-_9)

"r" "-_2 ecose [l+2ecos 9
a

2

+2 (cos 26+5)

+463 cos O + ...J"1 (7- 70)

v = + e cos e + (3 - cos 28)

3 "1

-%-(4cos0 - oos36-  6-71)+

2 3

=e sin E, - _- sin 28 +_- sin 36¥

4
e

- "4--sin 46 + . . . (6-72)

2

e _ e 3sin -_ = e sin e - _- sin 26 + (sin 36 - 3 sin e)

1 4
- i-_ e (sin 40 - 2 sin 28) + ... (6-73)

2 3

cos ¥ = 1 +_- (cos 20- 1)+_-(cos 36 + 7) + i D •

(6-74)

E} = -_V=_ + 2e cos e + (4 + cos 20)

+ 363 cos O 4- ...] (6-75)
J _)
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S

b

TABLE 6-6 (continued)

,,-_3-esLnO II+3ecose
a

+_(3 +cos 20) + ... 1

TABLE 7-I

Hyperbolic Orbit Element Relations
(see Fig. 6)

b
m

e 2- 1

P

b2_r 2
P

2r
P

e - 1

rp

(i + e)
s

2
v (e - I)
P

2
r

= P
p-T{

P

m

r v - 2/_
P P

- a_e2-1

= Crp (rp + 2a)

. 2 g%/_--a3/2 Vp
2

a% "bt

(6-76)

(7-1)

(7-2)

(7-3)

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)

(7-9)

(7-10)

(7-11)

(7-12)

(7-13)

(7-14)

TABLE 7-I (continued)

b,, rp_--_

,, # (e + 1) 3/2

2 1)1/2V (e -
P

=r
p - 2rp

= @--- - _P

P

/
rp PVrp Vp - 2g

(7-15)

(7-16)

(7-17)

(7-18)

(7-19)

r

=-2-+1
a

2
av +//

= P
2

aVp -_

= +1

b2+r 2

= P2
b 2 -r

P

=P-- -1
r

p

2
r v

- P P -i
U

(7-20)

(7-21)

(7-22)

(7-23)

(7-24)

(7-25)

(7-26)

(7-27)

(7-28)

b2
p m __

a

= a (e 2 - i)

r

= a-_ (rp + 2a)

(7-29)

(7-30)

(7-31)

(7-32)
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p= bp-1

2r b 2

P

" r (e+l)
P

2 2
r v

= P P

a + b 2
rp = -a

TABLE 7-I (continued)

V

P

= a(e- 1)

ffi 2_a
2

av -A_
P

1 + I_l 2

P

= p (l+e)

V

P

V
P

a_'+b 2 -a

= _ +

d= _..(e + 1) 3/2

(e - 1) 1/2

TABLE 7-1 (continued)

v = P _P

(7-33) p b (_'_ + p2 _ b ) (7-52)

(7-34) I/ 2/_b2

=Vrp(b 2 - rp 2) (7-53)

(7-35) .L:T-

= Vp(l + e) (7-54)

(7-36) 7

- _rr_p(I+ e) (7-55)

(7-37)
= (7-56)

r
P

(7-38)

(7-39)

(7-40)

(7-41)

(7-42)

(7-43)

(7-44)

(7-45)

(7-46)

(7-47)

(7-48)

(7-49)

(7-50)

(7-51)

TABLE 7-2

Time Variant Hyperbolic Relations

(see Fig. 6)

Elements

a = _r
2

rv - 24_

r v 2 cos 2 y./
b

_' 2 2U

e rv
AI

(7-57)

(7-58)

2 cos2y (r v 2 - 2U) (7-59)

2 v 2r cos2_
P = (7-60)

(_ I ,2 2. _r +--2rv cos ¥(rv 2 - 2_)
rp rv 2 - 2p _z

%

- i ) (7-61)
J

U (1+_I+4 rv2 cos2y(rv2 . ?_u))
v'p= rv COS y /_

(7-62)

Time variants

F=iE

= cosh-I + e cos @

= 2 tanh-l[_ tan

(7-63)

(7-63a)

(7-63b)

= P
I + e cos O (7-64)

r <e2 r 2_ - (p- r) 2 +

(continued)
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TABLE 7-2 (continued) TABLE 8 (continued)

er

-_- i [ e sin e
= _ 1 + e COS 0

1
in

+ tp (7-65a)

+t
P (7-65b)

V = + =, + e "
(7-66a)

o,e';
= P

12p+r (e2-I)]

(7-66b)

(7-67)

1 + e cos O
n

V1 + 2e cos O + e 2

(7 -68)

e = c°s-I I_--Z"_-Xler (7-69)

Spherical Trigonometric Relations

i = cos -I (cos L sin /3) (8-I)

{sin L sin 8)= sln'l_ sin v (8-2)

( _.nL )= tan-i \sin @ sin _ (8-3)

/tan L _

• tan -1 _/ (8-4)

-1 /cos L sin v)= cos \ Sin¢ (S-S)

/,_L_

,tn "Ik-s-z-/ (8-8)
sin-i \cos v� (8-7)

{COS _ tan _) (8-8)=tan'l \ -_in v

i -tan "I /cot _

-1 /tan v_

- _o. \r_"_)

(8-9)

(8-zo)

L = cos "I

= sin -I

= tan" 1

= tan -I

= tan- I

= sin -I

= sln "l

= sln -I

= tan -1

-I
COS

= sin -I

= sin "I

-I
" COS

-i
" COS

-i
m COS

= tan- i

= tan -I

• sin -1

-I
m COS

. sin -I

v =sin "I

= sin -I

= tan- i

cos i_
s-t'_/

sin i sin
si6"_ _')

(tan i sin B sin O)

(tan i sin v)

(sin i cos v/an ¢)

(sin i sin ¢)

COS w

(COS $ tan ¢)

cos ,_

(8-il)

(8-12)

(8-13)

(8-14)

(s-is)

(8-16)

(8-17)

(8-i8)

(8-19)

(S-°.O)

/cos £

i_o--a-a-L)

sin _ sin v)sin L

(sinicos _)cos L

(sin i cos v)

an I sin,v)tan *

(_%_otl_
/

os L tan

h.nA

l

(8-21)

(8-22)

(8-23)

(8-24)

(8-25)

(8-26)

(8-27)

(8-28)

(8-29)

(8-30)

I tan L_

/

sin L sin_)
sin i

(,inL
tan i cos @/

(8-3i)

(8-32)

(8-33)
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TABLE 8 (continued)

v = cos-1 (cos _
\s-'_-T/

= COS %k COS 7.

= tan -I (cos i tan_)

= tan -I (sinL tan_3)

-1 [cos_ sin,)= cos \" sin L'

-I /cos_
= cos t,eo--'FL/

=sin-I (sin/3stn_)

(8-34)

(8-35)

(8-36)

(8-37)

(8-38)

(8-39)

(8-40)

/sin L_
= sin-1\_in_-T7

-i
• COS

• tan- 1

-1
• COS

cos L cos 3]
sin t )

tanL v)sint c_s

(cot t cot _)

tan v '_
sini fanfl/

(eo__._tan " h
/

(t  Lh

slnL cos v)cos _ '

(cos L cos v)

= sin "I

-i
•, tan

-I
= tan

-I
= sin

-1
=' COS

= sin" [ /,in v_
k,--5_/

(8-41)

(8-42)

(8-43)

(8-44)

(8-45)

(8-46)

(8-47)

(8 -48)

(8-49)

(8-5o)

)

III-38



7 ¸-

L. PRESENTATION OF GRAPHICAL DATA

The figures presented at the end of this chapter

will not be discussed here. A list of figures is

given at the beginning of this chapter.
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i ¥do_7 _.0_4 i.010Podod T.?,7 1.319

Jt_. VeL 6._71 4.765

Vo_e_lf 8.0te I.Ol_

Period _.JT_ t.3t+

Aal. YeL +. _ 4.5*0

Yel_tV ?. _e2 7. le9PeMad 1.*_5 I.*_?

emG. Ym. *.,J9 *.*_*

ylloely •. 83 _ ?. 828

IrMoe_7 7.?,2 ?.?_o

_.y_. *.1+4 4.,*0

_. Vel. *.o_1 4.o_.,s

i_.tml 1,619 1..21
Y*I. l._st ). I'r'_

A_. YeL 2. ?20 2. ? 16

P_od I. ?24 I. _6

VeL l. _.*_ I. •<,O

Yelem_ ..... o _:,.

V Ill 1,410 |,427

Immrtml +. <_,ii l.l?o

P_rlo4 1.9e* 1.906

VeL a.29_ l. _.9_.

_ ?,1ol ?.1Ol
AIU. Yl_.. 1,237 1.21_

Y_lo_ 7.059 7.056

l_,idml _.,J?e i .')to
i,y_l _ .I.174, 3.175

I Ye_m:tty "P.OIS 7.0*,.I
l_,Tle4 a. o_ "_ 2.Ol7

_i AII. yIL l.lt41 3.,15

_ 2.0_2 2. o$_

• s _ V_L 1.061 3.058

Perln4 2.o_m 2.oe2

V,d s.OO_ 1.003

PeeSml 2.121 _.1_0

Y_e_y •o 141 •. 146l_rtod 2. lit6 2.lie

Am8. VeL 2.100 2.l_J

Pm.Sml 2.2OS 2. 207

• 'd. 2.150 2.14?

2.24] 2.245

m AIS, IrlL 2.1t_l 2.?N

i Veloelt_ •. 720 •. ?28

1F_I 2.7_3 2.7'51

I_mrSml 2.._1 2.323

TABLE 9

Circular Velocity, Period and Angular Rate

(metric data; see Figs. 7 and U for English data)

Velocity --- Velocity in Kilometers per Second

Period --- Period In Hours

Ang. Vel. --- Angular Velocity In Radiums per Hour
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TABLE 9 (continued)
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I ¥540_ 6.O47 6.041 1.046 6.O43 1.042PU_Od 3+T*_ 3.1,,1 3._50 J.152 _.155
All. Ted. I._97 1.95_ I.m I._5_ I._2

Tot_ 6._*_ _*.06| 6.065 6.0v6 6.O+6Ported _.159 ;.191 3.19. _.191 2.156
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M
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_mg. Vel .... Ang_lmr Velocity in Radl_ pet llour r'
J
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l_l_od _.o2o _.•z_ 6.0•0 6.016 •.041

VII, 25.0"JI 25.•2• _,0o_ 24.•14 2<+*_I

j V,ii_t 7 I. 4)42 4,•4| 4. II1• G+••5 4, •._76.12"; + •.I][3 6._:11 •.I*.4 1,.149

. _ VII. 24.610 _4,5MI 24.5•1, 14.5,45 2q,521

ysl[[Ol_l_ r 4.S114 4, III1 4.411 * 4,•10 4. I_ll

. _m_. Vq_. 24.18_ 24.1•1 24.140 14,119 24,09•

ylloc/W 4.711_ 4.1,95 *.7•,I +.1,9_ .,.7•I
Pel_d 6.545 •.350 _.•56 •.3•_ •.3•1,

_" J_l_ lt'll. 23,;_ 23°74• 21.725 23.705 11._44

lr_ *. 759 4. 751 4. _% +. _55 *. +'54• - "55 •. _•o 6.4•6 •. +71 •. +'P?

, _ _'1]1. 23._4.2 2•.142 21.322 23.101 21.2•1

Yldoely •.732 4.1'31 4.730 4;1,,28 *.727Period •._45 •.s_1 •.578 6.5•2 •._1,

-- /_1. Y_L 22._+0 1_.950 22.911 12.951 12.892

TABLE 9 (continued)

Velocity ... Velocity In Ktlometer-, per Secoed
Period o.- Period in Hour_

Ang. Vel. --- AnKular Velocity in Radlams per Day
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TABLE 9 (continued)

_.6_ *._97 4.6_ *.69* *._ ¢.691 *.69O

_._?_ 4.67_ *._0 *.6" 4._7 4._ *._

*.6*7 *,64_ I._* _._.3 4.6_2 ,._4_ 4._;_

4.622 *._t *._9 *.61e *._17 *._1_ *.61,
7.O*? _.0_: ?._ 7.0_ ?.0_9 7.0_'_ ,.011

21.*00 Z,,3e_ Z_.3_6 _1.J49 ZI._31:1.3T* _1._9_

7._60 _,1¢6 ?._7; _.177 _.t_3 ?,_1_ ?.19.
21.06_ _.0" :_.0_7 _.010 ZO,_¢ ZO.977 20._4_

19.490 i_*_7_ 19.4_t ,9.4¢6 ,914JI 19. ql7 1_140_

*.*)_ _.*3q ,.*_3 *.q_ *.,_ 4.do ,.,Z9

,.I_ *.J,_ *.Jd ,._,7 .._,6 *.h_ *.J,

*,270 4.269 ,.26e ,._67 ".;G6 4.2_ *.264

tO_l _.06_ 9.0_0 9.076 _.0_2 _.o_s _.09_

4.232 *.=ll _.230 *.229 4.;21 _.227 *.2_6

4.215 4,2$2 4,2tl 4.210 4._09 _._0| 4._07

_.610 K6_7 9.691 9._" a.706 9.711 9.?le

4o140 4,139 4.11_ 4,117 4,116 4.135 4.1_4

1_.177 I_.J_7 15.157 i_,_4? 15o317 1_._27 I_o1$1

4.1_ 4.121 4.1_0 4.$1_ 4.11B 4.1t_ _,117

Io.o11 I0.0_? ,o.on 1o.oi)o io.oe6 _o.O_J 10.o9")
14,_11_ 1_._79 14.970 14,9(_ 14,95t 14.941 14,*1_

4.*_0 4.I19 4.1211

tl?6 9.113 e.lr_

*.112 _.11_ •.1_1
_0.00_ i0.010 tO.Ol_

I0.1_1 ,0.1J? i0.1,_

Velocity --- Vel_ity in Kllometer_ per 8ec_d
Period ..- Period _,,Ho=

An|. Vel .... Anlullr Veloeity in/R_II== per De)"
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TABLE 9 (continued)

• IlL IL

¥11041_ *. 0_ 4.07, *. O74
+0.271 t0.2eS t0. Z51

AIII. lrM. 1,.67+ 14.662 1+.613

t Vl4_J. *. O'JI 4. o$e 4.0_?
10.407 i0.414 _.,20

All. VoL 1_.410 i¢.*et )4.,72

10.5J6 _o.s.] to.s4?

Aal. V*IL t*._12 14.J03 b4._,

Vele_:ity *. _2_ +. 02_ .. 02+
M_I. VOL _*.133 1+.129 1+.+2_

t VeLo_t7 4.009 *.o_e +.co?

VeLoeK_ ]. _._ J. 992 3. _9_

_ _ V_ ...............
AmI. VeL sJ._6 13._;a 13._0

11.191 tI.19? 11.2_4

Aal. yld. rJ.*_: 13.467 _1,*_9

i ...............11.3_*3 T1.310 11.31_.

._1_. VIL. 13.1111 _1,1to ll,l_

t Ye|_Jt7 $.915 3,_5 1.9_,*
P_ISQ(I 11.590 1_.57£ II,&03

I Yela_t7 s. too 3. _oo J. 39_
_ll't_ 11.73,+ 11.73o i_.?;1_

PI_rtoo _1.85i _1.1_.5 I_.072

m' _,,-,o+ ...... I.: ;_+......

L _1, II

V*|°¢++t7 _.e*;+ ?.+J¢_ ).e*_

yeloetty 3.03'I _,83 "_ ;._27

YeLo_lt7 3.1¢0 3.800 _.799

_,olo_ 3.7lit 3. ?Ill ]. 715
/ml[, VI,L _1.760 H._2 11.7_

I _11100_ 3. 773 3, ??2 3. ??2

Y41Zoel_ s, ?60 _. 73,_ 3,750

I _3.09_ _3.o_e _3._05
V'II'_I

I Yll_,_l_ 3, ".1.6 3. ":+S 3. ';'.15
Aml. Ve L 11.397 M.,151 1_.3115

_111_ 13.3T_ 1|.,1711 _3.]_5

I VMoe_7 3. ?30 3. "P=O 3.719
_lml 1_1.511 1J._10 13.535

I VMaW_ 3. _07 _. "rOT 1. ?0_

i Y411LOml_ !, 49_ 3.6_* 3. _ _1
Period _3.?,_4 _3.eOl 11.eoe

It _ '7111. 10.,32 _0.927 10._2_

i yl4om_ 3.6_ 3.401 3.681
13.*|G $1.+J41 13.9!10

I V_oeat7 ,1.670 3. _5 3.1.6•
l_rt_d _6.o71 +4.01_ _4.0_3

MI. V44. i0.711 _o.?o_ _o.'_01

I V_ 3. I,S? 3 • 4+57 1.6_*
94,321 14.130 _4.315

VeL _0.60,1 _0.598 _O.s_J

3..t1_1 L?_e 3*?t? .1.716 3..116
13.5.12 1.1.$39 131.541 13,_eJ4 11.561

t1.1*.1 1_._3I It. IPJ 11.,24 ++.,_0

.1.?05 3.'_05 3.?01 3.?0,+ .1.70J
t_+67.1 1.1._51 +J.6141 ts.65,_ 1.1.7o2

_!.o3o i1.o27 11._+? 11._11 i_,o¢++

3.6'_.1 ?._97 3.69"4 3._51 J.6*o
iJ.ii5 1,1.532 +_,I29 tl.l_.+ I].e*3
+o.915 io._o ,o.9_ 1++.19- Ioi_3

,1.4oo 3._1o 3.67'1 3._1o 3.+,711
13.+)57 13.<J<;,1 1,1.9';1 _3._?t 13.9115

_o.eo4 1_.79 +) io.?13 _o.'_oe IO.?m3

.1.665 3.+,6? 3.66? .1.6_ .1.6_.s
+4._oo i*.+o? 16.114 1,i. 13, I,*.131

io.655 io._9o+ to.(,414 io.675.1o.674

.1.+,ss 3.65I ].6oi 3.654 .1.(,53
i,i.24_ 1<,.3_1o 14.3.j? 14.26. 1,.371

io.siI lO._kl2p *O.$?T tO,'J?2 I0..5t6

M_ IJ. M_ IN. IIK I_L

4+C,,_4 *.061 4.O62 *.061 *.O6O **O5*
_0.]&I I0.?'_ I0..1ei lo.3e. • _0,_+ I0.*01

I*.5.* 14,5.PJ 14.53,, i*.517 _*._00 _*.*,!_

4.04_ *.O*6 4,,_45 *.[>'14 *.0.3 *.04.1
i0..,91 i0._0., i0.5+_ +O.5+? _0.523 _0.s_o
i+.._5 1,.J_k_ i*.3+? t*.3_I +*.J]0 ++.:12+

• .0._0 ,1.029 *,02_ *.031 _.0_? *.03t

i'1.t90 l*.le, i.._72 14.T_. ,*,i75 +*.+'16

+.0_+ _i_ ..01_ *.OP_ *.oll ,*.0_0

z._gI _,_ ;.?_, ]+_5 3.,_95 =.99*

_._,12 _.9ei 3.9t0 J.9_9 _.979 3.9"_I

3.,,+ _,+, ,............ .1 5.,,+
It.151 ,11-_• I_._,.* 11.,71 _+._71 ,I.l_
15.533 13._15 Ij.507 13..9S tJ.491 _J-'11_

Y.5_ _,ss0 J.94_ 3.94e _._? 3.*47

11.:15 _.2_? ,_.29-, I_._ _1.tso _i.?+7
13.3,.+ 1_.J,_ ,_.3.._ pJ.34_ ij.]33 +3._;5

ii.41t II.43_ _i..29 I+,.36 i+.*,,] _+.**'#

J.50s ;+_0. ]._03 )._0.1 L_03 3.901
tl.6e_ 11+_oo lq._,_? 11._07 11.710 _t.?i_
12._n_ 12.9_0 _.I'_? 17.ti5 1?.i?.t +3.e_.o

_l.|le _,.i=* _.o_t _i.,3i ll.e*S 11.a51
13,760 ,2.?._3 Iz.?*t 12.73e _3.731 iz.'2*

3+e75 J._'_5 _.eT. J._?3 .1.173 3._z:
TI.95_ 11.?_9 1_._._ _l._?J 11.950 i+._16

+2.ti¢ _z._,o_ +2.,,o3 _2._5 _.?oe 13. e0_

12,.75 ,_..,_e +:,._i sz._. iz.**.t _3.*+_

?.3'1 • 3.?_ I '_'_ ]9_4 T._,+4 ?+e*_
I?.;;* ;z.._1 ';.._'_ ,z,:** _.25' _3.:fe

_. _x, _ ixr 118. _s¢+

_2.200 I:.r_* ':.11"? ':_ _35_ _3.173 '3"'_?

I,.5,1'_ i_ a2_ ,_.-22 +1.9++, +_,90_ 11,905

,1. 791 _. 7,9o 3. ?ll'_ 3. _115 ]. "rill s+?I?
+3,773 _Z,'.'+'* +2,73(. '2.?_3 _z.lm¢ _2.I0_

11.110".' _I._00 +,.79,+ it.7+17 +i.'r31_ ts..tTS

J.777 3.'?t 3.?'Pt S.775 3.?'++* :1.?74
_2.9t1 _2._18 12,?34 t:,931 12._,1I 13.9,+?

11.610 11._74 _.6+17 t_,6&l II.&IS _1+64q

11.55+, 11.550 11._143 li.5r37 It.SPI 11.8,"$

J.750 .1.?_0 3.?*_ 5.?+1 3r.?+l 5.T,I'_

1.1,1R9 I_,11_ 1.1,30.1 IJ,2)0 ?_1.,117 1S,3_
11.4.14 11.4.1_ 17,4_3 11,47_ 11,6011 lf,4U3

3.737 3.?.r/ .1,?J_ ;I.?.15 _.?_S .1.?54
13.T/9 13.]_ 1.1..1"3 13.3_0 _3._31 1].$6_

3._34 .1.72J _.733 3.*13_ 3.733 $.'r21

13.44.5 13,476 13.483 13,49Q t3.457 13.1O4
II.I_PG 11.11310 t1+114 It.t?l 11._?_ 11_167

.1.?II 3.711 .1.710 3.?at .I.?05 ,1.?oi
_,1.6_0 _3.6_? 13.65. t3.S,11 t.1.1klI +3.4_5
_t.O00 11.074 11.04o 1t.o6.1 _1.0_? 11,0_

_3.751 _.1.751 +3.715 _3._72 1J.'_O0 t3.?e'r

3._;_N_ J*6_J 3.6115 3.604 ].SII _.1.413
?_.1_9.1i 13o500 13.507 13.514 1.1.921 13.1)_9

1.67.1 .1.67.1 3.4;15 3.673 .1.671 5.6";'0
14.0.1_ 14.04_ _'1*_J0 1_*057 14*_4 14._?t
10.744 10.T39 V0.73.1 10.738 10.753 10.717

14._131 74.329 14,33¢[. 14,343 t4.3_0 _4,357
10.53V +0. S24 IO.S_9 io.5_4 to._oI _0.8o_

Velocity --- Velocity In Kilometers per _eoncl

Period --- Period in Hours

An&. Vel .... Angular Velocity in Radians per Dsy
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TABLE 9 (continued)

14._!9 I*.525 1..561 '*.•'0 T4.124 14+100 I*._ '4.94]" +.9_¢ !_ _*0' _I.002
tO.;++ 10.241 _0.]10 10.191 10. t46 I0.+*S 10. It6 10.0_2 10.04• +O.O4] +0.Oil

11.*11 s_.*55 _5.45] 15.539 U_.566 IS.C.OJ _5._*0 _5.+56 15.512 15.7_O .0._10
_.?10 5*?S? 5o_34 5.?_ 5 411 5._5 9.44] 0.015 9.5,? 9*S?, 0._

5.500 3.50_ 3._09 2.'95 ].*'* ]..51 ).405 2*40_ 3.*03 $.dl I.*51

I.?I_ e.r)4 1.17_ _.5_• I.I]? I.e_? +._sl e.•?l 1._55 5.530 0.72o

3.+02 ).3_9 ). _95 I. J9* _. 392 ).309 ). Jgr_ 3._14 3.;52 _._10 _.555

1.034 e.513 5.45,1 8.'176 5._5• 11.435 +1.424 11.40] I..tl5 5.165 0._1,5

;'O.¢J_'J 20.o?_ ;OmiT5 ._o+_55:0.156 _0.;3¢; ;0.3?+ 30. Yi+ _.31_'-2'v.-'J_l_.x'_

5.43_ J.+_? 2.1JS 2.123 3.13, 3.iZ9 J.125 _.*]4 3.12, 3.132 5.+2O

2_.+_ 23.512 22.5?3 2].6_5 ]_.4_ 2].+09 _5.?+0 2_._1_ 32.4]* 32.%+ 22.+01

5. 044 3.042 ].04_ J.o_5 3* 05? 3.059 _. 05* S.0_ 2. 050 2.0*I ]. 0*4
_,.155 24.z_l z*.zI* _*.J0+ 24.245 2_._] _.*_S 2*.*_1 24.]21 _*.54, _*_o?

I _ _.,?G _._ :._?_ =.5?+ _._?0 z._ ;,9_ :.+,_; ;+_3 _,_i
AmS*T_. 5.514 5.?_ 5.6_ q.4e_ 5._56 _._ 5.+_ -._*_ 5,_ _._

I Ve10eSIT z._+ 2._4] _._40 z._]_ _.,37 z.9_ 2.9;* ;._,_ ,._2_ 2,_
]?._4 25.111 2_.24J 27.*O? 27..5z _.*% z?._*v _.s_ _._0 27._

_mi_ve/. 5.529 5.5_0 _.015 5.5O2 5.*_2 5*+5* S.*t_ _.*_+ 5..51 I.+*_

• d+ . +.J_4 S.]_e +.214 s.;l_ %_o3 +.++* _.._e.: i.;41

i V@_AI_ 2.M] |.IIQ _.I?S _.175 2.076 2-+54 3.17] 2.d71 ._. m _'o ._. 6412
Pllt0d 29.0_] .+,._+? 2e.++_ _9.201 29.:+* :+._9 Z_.3*'+ 24.3_0 :+..34 :_.++l

AII+y*I 5*;55 9.1_ 5. q?s 5.14] 5._5 5.+*? 5..2, 5.;31 S*;;2 I.IT5

,..+ ...... . ........................................
_._ _,0]I _.0?? ]0.123 20.14e _._15 20.221 3o.2o? ao._3 _.],+

_._9 S.0_1 5*01* 5.00_ 4.o91 4.+_V *.91_ *.974 +._l +.940

i Vio_l_ ]._] ].12] 2.I]1 ].II, 2.111 3+I16 _.115 2.11+ _.I12 3.111
As_# 1_ 4.17_ 4.1_] 4.1_4 I.IPJ_ I.+ +.llJ 4.1_s l.+_l 4.121 +.ITI

I _ ].?tNI 2._4 ].7_ _.?_ 2._e0 2.585 2*517 ].?14 ].?15 2-513

.,t.l_+ ]I.IM 31._']2 ]l.gl0 32._25 32.Q74 33. i+I ]3*141 $2.315 ]].2_
" AB_.VsL 4;T]4 4.T'_l 4,72_ (.715 4._01 4*?02 4.ITS 4.+n +,fSkt +*It+

]3.PII0 _.IX ]]*155 3].923 32.5?0 ]J.01? 33. o114 _J.112 2].155 ]].]OT

lh4. +._oo 4*Sit *.45_ *.Se0 +.55+ *._+? +.+_41 *.SS* +.5.1 *.5*1

]].T)0 32.?741 3].124 $3.174 3].9]2 33._6_ 34.01? 34.0i$ ]4. II3 I4.161
4 • 1.414

i v_ 5._,+ ].?,4 _.+,, _.;,J ]•,: _.?,, a.?o+ :.?o* :._o? z._o*
AII_YlI. 4._15 6*_,t *.]]5 4.325 *.]Z] **Jr? 4.214 *+)o_ **_._ *.253

I _I_ ]*40] ].611! 2.150 2.4041 2.6417 _.4_ _.415 ],+o* _,_4m2 _.681IS.I_Sl 30._1_ 35.?45 ]5.10+ 35.105 _._o1 25.9_0 3s.9,1 34.o*? _.o%

_1 As_.Ye&. 4.2_) 4._23 4*]IS 4*]1] 4.204 *.2eg *.11_ 6.1o9 4.10] +.171

i v_ _.,,, ].**? 3.,,, :.,,, _.,,_ 2.,,= 3.,,, ].,,o 2.,5, ,.,0,]6._14 X._kl _.52] ]+.•12 24.IJt J_.510 3u. 52, ]+.94e j7.040 37.050

_i_ 4.tll 4.111 4.10_ 4.100 4.094 1.0_9 4.013 +.071 4.0?] 6.0_?

I AI_ _ 4.g_4 4*00] 3.9_1 ]*9+] ]._? 3.'I2 ].5?7 l.,?] l._? ].461

I llk_ ]._2 ].+_0 3.415 _.ill 2.415 _.611 ].415 ].61, ].64_ _.klli _1.014 ]_*1_4 J_1.714 31.•46 JO. It4 311.M4 ]I.014 J0.944 35.015 3@.0_5

AIE. I_. ].I0S ].I_0 3.190 ].190 ].115 ].N0 ].I?S 2oI_0 ]*I_S 3.140

, _ ].. ,. ........... .. ...... ,o, +.5,+,.+ ....
I Im.lml ]+.417 ]_._4_1 ]9.510 35.?45 _.019 _*1%, ]5.5_0 PI.950 40+020 00.071

VIi. ].100 2.1OI J. 5115 J.593 2.5117 2.512 ].??? 2.?73 $._o ].74J

Velocity --- Veloc/ty in Kilometers per 8]cored
Period --- Period /n Houri

AnI. VeL -*. _ Veloc/ty/n Radians per Day
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AltitudeVelocity of a Satellite in a Circular Orbit as a Function of

(English Unit - see Table 9 for Hetric Data)
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A. INTRODUCTION

The Keplerian relations, as discussed in

Chapter III, give convenient approximations for

use in preliminary orbit computations. However,

in order to obtain precise earth satellite orbits,

the various perturbing factors which give rise to

accelerations (in addition to that of the central

force field) and cause the motion to deviate from

pure conic form must be considered. These per-

turbative accelerations may be due to the mass

asymmetry of the earth, the gravitational attrac-

tioa of other bodies, atmospheric drag, electro-

magnetic drag, radiation pressure, thrust, or

may be required to account for relativity effects.

These factors affect the motion of the satellite to

a varying degree depending on the shape and

mass of the satellite and the type of trajectory.

Special perturbation medlods involve the

formulation of the differential equations of mo-

tion in such a manner that the computation of an

orbit is achieved by numerical integration. The

perturbation method to be used is determined by

the type of problem that is under consideration.

Similarly, all combinations of integration tech-

niques and perturbation methods are not equally

suited to the solution of a particular problem,

even though the use of such combinations is pos-

sible. Because numerical integration is subject
to the inevitable accumulation of errors which

eventually destroy the validitl. of _he results,

special perturbatzon methuds ace res_±zcted to

the prediction of earth satellite orbits for times

dependent upon the desired accuracy, the for-
mulation of the problem and the number of digits

carried in the computations.

One source of error in the numerical integra-

tion process is roundoff error, resulting from the

limited number of digits which can be carried in

computation. The roundoff error is not reduced

by double-precision computation where tabulated

values to be interpolated at each integration step
are known to less than single-precision accuracy.

This error obviously increases with the number

of computations, which in turn increases with
decreased integration step size, Roundoff propa-

gates through the numerical integration so that,

assuming a normal error distribution, the absolute
error incurred in double integration is

(the product of the number of steps and

the original roundoff) 3/
2

A second source of error is truncation. This

error arises because of the finite polynomial

approximations in the integration formulas. Since

the terms in the polynomials involve powers or

differences of the integration interval, the trun-

cation error can be reduced by choosing a smaller

integration step. Therefore, increasing the num-

ber of integration steps decreases the truncation

error, but increases the roundoff error.

B. SPECIAL PERTURBATIONS

1. Perturbative Forces

The equation of motion of a perturbed orbit is

of the form:
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r = -/_ --_ + F (1)
r

where F is the sum of the accelerations due to

the various perturbing forces. If_ = 0, there

are no perturbations and the motion is Keplerian.

If the position coordinates of the vehicle and

the perturbation accelerations are given in rec-
tangular equatorial coordinates, Eq (1) can be
written:

'' X _oox = -U -'-j * x i, x--y, z (2)
r

1

where x i is the sum of tile perturbatien ac-

i

celerations. These terms are discussed in the

following paragraphs.

a. Vinti potential

If the earth were homogeneous in concentric
spherical shells, its potential would be that of a

point mass. The effects of the flattening of the

poles and lack of symmetry about the equator,

however, manifest themselves as per'_urbati,:e

forces on satel_._tes in the vicinity of the eart!_..
The acceierat-on due to :he oblateness of _:-_e

earth can be written in a simple form attributable

to J. Vinti of the Natlonal Bureau of Standards:

x = --_ 2 1-5
r

Z Z

J3F 3 - 7 --,y
r"

+J4 3+ 42_ - 63 zr

+ J5 _ -693 r-_ + 630 7- 105 +...

(3)
=o oo

y = x X
X

z = --_ 2 3-5
r

+J3 _ r

+J4 15+ 70 7 - 63

+ J5 _ 5 - 315 7 + 945 z
r



where J. are the harmonic coefficients. Since
1

the earth is almost spherically symmetric, the

Ji are all small compared to 1 (see Chapter II).

b. Perturbative terms due to remote bodies

The perturbative terms due to remote bodies

which can be considered as point masses can be
written directly from the integrals for the n-body

problem as developed in Moulton (Ref. 1) and in
other texts on celestial mechanics.

n

x = _i -

i'= \ rAi

n

n

\ rAi i -

where rAi is the distance from the satellite to the

ith body and r, is the radius from the center of
1

the earth to the ith perturbing body. For the case
of an earth satellite, lunar and solar attractions

are the major sources of perturbations for short

term orbits. The order of magnitude of these
perturbing forces may be observed in Fig. 1.

(Subsequent discussions appear in Section C of
this Chapter. )

c. Thrust

If thrust is applied, it may also be handled

as a perturbation, The general procedure, how-

ever, for large thrust-to-mass ratios is to treat
the thrust periods in a different fashion by con-

sidering the vector sum of the thrust and central

force terms as defining the reference trajectory
rather than the central force term alone. Since

the thrust vector is determined by the maneuver
requirements and the guidance law to be utilized,

no analytic solutions are available for this ref-
erence trajectory; thus, numerical integration is

necessary. Indeed, no single form of the per-

turbing acceleration can be written other than its

resolution in terms of generalized vectorial coro-
T T T

x ....Z. and z
ponents; for example: --_--, m m

d. Atmospheric lift and drag (Ref. 2)

I["= D02 _2 'y (v) a (H) ¥ (a) v .--,2-s

.
v _'x sing

+ x _" x cos _.y,_'
X

(5)
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where the vehicle velocity relative to a
rotating atmosphere with cross winds is

given by

V
X

v

Y

V ---
Z

where

_+y_e + q(cos a sin#' cos

+sinasin j)

- x_e÷ q (sin a sin _ ' cos

-cosasln2)

- qcos_' cos

A constant fitted to the Mach

number variation of the drag
coefficient with a mean sonic

speed = 1

A 0 Initial projected frontal area of
2

the vehicle, m

constant fitted to Mach number

variation of the drag coefficient

with a mean sonic speed

C s D_D_ ° -I)

CDo =
reference (hypersonic continuum)

value of the drag coefficient (0.92

for a sphere, 1.5 for a typical
entry capsule)

C L = lift coefficient

C -- local sonic speed in terms of sur-
s. face circular satellite speed

D02 =

f(r) =

go =

H =

A0 P0 VC02/2
CD 0 g0m0

/_ 0 D02 a¥(¢)

acceleration of gravity at unit dis-
tance (surface of earth)

altitude above an oblate earth - r - 1

f' (.'-- _)+fsinZ¢ ' +_- - sin22¢, +...

where the flattening f - _-_ (units

of earth radii)

m • mass of space vehicle (kg)

= unit vector in the orbit plane perpen-

dlcular to the line of aps ides

q • speed of the cross wind measured in

a system rotating with earth' s angular

rate (units of surface circular satellite

speed VCO )

r = radius from the geocenter to the vehicle

-_ • speed of the vehicle with respect to an

inertial frame, directed along Q



VCO"

X, y, Z =

Surface speed for circular orbit--
7905. 258 m/sec

equatorial coordinates in units of

equatorial earth radii

right ascension of the vehicle (radtans)

fi = azimuth of the direction from which

the wind is coming

_(v) -- CD (V/Cs)/CDo, the drag coefficient

variation with Mach number

'l(_) = C D (or)/CD0 , the drag coefficient varia-

tion in the transitional regime

_e = constant relating to the rotational rate

of the earth, 0.058834470

U ' = m 0/m

= bank angle

p = atmospheric density, kg/m 3

• f!
PO "sea level atmospheric density,

I. 225 kg/m 3

0" - P

P0

_' = geocentric latitude, radians

e. Radiation pressure

A body in the region of the earth is subjected

to solar radiation pressure amounting to about

4.5 x 10 -5dyne/cm 2, the order of the force being

the same for complete absorption and specular

reflection of the radiation. Radiation pressure

is an important source of perturbations for satel-

lites with area-to-mass ratios greater than about

25 cm2/grn. The effects of radiation pressure

on lifetime are discussed in Chapter V and also
in Section C-7 of this chapter.

The rectangular coordinates (X-axis toward

vernal equinox) of the accelerations are:

°° 1x = f cos A e

y f cos ie sin A

oo

z f sin i sinA eJ

where:

(6)

i = inclination of the ecliptic to the equator,
e 23. 4349 °

A = mean right ascension of the sun during
e the computation

f = 4.5x 10-5 (A_ cm
--_.

SeC

f. Electromagnetic forces

As a satellite moves through a partly ionized
medium, the incident flux of electrons on the

satellite surface is larger than the ion flux, so

that the satellite acquires a negative potential.

On the day side of the earth, this effect is op-

posed by the photoejection of electrons, Jastrow

(Ref. 3} estimates that the satellite potential may
approach -60 volts on the day side and will not be

greater than -10 volts on the night side.

In addition to the potential acquired by ionic

collision, the motion of a conductlng satellite

through the magnetic field of the earth causes

the satellite to acquire a potential gradient which

is proportional to the streng-th of the magnetic

field and the velocity of the satellite. The inter-

action of the electric currents thus induced in the

satellite skin with the magnetic field causes a

magnetic drag to act upon the satellite; this drag

is proportional to the cube of the satellite din_.en -
sions.

If these forces are found not to be negligible.

they can be included directly by the use of Max-
well' s equations or indirectly by use of an at-

mospheric model which takes the effects into ac-
count.

g. The effects of relativity

P_rturbations caused by relatlvity are of the
2

VO P , where c is the speed of
order c_ = --'2- = ---_

C rc

light. Since c_ is a very small quantity and any
measurable deviations occur only after a long

period of time, relativistic effects can usually

be ignored in the case of earth satellites. A mod-
ification of Newton's law as a consequence of the

theory of relativity can be found in Danby (Ref. 4).

Substitution of these perturbative accelera-

tions (a through g) in Eq (2) yields the complete

equation of motion.

2. Special Perturbation Methods

Three special perturbation methods currently
used for computing earth satellite orbits will now
be discussed with an evaluation of the main ad-

vantages and disadvantages of each.

a. Cowell's method

In Cowell's method, the total acceleration,

central as well as perturbative, acting on a

satellite is integrated directly by one of the
numerical integration techniques (Section B of

this chapter). The equations of motion which

must be integrated twice to obtain position co-
ordinates are:

oo-x = - + x i, x--y, z.

1

These equations are symmetrical in the rec-
tangular coordinates and are simple in form;

they apply to elliptic parabolic and hyperbolic
orbits, and require no conversion from one co-

ordinate system to another.

\
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A disadvantage of the method is the large

number of places which must be carried because

of the large central force term to prevent loss
of significance for the small perturbations. Also,

since the total acceleration, which is subject to

fairly rapid changes, is being integrated, it is
necessary to use a smaller integration step to

maintain a given accuracy. This requires an

increase in the number of integration steps and
the inherent roundoff error accumulation. De-

tection of small perturbation effects such as

those caused by radiation pressure may be im-

possible due to roundoff and truncation errors.
Cowell's method is especially useful when the

perturbation forces, such as thrust, are of the
same order as the central force.

b. Encke's method

In the Encke method, only the deviations of
the actual motion from a reference orbit, which

is assumed to be reasonably close to the actual

orbit, are integrated. Usually a two-body ref-
erence orbit is used since the position at any time

on this orbit can be determined analytically. How-

ever, more complicated reference orbits such as

Garfinkel's solution (Ref. 5), which is known

analytically and which incorporates some of the

oblateness effects in the earth's gravitational

potential, might be used on an earth satellite

orbit.

Let x,y. z denote the actual position of the

satellite ana x e, Ye' Ze the position on a Keplerian

reference orbit.

The equations of motion in an inertial frame
of reference are then:

= - _ + x i x--y,z (7)
1

X

•" = e (8)
x e -t_ --_ Xe "_"Ye" Ze

r
e

Let the deviations from the reference orbit

be _, ;7,_ so that:

= X-Xe 1

77 = y- Ye (9)

= z - z e

Differentiation of Eq (9) and substitution of Eqs

(7) and (8) into the result yield:

.. .°

x-x e x-*y,z for _ -'n,_

= /._ - + X i

e i

IE= x -o + x i

1

(lO)

Because of the possible loss of significance in
subtracting nearly equal quantities in Eq (i0), it

is necessary to rewrite Eq (10) in better compu-
tational form.

Substitute Eq (9) into the defining equation for
2

r :

2 x 2 y2 2r = + + z (11)

: (xe + _)2 + (Ye + _)2 + (z e + ()2 (12)

2
= r

e
+ 2 [_(Xe+ ½_) + rT(ye+ ½ U)

+ _(Z e + ½ _)] (13)

Define q to be:

I [¢ + _)÷,_7(yeq : ----2-. (Xe .
r

e

+ _(ze+½ o]

÷½_)

(14)

So that Eq (13) becomes:

: i + 2q or : {! + 2q) "3/2 (15)

Encke's series, using a binomial expansion, is

defined by:

2

=, 3J.

: k=l_(-l)k-I _(2k + i): qk

= fq

-1/2 < q < 1/2 (16)

Substitution of Eq (16) into Eq (10) yields Encke's
formula:

oa_':-_ (fqx-¢)+ xi (17)
r

e 1

This equation, which employs series expansion,

yields more accurate deviations when the terms

are small. When the terms exceed a certain

limit, a process of rectification is initiated,

that is, a new reference orbit is computed. The

limits on q needed for rectification are estab-

lished as:

n+ I

[2[ TIql < r e \a--_l/J (18)

where A%" is the allowable error in 6" and an+ 1 is

the coefficient of the first neglected term of the

Encke series.
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In contrast to Cowell's method, only the dif-

ferential accelerations due to perturbations are

integrated to obtain deviations from a two-body
orbit. These deviations are then added onto the
coordinates of the satellite as found from the

two-body orbit to obtain the actual position of the
satellite. Since the deviations are much smaller

and, therefore, need not be determined as ac-

curately, it is possible to maintain a given ac-

curacy with larger integrating steps. As a con-

sequence of the larger integrating steps, there

is less danger of serious roundoff accumulation.

Moreover, the integration errors affect only the
beast significant figures in Lhe devlations and,

when added to the much larger positions deter-

mined from the reference orbit, should have a

less serious effect on the overall accuracy. Al-

though the roundoff error is less, Encke's

method involves expressions that are much more

complicated and often less symmetric than

Cowell's simple formulas. In addition, both the

necessity of solving the two-body formulas at

every step and the possible need for rectification

introduce additional sources of error. In the

former case, the frequency of rectification af-

fects the attainable accuracy and also introduces

small errors in the determination of the mean

anomaly M. For the case of nearly parabolic

orbits, errors in the use of the two-body formu-

las in an unaltered form are especially critical.

This is due to the fact that when the eccentricity

e "_l, and the eccentric anomaly E is small, can-

cellalion errors arlse in forming the radial dis-

tance r = a (i - e cos E) and ti_e mean anomaly

M = E - e sin E. In addition, small division er-

rors will be introduced in forming p/a = (1 - e2).

The Encke method is especially suited to

problems in which the perturbative accelerations
are not large and have their major effect over a

limited portion of the orbit, e. g., lunar and in-

terplanetary orbits except microthrust or long-

thrust trajectories.

c. Variation-of-parameters method

The variation-of-parameters or variation-of-
elements method differs from the Encke method
in that there is a continuous set of elements for

the reference orbit. The reference motion of the

satellite can be represented by a set of param-

eters that, in the absence of perturbative forces,
would remain constant with time. The perturbed

motion of a satellite may thus be described by a

conic section, the elements of which change con-

tinuously. The variable Keplerian orbit is tan-
gent to the actual orbit at all times, and the ve-

locity at any time is the same in both orbits.
This reference orbit thus osculates with the ac-

tual orbit. The variations in the elements used

to describe the osculating conic can be integrated
numerically to solve for the motion.

Any set of six independent constants can be

utilized for this purpose though it is conventional

to use the geometrical set a, e, Tp, ,% f_and i.

Lagrange's planetary equations, which specify

the variations for this set of parameters, are

derived in Section C of this chapter.

It is also possible to choose a different form

for the reference motion. As in Encke's method,

Garfinkel's solution which includes part of the

perturbative forces caused by the nonspherical

shape of the earth might be employed. If the

drag force predominates, as in the case of entry,
a rectilinear gravity-free drag orbit as applied

by Baker (Ref. 6) can be used instead.

Many variation-of-parameters methods have
been proposed including those of Hansen,

Stro'mgren, Oppolzer, Merton and Herricko

These methods differ in the choice of elements

or parameters and of the independent variable.

Of these, the parameters suggested by Herrick

(Ref. 7) will be briefly described here.

Let x , y_ be rectangular coordinate axes

in the instantaneous orbit plane with x the

axis along the perigee radius as shown. Let P

be the unit vector in the orbit plane in the di-

rection of perigee, (_be the unit vector perpen-

dicular to P in the direction of motion along the

y -axis and W be the unit vector normal to the

orbit plane in a right-hand system.

The parameters selected by Herrick for or-

bits of moderate eccentricity are vectors A(t)

and B(t), the mean anomaly M and the mean

motion n. The vectors A and Bare defined by:

f --eP

B

M = n(t - t O)

Z

X

n = ke_a_

where

a = semimajor axis

e = eccentricity

p = semilatus rectum

k e = G_

_Y
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The differential equations in the parameters
have the form:

t

X Xo+ke
t o

_.' dt

t

t o

t

n(t) = n 0+ k e _ n'dt

t o

t

M(t) = M 0 + n O (t - t 0) + k e_ n'dtdt

t o

t

+ k e _ M'dt

t o

and the perturbative variations A', B', n', M'

are defined as:

B
D = e 4a sin E = r •

¥ p

=
H = e x - r • i_

+ + zF4-J-o'°r. { : x z

,. );_--dT- a_- Fx + Fy + _- F z

2
r

H' = 2 DD' - --

dH' D'
"8"t-- -- _£fi- "7-

dD'
?T

_--d 'r._. _ --_'drH'-FH

e2_-v' = A. B' --AxBx'+Ay By'+Az Bz'

ZD
3 na dD'

The Herrick elements must be related to the

rectangular coordinates and to the usual elliptic

elements because the perturbative forces F are
given in rectangular coordinates. It is thus
necessary to go through the two-body formulas at
every step, as in the Encke method, and through
some complicated conversions as well.

The essential characteristic of this method is

that the integration is carried out on parameters
which are much more slowly changing functions

of time than rectangular coordinates. Since they
vary slowly, the error accumulation from the
calculation of the derivative is, for a long time,

far beyond the eighth significant digit of the
initialcalculation. Thus, it is expected that
truncation error would appear only for very large
intervals and much larger integrating steps can
be taken for a given accuracy. Since in this
method a system of first order equations is
being integrated, there is less danger of round-
off error accumulation. A disadvantage ts that

the programming and numerical analysis in-
volved in this method are the most complicated
of the three methods discussed. Because of

this. the computing time per integration step is
at least twice as long as for a Cowell method.
The Herrtck formulas given here lead to special
difficultieson low eccentricity orbits because of
small division problems. Similar difficulties
arise with other variation-of-parameter methods
for low inclination orbits, as well as for hyper-
bolic and parabolic orbits. Such cases all re-
quire special consideration, thus detracting from
the usefulness of parameter methods as basic
integration tools. A new method due to Pines
(Ref. 8) is apparently suitable for all earth
satellite orbRs. The variation of parameters
method is primarily applicable to missions in
which small perturbations act throughout the

orbit, e.g., microthrust transfer.

C. METHODS FOR NUMERICAL
INTEGRATION (REF. 9)

Of the factors affecting the choice of an in-
tegration method for space trajectory calcula-
tions, the two most important are speed and ac-
curacy. Other factors, such as storage require-
ments, complexity, _nd flexibility, are of sec-

ondary importance with most modern computers
such as the IBM 7090. A good integration sub-
routine should have £he following features:

(1) It should permit as large a step-size as
possible. Thus, higher order methods
should generally be given preference
over lower order methods.

(2) It should allow for the automatic selection
of the largest possible integrating step
for a requlred accuracy. The procedure
for increasing or decreasing the step-
size should be reasonably simple and
reasonably fast.

(3) It should be reasonably economical in
computing time.

(4) It should be stable; that is, errors in-
troduced in the computation from any
source should not grow exponentially.

(5) It should not be overly sensitive to the
growth of roundoff errors, and every
effort should be made to reduce roundoff
error accumulation.

Some of the more commonly used integration
methods are compared in detail on the basis of
these criteria.
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1. Single Step Methods

Of the various Runge-Kutta methods the Gill

variation is most popular. It was devised to re-

duce the storage requirements and to inhibit

roundoff error growth. There seems to be little
reason to choose the Gill variation over the

standard fourth order method when modern com-

puters are available, because the Storage savings

are insignificant and the roundoff error control

can be achieved more simply and more effectively

by double precision accumulation of the dependent
variables.

The process of double precision accumulation

can be used with any integration method. It is

extremely effective in inhibiting roundoff error

growth and very inexpensive in machine time.

The process consists simply of carrying all de-

pendent variables in double precision, computing

the derivatives and the increment in single pre-

cision, and adding this precision increment to

the double precision dependent variables. For

integrating a single equation of the form Y' :

dy/dt = f(t, y), the formulas for the standard

Runge-Kutta fourth order method are

kl = hf(tn' Yn)

= + Yn +

(continued)

k 4 = h.fx(t n+ h. Yn + k3)

Yn+l =Yn + _(kl + 2k2 + 2k3 + k4)

where h denotes the integration step-size and n

denotes the integration step.

Runge-Kutta methods are stable, follow the

solution curves well, have a relatively small

truncation error among fourth order methods,

and do not require any special starting proce-
dure. However,

(I) They tend to require more computing

time, since four derivative evaluations

per step must be made compared to one

or two for other multistep methods.

(2) The usual fourth order methods restrict

the step-size for a required accuracy.

(3) There is no simple way to determine the

local truncation error and. as a conse-

quence, it is difficult to decide on the

optimum step-size for a required accu-

racy.

Various suggestions have been made for over-

coming this deficiency. The same trajectory

could be integrated twice: first with step-size

h and then with step-size h/2. The difference

between the two values at a time t can then be

used to decide whether the step-size should be

increased or decreased. This process involves

three times as much computing and, therefore,

cannot be seriously considered. The simplest

method, proposed by Aeronutronic, is to integrate

over two intervals of length h and then to re-

compute the dependent variable using Simpson's
rule,

yn(S)l h--Yn- 1+ 1+4y + 1)

The difference between this value and that

obtained by the Runge-Kutta method at time

tn+ 1 is then used as a criterion. This pro-

cedure is relatively simple and inexpensive, but

there is no mathematical justification for it.
Any decision to change the step-size based on it

might be erroneous.

Other single step methods include several

attributable to Heun, the improved polygon or
Euler-Cauchy method, and a method employed

by C. Bowie and incorporated in many Martin
programs. Bowiers method is outlined below.

Xo = fo

Y0 = go

• h
Xh/2 = x0 + x0 _"

h 2
Xh/2 = Xo + iO _ + Xo W

Yh/ -: Yo+ Yo )'o h2W

l_h = Xo + x0 h

Yh = 2}0 + YO h

h 2
Xh = x0+x0 h+ kO-2-

h 2
Yh = Y0 + 3r0 h + 3;0 -2-

Step A

.o

Xh/2 = fh/2' 5;h/2 = gh/2' "Xh = fh' Yh : gh

Xh/2 =x0+_4 {5_0+8Xh/2 -Xh}

h2 (7 x'0 + 6Xh/2 = x0 + x0 _ + 9_ff _h/2 _h)

(7Yo+ 6Yh/2 = Y0 + 5?0 _ + 9"ff Yh/2
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xh

Yh =y0 +y0 h+ T Y0 + 2Yh/2

Step B

Xh/2 = fh/2' _;h/2 = gh/2' _h = fh' Y:h = gh

Xh =Xo+_ {_/0+ 4Xh/2+_h}

x h = x O+ 5 0 h+-6,- Xo + 2 xh/2

Yh =yO + _'0 h+-g-- YO + 2Yh[2

If the functions f. g do not actualiy involve _,

y it is clear that xh/2, }'h/2 need never be com-

puted and that :i h, jrh need only be computed at

the point they occur for the last time in the above
list.

It will be noted that the process as described

above involves two iterations and requires that

the functions f, g be evaluated five times. If

further iterations are desired, one simply goes

back to the point marked "A" when he completes

all the steps of the preceding page. Note that

Steps "A" and "B" are identical, though the

formulas immediately following them are not.

If the number of iterations are continued un-

til there is no (sensible) change, the solution is

exact on the assumption that "i and _ var[ quad-

raticall[ over each interval. Since this assump-

tion is exactly realized only in trivial cases (for

which it would be unreasonable to use any step-

wise method), the optimum procedure seems to

be to do only the two iterations as the list of

steps implies. Put another way: when the over-

all accuracy is not sufficient, it is better to
shorten the time interval than to increase the

number of iterations beyond two per interval.

2. Fourth Order Multistep Prediction-Correct

Method

Of this type, for a first order system y' =

f(t0 y) are the Milne and Adams-Moulton methods.
The Milne formulas are:

Yn 3
+ _ h 5 yV (_)

y(C) +_ (y_,+n+l = Yn -I 1

h 5 yV-_ (_)

"Yn _ i + 2Yn _ 2)

(20)

and the Adams-Moulton formulas are

y(P) +
n+l Yn + _[ (55yt_ ' 37Y'n= - 59yn-1 -2

-gy,;_3)+

y(C)
n+l = Yn +_-_ (9Yn + 1 ÷ 19y_ + i " 5Yn- 1

+ Yn- 2) -_ hayv (B)

For these methods, as well as for all multi-

step methods, special formulas must be used to

obtain starting values at the beginning of the in-

tegration and wherever it is desired to double or
halve. A Runge-Kutta method is the most con-

venient for obtaining these starting values. The

difference between the predicted and corrected

values provides a good estimate of the local
truncation error and this estimate can then be

used to decide on whether to increase or reduce

the step-size.

The Milne method has a somewhat smaller

local truncation error, but for some equations it

may be unstable (i. e., errors introduced into
the computation will grow exponentially) and.

while some techniques have been suggested to

eliminate this instability, it is probably advisable
to avoid the use of the Milne method.

(21)

The Adams-Moulton formulas are uncondi-

tionally stable and lead to a fast and reasonably

accurate method. Its principal disadvantage is
its low order of accuracy which restricts the

integration step-size.

3. Higher Order Multistep Methods

Variation-of-parameter methods lead to

systems of equations which are essentially first-
order in form as contrasted to Cowell and Encke

methods which lead to systems of second order

equations. For second order systems, special

integration methods are available.

Before considering these, the Adams back-
ward difference method applicable to first

order systems must be mentioned. If the sys-

tem has the form y' = f(t, y). the Adams
formulas are

N

(22)Yn+l = Yn + h akVkfn
k=0

where V k is the backward difference operator

defined by

vkf = vk-lf V0fn = fnn n - vk-lfn-l;

The first few values ofa k are (1, 1/2, 5/12,

3/8, 251/720, 95/288)for k = 0, 1. 2, 3, 4. 5.
If Nth differences are retained, the principal

part of the local truncation error is 0(hN+2).

If Nth differences are retained, then N + 1

consecutive values of Yi must be available, and
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these must be supplied by some independent

method. This Adams formula is of the open

type and. therefore, not as accurate as a closed

type formula of the same order would be. How-

ever_ it involves only one derivative evaluation

per step and this, combined with the smaller

truncation error, leads to a very fast, stable

integration method for first order systems.

The Adams method can be modified for

second order systems. Thus, if the system to

be solved has the form y" = d2y = f(t, y, y'),

the method consists of applying the formulas

N

Yn+l--Y'n+ h _ _kvkf
k=0 n

N

Yn+l = Yn + h y_ + h 2 _ 3k vkf n
k=O

I

t (23)

J
The first six values of a k are the same as those

given above, while the first six values of _k are

(I/2. I/6, 1/8, 19/180, 3/32, 863/i0080).

In contrast to the straight use of differences

as exemplified by the Adams method the Gauss-

jackson method m_kes use of a summation

process. The formulas may be expressed in

terms of differences or in terms of ordinates.

In ordinate form, predicted values for y at time

t = tn are given by the equations

n-i "_

k=O

n-1

(24)

k=l

where the first sums 'fn-1/2 and the second

sums "fn are defined by the recurrence relations

'fn-l]2 = fn-I + 'fn-3/2 \
(25)

J"fn -- 'fn-i/2 + "fn-l"

Using these predicted values. Yn' d/dt(Yn)' and

the attractions fn may be computed from the

equations. The following corrector formulas

can then be used to obtain improved values for

Yn' d/dt(Yn)

n

c.h,(,,o+zYn

k=1

n

k=l

(26)

1 d I.
The coefficients Ck, d k. c k, depend upon

the number of differences retained. For n = 11,

the coefficients are given in Ref. 10. With a

single precision machine, it is recommended

that eight differences be retained in these for-

mulas. The starting values as well as the first
and second sums must be supplied by an in-

dependent method. The difference between the
predicted and corrected values can be used to

decide whether to double or halve the step-size.

A convenient method for starting or changing the

step-size is the Runge-Kutta method, but, since

this is a lower order method, several Run_e-

Kutta steps will have to be taken for each Gauss-

Jacks on step.

The Gauss-Jackson second-sum method is

strongly recommended for use in either Encke

or Cowellprograms. For comparable accuracy,

it will allow step-sizes lar_er by factors of four

or more than any of the fourth order methods.

The overall savings in computing time will not

be nearly so large, however, because per step

computing time is somewhat greater and because

the procedure for starting and changing the in-

terval is quite expensive. As compared with

unsummea methods of ccrrnparable accuracy, tim

Gauss-Jackson method has the very important
advantage that roundoff error growth is inhibited.

It can be shown that, in unsummed methods

roundoff error growth is proportional to N 3/2

where N is the number of integration steps ::ore-

pared with N I/2 for summed methods. The

Gauss-Jackson method is particularly suitable

on orbits where infrequent changes in the step-

size are necessary. Frequent changes in the

step-size will result not only in increased com-

puting time but in decreased accuracy as well.

Finally mentioned is a higher order method,

associated with the name of Obrechkoff, which

makes use of higher derivatives. A two-point

predictor-corrector version as applied to a first

order system y' = f(t, y) makes use of the for-
mulas

n+l = Yn-1

2_2" "'- 3 "'
+ 7Y -t)+- -(TynYn-1)

13h 7 vii

+ _f0-0-y (_)

Yn+l = Yn + rd-I + y -ID" n+l - y

h 4 ,,, h 7 vii

where the higher order primes mean the higher
order derivative of y with respect to t. The dis-

advantage of this method is that the higher deriv-
atives of the dependent variable must be available.

Thus, to use these formulas, the first order sys-
tem would have to be differentiated two times.

, (27)
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Moreover, as the force terms in the equations of

motion change, these higher derivatives will also

have to be changed. Thus, in spite of the favorable
truncation error, this method cannot be recom-

mended as a general purpose subroutine for space

trajectory computations. However, the method
appears clearly tailored to the lunar trajectory

problem (Ref. 11).

4. Special Second Order Equations of the Form

y" = f(t, _)

Tile free-tqight equations in the absence of
_- _ forces can be ',';÷_'..... n in the form

lhrLIst or _. a_

y" = f(t, y) with missing first derivative terms.
Some formulas which take advantage of this form

have been proposed. The following special

Runge-Kutta method, for example, requires only
three derivative evaluations per step and, thus,

results in a saving of about 25 percent over the

standard Runge-Kutta formulas:

k I : Kf(tn, Yn )

k 2 : hf n 2- Yn kl

)k 3 = hf n 2" k2 (28)

Yn+l =Yn *h [Yn + 1/6 (kl* 2k2) ]

_,na. 1 = }n-- 1/6 (k 1 + 4k 2 _" a3). J

A predictor-corrector me,_hod (due to Milne

and Stormer} adapted to thts form makes use or
the formulas

h2 (5fn + 2fn-1 I
YPn+I = Yn + Yn-2 - Yn-3 + -4-

TABLE 1

+5fn_2} + I_ yVi (_)

h 2C

Yn+I : 2Yn - Yn-i + I-_ (fn+l + lOfn + fn-i ]

(29)

h 6 vi

-2--4-0" y (n).

J

These formulas appear to achieve a local trun-

cation error of 0(h 6) while retaining only foul-

ordinates, compared witll an 0(h 5) error for

other fourth order methods. However, this

advantage is illusory since the overall error is

still 0(h 4) as in fourth order methods. In ad-

dition these formulas are somewhat unstable rel-

ative to roundoff error propagation. In practice

there appears to be little to recommend the .Milne-
Stormer method.

The characteristics of these various integra-
tion routines are summarized in Table I.

5. Evaluation of Integration Methods

The more important integration methods in

general usage will be evaluated below as they
are utilized with the various special perturbation

formulations.

a. Cowell method

For the Cowell method, the choice of an in-

tegrating routine is very important because of

the greater danger of loss of significance due to
roundoff error accumulation. The Gauss-

Comparison Criterta

Method of NurDerlcal Truncation

Inte/_ratton Error

SingLe Step Methochs

Runge -Kutta h5

Runge-Kutto Gil/ _S

Bowie b3

Fourth Order Multistep
Predictor -torte ctor

MLlne h5

Ad&m s -Moulton h5

Higher Order Multlstep

Adams Backward Ar httTary
Dtfference

Gauss -Jacksone* Arbttr_ry

Obrechkoff h ?

Special Second Order

Eq_tla_ [y" • m. yl]

Specta.l.Ruaae -Kt_a h S

Mih_ -Stormer h 6

Ease of
Changing R_off Error

Step -Size Speed Stabilit_ Accumul&t _n

Trivial

(step -size

vat ted by
error con-
trod

Slow Stable Satisfactory

Slow Stable Satisfactory

Fast Stable S_tisfactory

_xceUe nt Vec'y felt I}nmtabte poor

ExceLle m Very fast Unconditionally Satisfactory
stable

Good Very fast Moderately Satisfactory
_table

Awkward and Fast Stable Excenent

expermlve

Excell_nt **, Stoble Sattofactory

* Slaw Stsble Satl3/acto_r

Excellent Very fur Mnde_tely Poor
stable

*R-K (single step) triViaL to ¢hiu_ie stol_e, very difficult to detormtne proper sLte.
*_auss-JackJon tm for lecond order equstio_.

***Speed of Obrechkoff dependo on cnmplextt7 of the hi_her order derivattvem required;
it could he very fair.
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Jackson method of integration is recommended

for Cowell programs because it allows larger

step-sizes and because it inhibits roundoff error

growth.

b. Encke method

For the Encke method, the choice of an in-

tegration method is less important relative to

accuracy. There is some advantage in computing

time, however, in choosing a single step method

which will allow frequent changes in step-size

without the necessity of going through an expen-

sive restart procedure. For lunar flights, it
has been found that the Obrechkoff method is es-

pecially useful in reducing computing time, but

this method does not appear to be easily adaptable

to other types of orbits or to other formulations.

Although the Gauss-Jackson method is recom-

mended in Encke programs, its advantages over

other methods are not as great as in Cowell pro-

grams.

c. Variation-of-parameters method

For variation-of-parameters methods 0 the
Adams backward difference formulas are re-

commended among h_gher order methods and the

Adams-Moulton formulas among lower order
methods.

In general, multistep integration methods

which allow for automatic adjustment of the size

based on an error criterion are preferred.

With any integration method, the process of

double precision accumulation of the dependent
variables should be used to prevent excessive

roundoff error growth.

6. Summary of Studies on Special Perturbation
Methods

In order to provide the mission analyst with a

set of guide lines in determining the best integra-

tion methods for various special perturbation

methods used in computing precise satellite tra-

jectories, it is useful to examine the results ob-

tained by others in the industry. This section is

intended to show the interrelation of the mission,

formulation of the problem, and method of inte-

gration so that the most efficient, accurate, and

economical balance is achieved. Several serious

questions, which must be carefully considered

by the mission analyst, are raised in connection

with the balance between the type of orbit and the

scheme of integration.

a. Aeronutronic report (Refs. 12 and 13)

The Cowell, Encke and Herrtck methods are

compared for the following problems: a selenoidal
satellite which is physically unstable, but for
which an analytic solution is known; a low thrust

trajectory; a high thrust trajectory and a ballistic

lunar trajectory. In all cases the integration is
carried out with a Runge-Kutta method with

variable step-size adjustment. Their conclusions
are:

(i) For the Cowell method, the effect of

roundoff error is felt very quickly--
within a few hundred steps.

(2) Overall, the Encke and Herrick

methods are computationally more
efficient than the Cowell method.

(3) On ballistic lunar trajectories, the
Encke method is best. The Cowell

method requires almost ten times as

many integrating steps as the Encke

method and three times as many as
the Herrick method.

(4) On continuous low thrust trajectories,

the Herrick method is superior.

(5) On trajectories where high thrust

corrective maneuvers are introduced.

the Cowell method is superior.

Although the trend of the conclusions in this

study is probably correct, there are serious

questions as to the validity of the conclusions on

the degree of superiority of the perturbation

methods. For one thing the method of integra-
tion (Runge-Kutta) favors the perturbation meth-
od. For the Cowell method, the choice of in-

tegration method is much more important, as
indicated earlier. Experience has shown that

roundoff error effects are no: nearIy so critical

as conc!udcd here. Both the use of the Gauss-

Jackson integration method and doubte precision
accumulation make roundoff error much less

serious for the Cowell method than indicated

here. The evidence presented, moreover, is
not conclusive relative to accuracy. The nu-

merical results, for example, are not given at
corresponding times, and no accurate standard

for comparison is available except for the un-

stable selenoidal satellite. The selenoidal satel-

lite is by no means typical of the earth satellite

problems and any generalizations of results

based on a study of this orbit must certainly be
viewed with skepticism.

b. Republic Aviation report (Ref. 14)

The orbit selected is that of a vehicle moving
in the gravitational field of two fixed centers.

An analytic solution in terms of elliptic functions
is available for this orbit so that an accurate

standard is thus available. This study compares
the Encke, Cowell and Herrick methods with two

different integration routines: a fourth order
Runge-Kutta method and a sixth order Adams

method. The conclusions of this study are:

(1) The Encke method was superior to the

others in both accuracy and machine

time. For an integration over a 100-

hr period the Encke method required
0.5 rain, the Herrick method 2.5 rain

and the Cowell method 3.5 rain. All

of those programs used the same in-

tegration method and the results were

comparable as to accuracy.

(2} The Herrick method is superior to the
Cowell method relative to attainable
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(3)

(4)

(5)

accuracy and slightly better relative

to computing time.

An integral of the motion, such as

the energy integral or a component

of the angular momentum, is a poor

positive test of accuracy.

The Adams method is considerably

faster than the Runge-Kutta method

by a factor of almost three.

Double precision accumulation is

very effective in reducing errors

due to roundoff.

(6) The largest error in the Encke and

Herrick methods arises from errors

in solving the two-body formulas.

particularly as such errors "affect the

mean anomaly calculation.

The conclusions of this study appear to be

well grounded. The only serious consideration

is that the orbit selected is quite specialized

and that no strong perturbations such as those

due to oblateness or thrust are considered. Thus

the extent to which these results can be assumed

typical for satellite orbits is in some doubt.

c. Experiments at STL

The relative efficiency of the special per-

turbat[on methods is a function of (I) the type of

orbit and (2) the method of integration. A given

integration subroutine may favor one of the

methods over another, so that the use of the

same subroutine for all methods does not con-

stitute a fair test.

In general there appears to be no doubt that
the Encke method is computationally the most

efficient on ballistic lunar trajectories. For

comparable accuracy, however, the advantage

in computing time is probably on the order of
two or three, rather than ten as is sometimes

quoted, when any of the standard integration
subroutines are used.

There is no doubt that the Cowell method

requires much greater care to ensure that

roundoff errors do not become a serious factor

in the accuracy. However, effective methods

are available to curb roundoff error growth.
When these are used, the Cowell method is still

a very useful tool for many space computations.

None of the orbits considered in the reports

by Aeronutronic and Republic Aviation appear

to be applicable to the earth satellite problem in

which a small but significant force, such as that

of oblateness, is continuously applied.

To obtain information about the comparative

performance of these special perturbation meth-

ods on earth satellite orbits, a numerical study

was recently completed at STL. An idealized

orbit was selected for the study with initial ele-

ments;

a = I. 5 earth radii

e = 0.2

[ = 45 °

= = =Mo=O

period of the un-

perturbed orbit = 155 rain

perigee distance = 800 mi

apogee distance = 3200 mi

The only perturbation force considered was that

due to the second harmonic in the earth's gra-

vitational potential (J2). An accurate standard

against which to check the programs was pro-

vided by a double precision Cowell program.

The double precision program yielded results

on the unperturbed orbit (J2 = 0) which agreed

with the known analytic solution to a few digits
in the eighth significant figure. For the per-

turbed orbit, the results provided by the standard

are correct to at least seven significant figures.

Single precision floating point programs for
the Cowell. Encke and Herrick methods were run

on an IBM 7090 and compared with the double

precision standard. Great care was used to en-

sure that all physical constants and initial con-

ditions were identical in all programs. The in-

tegration was performed over 64 revolutions
with output at 20-min intervals. Table 2 gives

the method of integration used, the local trunca-

tion error criterion, the number of integration

steps required, the computing time for 64 revo-

lutions, and the maximum error in the distance

Ar over the 64 revolutions. For each method

several runs were made with successively

tighter error criteria, and the most accurate of

these was selected for the comparison. While
the Cowell method required almost twice as

many integrating steps, overall computing time

was only slightly greater than the Encke method

and, moreover, the accuracy was somewhat bet-

ter. The Herrick method gave the best accuracy.
The relatively large computing time required

by the Herrick method is partially accounted for

by the fact that the Adams-Moulton formulas
(fourth order) are of lower order than the Gauss-
Jackson formulas (sixth order}. Since the latter

will allow integrating steps perhaps twice as

large for the same accuracy, the adjusted com-
puted time would be comparable to that for the
Cowell method.

A more detailed comparison of achievable

accuracy is contained in Table 3 where the maxi-
mum errors in the distance r, the mean anomaly

M, the semimajor axis a, and energy integral E

are given on the 20th, 40th and 64th revolutions.
It is clear that the Herrick method consistently

yields the most accurate results and the Encke

method yields the worst results. For all meth-

ods, there is a strong correlation between mean

anomaly errors and position errors, indicating

that the error is largely along the path of the
motion. This conclusion also follows from the

energy integral errors which are seen to be rela-

tively constant and much smaller than the position

errors. It may also be concluded that the con-

stancy of the energy integral is a poor positive

test of accuracy in the position coordinates. The
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TABLE 2

Numerical Results--Special Perturbation Methods

Formulation

Cowell

Encke

Herrick

Method of

Integration

Gauss -Jackson

Gauss -Jackson

Adams -Moulton

Error

Criterion

1 x 10 "10

7 x 10 -10

5 x 10-10

Number of

Steps

10, 200

6395

7000

Computing
Time

(rain)

5.75

5.31

11.45

Maximum Ar

(ft)

800

1700

4GO

TABLE 3

Maximum Error--Special Perturbation Methods

Method Cowell Encke Herrick

Revolution 20 40 64 20 40 64 20 40 64

1.2 2.2Ar x 106

(er)

,SM x 10 3

(deg)

,Sa x 107

(er)

AE x 10 9

er

0.3 0.6 i

1.6 1.4 I

1 1 I

4,0 2.2 6 8.4

I 2 2.7

3 3.5 3

4 6 9

0.2 0.8 2

0. I 0.2 0.6

2.2 2.2 2.2

2 2 2

error in the semimajor axis is also seen to be

smaller than the position errors, indicating that
the geometry of the orbit is much more accurately
determined than position in the orbit.

Although these results show that the Herrick

method yields the most accurate results and the

Encke method takes the least computing time, the
order of magnitude of the difference is not suffi-

cient to lead to a clear preference for any one
method. Some improvement in the Encke and

Herrick results could probably be obtained by

even more careful analysis of the two-body
formula computations. The Encke method, for

example, is quite sensitive to the frequency of

rectification and some improvement might be
obtained by experimenting with rectification.

There appears to be little reason to prefer

either the Encke or the Herrick methods on

earth satellite orbits of moderate eccentricity

particularly, since they are considerably more

complicated and require much more careful
numerical analysis. In addition, special difficul-

ties will arise in limiting type orbits (low eccen-

tricity, high eccentricity, critical inclination)
which do not arise when the Cowell method is
used.

D. GENERAL PERTURBATIONS

Chapter HI presented the discussion of motion

about point mass (or a spherically symmetric

mass). Although that discussion is revealing, it
does not in general constitute a solution to the

problem because the assumptions utilized prevent

the solution from behaving as it should for the

true gravitational field. In the preceding sections

of this chapter, discussions have been presented
which circumvent these limitations; however,

in the process much generality has been lost since

nothing can be said for trajectories beyond the

neighborhood of the numerically obtained trajec-

tory and nothing can be said about the long-term

behavior of the orbit. (Before proceeding, it

must be added in defense of numerical integra-
tion that the solutions thus obtained are valid to a

very high order of approximation. ) For these
reasons it is desired that analytic expressions be

presented which can be utilized to describe the

motion of a satellite to varying orders of approxi-

mation. The approach taken here will be first to

discuss the variation of the orbital elements and

secondly, the first order secular or cumulative

perturbations which can be added as linear func-

tions of time or as discrete corrections to the two-

body solution to improve the fit of the resulting

motion. Then as a third step, the various general

perturbation theories (i.e., approximate analytic
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solutions for the perturbed motion obtained by

series expansion) which present second order

secular and periodic effects will be discussed.

The advantages and disadvantages of this ap-

proach are summarized at this point.

Advantages of general perturbation methods

are:

(1) They are very fast both because no

step-by-step integration is necessary

to obtain the elements at a given time

and because the computing time per

point is very small (on the order of

i sec per point on an IBM 704).

(2) ]'he accuracy of the computation is

limited only by the order to which the

expansion is carried out, and not by
the a_:,_umulation of roundoff and tr:m-

cation errors.

(3)

(4)

They can maintain reasonable accuracy

over many hundreds of revolutions.

They allow for a clearer interpreta-

tion of the sources of the perturba-

tion forces and the qualitative nature
of an orbit.

Disadvantages of general perturbation meth-
IDds al'_i

(i)

(2)

(3)

(4)

(5)

Nonconservative forces, such as drag,
are not easily included in the theory.

No simple and adequate theory has yet
been prepared which includes such
forces in a form suitable for numerical

computation.

Tile effect of other forces, such as

luni-solar perturbations and radiation
pressure, are difficult to incorporate

since they involve substantial amounts

of new analysis and checkout.

The series expansions are very com-
plicated, and programs based upon

them are complicated to write and
di.fficult to check out even for a first

order theory.

There is a serious degradation in ac-

curacy for special types of orbits in-

cluding the important case of nearly
circular orbits (e _ 0), highly ellipti-
cal orbits (e ~ 1) and orbits near the

critical inclination (i ~ 63.4°).

Although agreement with observations

does confirm practical convergence.

no mathematical proof of convergence

has yet been given for any of the

general perturbation methods, nor are

any estimates of the error in the trun-
cated series available.

Finally. these discussions will be followed by

those of atmospheric effects and extra-ter-
restrial effects.

1. Rates of Change of Satellite Orbital Elements

Caused b_¢ a Perturbing Force (Ref. 15)

The instantaneous rates of change of satellite

orbital elements caused by a perturbing force,

as given, for example, by Moulton (Ref. I, pp
404 and 405) are derived from astronomical

perturbation theory involving tedious mathemati-
cal transformations. The purpose of this de-

velopment is to give a simplified derivation of

the same equations by using only elcmenta,:y

principles of mechanics. It is hoped that this

approach will make the equations more meaning-
ful and the discussions which follow later in the

chapter more readily appreciated.

Consider a satellite of mass m moving in :he

inverse square force field of the earth. Its or-

bit is a Kepler ellipse (Ref. 1, Chapter V)

specLfied by the following orbLr.:_i L,!cments a, e,

h, _, i and M O (see following ske;ch). The

location of the satellite in its orbit is 2!yon bv

the angular position ¢ which is measured in tile

orbital plane from the node. The angular dis-

tance of the satellite from perigee is called the

true anomaly, 8. Therefore,

= _ + O (30)

The radial distance, r, from the center of the

earth to the ,_ateittte is given by

r = _ (it)
i _ e COS 0 "

The satellite's energy per unit mass, (, and its

anguIar momemum per unit mass, h, are related
to the orbital elements by the equations

u (32)

and

h = r 2 0 = i#p = na 2 -e (33)

where: # = GM (the product of the gravitational
constant and the earth's mass) and a dot over a

quantity indicates a time rate and

n = a_" (34)

Now suppose that a perturbing force F acts on

the satellite. The orbit will no longer be a Kepler

ellipse, but at every instant we can associate an

"instantaneous osculating ellipse" with the new

orbit by choosing the Kepler orbit corresponding

to the instantaneous radius and velocity vectors

of the satellite and to the potential energy, -
r '

of the satellite in the gravitational field of the

spherical earth. This is the orbit the satellite

would follow if the perturbing force were re-
moved at that instant. The true orbit can thus

be specified completely by a series of elements

of the instantaneous osculating ellipse. There-
fore, the set of differential equations which shows

how these elements change with time is equivalent

IV-15



Z-axis

h

Y-axis

Vernal

equinox

Xode

Perigee

to the Newton or LaGrange set involving the co-

ordinates and their rate of change with time.

With this discussion as background, the rates of

change of the orbital elements a, e, _. _ and i

will now be derived.

Following Moulton (Ref. l, p 402), the per-

turbing acceleration, P_/m, may be resolved into

a component R along the radius vector (meas-

ured positive away from the center of the earth),

a transverse component S in the instantaneous

plane of the orbit (measured positive when

making an angle less than 90 deg with the velocity

vector _), and a component W normal to the in-

stantaneous plane (measured positive when

making an angle less than 90 deg with the north

pole or z-axis).

Let the unit vectors along the three direc-

tions be denoted by nr' fl_sand nw" That is,

: m(R_ + Sn "_ + Wn ). (35)
r s w

To find the rate of change of the semimajor

axis, a, refer to Eq (32) for the relationship to

the energy

da 2a 2 dc

a_-- _ _f-" (36)

The energy change (per unit mass) may be found

from the definition of the work done on the satel-

lite by the perturbing force.

d_ F -*

= _ • V (37)

where V is the instantaneous velocity vector,

Now from the definition of the instantaneous os-

culating ellipse, it is clear that its velocity

vector is the same as the instantaneous velocity
dr

vector of the actual orbit. Therefore e and _ff

in Eq (38) may be evaluated from Eqs (31) and
(33) to obtain

2 _l_e 2 _,

__ na ( re sine g ) (39)r'Z_ I + e cos _ + rns "

Forming the dot product with F/m and substi-

tuting the resulting expression for _- in Eq (36)
yields

da 2e sin 0 2a AF-_I-e 2
= R+ S (40)

aT _ nrn -e

which is the
expression given for _-_ by Moulton

(Ref. 16).
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To derive the changes in the other orbital

elements, it is necessary to know the,rate at
which the angular momentum vector h (per anit

mass} changes. This rate of change of _is then

known to be equal to the summation of the ex-

ternal moments acting on the satellite.

d;--=--(rx )
dt m

+ Sn + W<) (41)= r_ r x (Rn r s

= rSn - rWn
W S

The rate of change of _ can also be written as

dh _ dh -_ de' n (42)
dt _'- nw + h a_ s

where d_ is the angle through which the angular
momentum vector is rotated in time dt. There-

fore,

dh
- rS (43)

dt

and

da r W
d-t-= - _ " (4 t)

Now, the eccentricity of the orbit may be ex-

pressed in terms of a and h through Eqs (33) and

(34) which yield

i - h2) 1/2e = _ = (I -p/a) I/2

By differentiating, the following is obtained

de h (dh hda)_TK= - _ 2 a'K K _-.

C-e 2 ( dh _1 _e2 da)= - --_--_ 2 _ - na _ .
2na" e

(45)

dh
Upon substituting Eqs (40) and (43)for _- and

da
d_-, Eq (45) takes the final form,

dT -= na "---2--- r

na e (46)

The motion of "he node is the same as the

motion ef the project!on of h-on the equat'_rin!

plane (_e_ the fn[t_'.,,':_n_ _k_ch). Let tit,, sub-

script p denote the projection of any vector on

the equatorial plane. Then _t can be seen that

Z-axis

P

h

X-axis

Node

Y- ax is

IV-17



P
= projection of h on the equatorial

plane.

= projection of _ on the equatorial
plane.

()dh = the component of _-

p _ P

which is normal to h .
P

But

dP.

h
P

h 2
P

(47)

h = h sin i (_sin _ -_'cos 9)
P

where _ and _ are unit vectors along the X- and

Y-axes, respectively, and

= -rW [_'(-cos ¢p cos i sinf_

- sin _ cos P) +?(-sin @ sin

+ cos @ c_= i cos i2)].

Thus, upon performing the cross product, Eq
(47) becomes

dfl rW sin

dt 2 _i 2ua - e sin i

(48)

The change in the orbital inclination is re-

lated to the change in the node. This can be

seen by referring to the following sketch in which

two positions of the node, 9 0 and ql' are shown
with

At2 : [ll - f_O

and

&i : iI - iO.

By spherical trigonometry, it can be shown that

sin&i = sin iI cos iO - sin i0 cos iI

_ sin i 0 [cos i 0 sin ¢0 (1 - cos AP.)
sin _>1

+ cos #0 sin &I2].

Z-axis

/ f_OX-axis

Y-axis
-- o

9 l
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Differentiating and taking the limit as A.Q

_0, the following is obtained

di sin i df_

•t-= sm_'-'$ cos _ a_-" (49)

Therefore.

di rW cos _ (50)
_E-=

2 _1 e 2na

The change in tlle argument of perigee, _.

arises from two sources. One is the motion of

perigee caused by the forces in the orbital plane

tending to rotate the ellipse in its plane. The

other change occurs because _ is measured

from the moving node (see preceding sketch).

To evaluate the latter changes, assume that the

in-plane perturbing forces are zero. Then the

change in _ equals the change in _. According

to the relations in a spheric_l triangle.

cos_l = cos _ cos ¢0 + sin &_ sin ¢0 cos iO.

Differentiating and taking the limit as ,_ -_ 0.

yields

(___) . df_ -r sin ._ cot i W.de = = - cos _ _f- = o 2
W na" _1 -e

(5i)

where the subscript W means that this is the

change in _ contributed by the nodal motion
which is caused by the component of the per-

turbmg acceleration, W, normal to the orbital
plane. The change caused by the in-plane corn-

ponents. R and S, is denoted by (_V+--} . The

R.S

effect of these in-plane forces is to change the
instantaneous velocity vector which must, at

every instant, remain tangent to the instantaneous
osculating ellipse. This ellipse will therefore

have a changing perigee position. The resulting

rate of change of the argument of perigee will

clearly be

:R. S - J}-" (52)

de
Here _, the rate of change of the true anomaly

caused by the perturbing force, must not be con-

fused with _ which is the rate of change of e in

de

an unperturbed Kepler orbit. To evaluate _-,

refer to the following sketch.

After the force m (_<# + S_ s) has been ap-

plied for the time dr, the velocity vector is

changed from-_to "7+ d_-J, the true anoma__

from e to O + d9 and the angle "f, between n s

and C, is changed from '!to _/-_ d'_. The ex-

pression for "f is obtained from the angular

momentum,

h = rV cos y.

Since h r2e and V (i"° * r 2 02) I/2= = _ , it follows

tha_

cosy = I+
r -

Computing _ from Eq (31) yields

(Rn + Sn s)r

V'_ _s

\ / \

_ Nn N

p Old perigee

New perigee
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COS _ = i+ e cos e (53)

V1 + e 2 + 2e cos 0

e sin e (54)

V1 + e 2 + 2e cos e

and

sinY --

Differentiating Eq (54) with respect to time and

using Eq (52), it is found that

(_-) R. Fl+e2+ 2e c°s Os =L e {e + cos e)

( s,n  t)l• - (55)
a{-

l+e'+ 2ecose

If N is the component of the force normal to ?,

N dt
d_t = --_.

But

N = R cos y - S sin %

and

h JVl + e 2 + 2e cos O
V = --

r 1 + e cos 0

Therefore,

_t =i r(1 + e cos O)
)h(1 + e 2 + 2e cos e)

• [R(1 + e cos e) - (e sine)S]} (56)

%

de
]

Equation (56), along with Eq (46) for _-, yields

(_) _1-e 2R, S = nae [- (cos O) R

(57)

1 ) S]+ sin O(1 + i + e cos O

The total rate of change of the argument of

perigee is

_]_'= W R,S
(58)

The final element, mean anomaly at epoch,

which provides the position of the satellite at

any time also has a time rate. This relation-

ship is obtained directly from Kepler's equation

u = M 0 = E -esinE -nt

IV-20

and can be found by using the equations already

de __obtained for-d_ and , with the relationship

between E and e given by

cos E - e
COS e =

I - e cos E

sin e
C 2- e sin E

I - e cos E

The result is

,-e" o)= "E_ -- - -_ cos R

dn (59)
-tE{-

Note is made at this point that the last term has

been omitted in Moulton, Ref. I, p 405.

This completes the set of equations for the
orbital elements. The remaining 5 are sum-
marized below for reference:

da 2e sin 9 R + 2a _I - e2 S _!

de 4!-- e2 sin__ R
= na

+ 1-%/-'_72na____e [5_.______a2 (I- e 2) r] S

d_ r sin ¢ W

"_ na 2 _ sin i

di r cos _ W

at- na 2

/7"_- -2'

dw r sin ¢ cot i W Vl- e cos e
"_" ^ r-----':_--_ - ---_----- R

na z _l - e z

+V;_-_e 2 I. + 1 "_ .
_* 1 + e cos o)SmO

(60)

If at this point we introduce a disturbing

function rather than the four components, we can

put these equations in the Lagrangian form

8E
Rm _

I d-

(61)



da 2 0 -_-
=

na oa

na e

d_ 471 - e 2 o- cot i a--

na e na _i - e

dM _ 2 b: 1 - e 2 O--'_ + n

na e

di cos i a

al- = 2 7 2 J"7
na '{I - e sin i

,1_ 1 a_

= 2 _ e 2 3-[na - sin t

2. First Order Secular Perturbations

For an oblate body having axial symmetry,

the gravitational potential at any extension point

may be represented by Vinti's potential

(Chapter II). It" for the present analysis we

neglect terms with coefficients the order of

";2" (i.e., J3" J4"" ") we can ,,vci_e the work
function (minus the potential)as:

= _ + (3 sin 2 L - I)
u F -2-

(63)

- ur i a- -2- (3 sin2i sin2@ -i)

but since % = e + _0 is a periodic quantity, sin 2 @

I
1 _ 1 cos 2¢ has a nonperiodic part _

Thus, the potential J will produce secular changes

in the orbital elements as well as periodic

changes. Before the magnitude of this change

can be evaluated, however, the constant part of

the function (a/r) 3 must be evaluated• FoLlowing

the method of Dr. Krause (Ref. 16) we have:

(62)

co- 2 + C1 cos M + C 2 cos 2M +

• . . + c cos n M
n

where

1 (,2_ a n

Cn = _- 30 (F)
cos n M d M

The C n are simple functions of the eccentricity

as may be seen in the expansions of Chapter III.

Thus,

,. 2% aCo 1 •
T : 2"_ 3 (F)3 dM

0

2_

I (I - '-3/2 (" e cose2, (i + O) dO
,!0

= (i - e2) 3/2

and

U = u + = (64)
F secular

j R 2 e2)-3/2
- (1 -
-secular = _ 2 F

-1

(I - a,'2sin2 i) [
(65)

At this point we refer to the Lagrangian

equations of Section D-I of this chapter and con-
clude that the secular variations in the elements

are expressible to the firat order in J2 as:

e = 0 (GT)

9

AU = 3_r J2 (_)'(2 - 5/2 sin 2 i)(rad/rev)

(68)

'2 9

.AMnt - "2-3J2(_) 41- e 2 (1- 3/2 sin-i)

(rad/rev) (69)

a i = o (70)

/xl2 = - 3_ J 2 _- cos i (rad/rev) (71)

The physical significance for the fact that the
secular variations in a, e and i are zero may be

seen by looking at the potential function itself.

The fact that J2' J3 and J4 are small implies that

to a first approximation the orbit will be nearly

elliptical. Although one cannot assign an un-

ambiguous major axis or eccentricity to the per-

turbed satellite orbit, the experience of astrono-

mers has shown that it is convenient to refer the

motion to an osculating ellipse. This is the
orbit in which the satellite would move if at some

instant the perturbing terms were to vanish (J2 =

J3 = J4 = 0) leaving the sateLlite under the at-

traction of the "spherical" earth. Hence the
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actual position and velocity vector at each point

define the osculating ellipse in terms of a set
of elements a, e, and i, where a and e are the

semimajor axis and eccentricity and i is the

inclination of the plane of the ellipse to the

equator.

The major axis a may be specified in terms

of the energy E, associated with the osculating

ellipse. When J2' J3 and J4 are set equal to

zero to calculate E, only the potential energy is

altered, and it can be seen that unless r exhibits

a secular (nonperiodic) variation, which is not

possible here since we are dealing with bound

orbits, only periodic variations in E can occur.

Hence there can be only periodic variations in a.

Although p, i.e., a (I - c2), is a constant of

the motion, the total angular momentum h is not

constant, because the equatorial bulge produces

a nonradial component of force. But by the same

arguments as above, the torque, and hence }_,

can exhibit only periodic variations. Further,

since at each equatorial crossing the momenta

are related by

p = (h cos i)N = constant.

where N means node, it follows that the orbit

inclination i behaves similarly. The same may

be said for the orbit eccentricity, since the

equation for eccentricity depends explicitly only

on ! hl and a.

It is noted at this point that since 3 of the 6

elements vary, the satellite periods will vary.

The plural of period was intentionally utilized

at this point because of the manner in which three

distinct periods are defined (Ref. 17).

Anomalistic period is defined as the time

from one perigee to-Fh-e next. In that time the

elliptic angles (true, mean, and eccentric

anomaly) increase by 360% while the central

angle d increases by more or less than 360 °,

depending on whether the apsidal notation is

against or in the direction of satellite motion.

Nodal period, also called synodic or draconic

period,"is defined as the time from one ascending

node to the next. In that time the central angle

increases by 360 _, since _ is measured from the

instantaneous position of the ascending node.

The satellite does not, except at an orbit in-

clination of 90 °, return to the same relative

position in inertial space after one nodal period

due to the regression of the nodes.

Sidereal period is defined as the time for the

satellite to return to the same relative position

in inertial space. In that time the satellite

central angle as measured from a fixed reference,

which is not to be confused with the central angle

as measured from the ascending node, increases
by 360 ° . In artificial satellite theory, the sidereal

period is less important than the other two periods,

it is rarely used, and it will not be discussed any
further.

The perturbed anomalistic period can be

evaluated from the average angular rate using
the method of Kozai (Ref. 18) and a relation

2 3
analogous to n a = ;_.

_2_-3 = _ = u 1 - J2 (i

3 2  C2:7 }- g sin i)

where

n = perturbed mean angular rate

a = mean value of the semtmajor axis

= a 0 i - 312 J2 (i - 3/2 sin 2 i)

= effective gravitational constant as

sensed by the satellite in its orbit.

This process yields

2_ _ 2_r (a)3/2 _I
T a = nr

\

J"}i7;2)3n- (72)

For a near-polar orbit the anomalistic period

is longer than the unperturbed period, while for

a near-equatorial orbit the anomalistic period

is shorter. At inclination angles of i0 _- 54.7 °

and i0 _- 125.3 °, 3 cos'i 0 -- I, and hence the

anomalistic period equals the unperturbed period.

Physically this is due to a combination of the

mass distribution of the earth and the apsidal

rotation at these inclination angles.

The perturbed nodal period, however, has

been subject to much more confusion since the

results of many of the authors are in conflict.
Upon review of this work, however, it is felt

that to the order J2 the results of King Hele

(Ref. 19) and Struble (Ref. 20) are the most pre-
ferable for small eccentricities. (Additional

discussions and proofs appear in Ref. 17. ) This
result is:

i:lT n = 2_ I - 3 J2

. 8 (731

These two period expressions (Eqs 72 and 73) may

be seen to differ in both magnitude and in the

algebraic sign of the corrective term. This
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apparent discrepancy is due to the fact that the

perigee is moving. Thus at the time the perigee
has rotated through 360 ° the number of nodal and

anomalistic periods should differ by 1.

Equations (68), (69), (71), (72) and (73) are

presented in graphical form as Figs. 2, 3, 4,

5 and 6, respectively.

3. Higher Order Oblateness Perturbation

The errors inherent in numerical integration

are not conducive to accurate computation of

orbits over long time intervals. For this rea-

son, general perturbations (analytic approxi-

mate solutions for the perturbed motion obtained

by series expansions) are more useful in mis-

sions of long duration.

a. Oblateness of the earth

The potential function of the earth can be

accurately expressed as an infinite series of

zonal harmonics,

U
- ?- - /_, Jk Pk (sin L

k=2

where Pk (sin L) is the Legendre polynomial

of order k, given I_y

.k

i ci (x2 _ l)k

Pk (x) - 2k k : dx }

This is the form of the potential function given

by Vinti. The recommended values of the co-

efficients Jk and several expansions are given

in Chapter II. The potential function determines
the motion of a small body in the earth's field by

"x" OU -*Y,= _ X Z.
)X

The classic approach of the general perturbations
method is the analytic integration of one of the

sets of equations for variation of parameters,

i.e., a set similar to that of Section C-1 (this

chapter) with the perturbing function _ defined by

- = U-__
r

This approach has been taken by several
authors LBrouwer (Ref. 21), Kozai (Ref. 18),

Garfinkel (Ref. 22), Izsak (Ref. 23)and Krause

(Ref. 16) to name a few] . The method results

in easily visualized perturbations since the

variables are geometric quantities. However,
because of a failing peculiar to the method of

analysis, the equations exhibit singularities in
certain elements in the vicinity of the "critical

inclination, " i.e., i = 63.4 ° and for i = 0 or

e = 0. In the firs[ case a physical explanation
exists in that since the momenta of the canonical

equations are bounded, the system is conditionally

periodic. This situation admits 2 possibilities:

(1) Libration, rain. qi <--qi <- max qi

(i= l, 2, 3).

(2) Circulation, -_ < qi < = "

These two possible regions are shown in the

following sketch.

Libration -,

region i / region

_ - . ..

2_

,- Circulation

Element

value

In the neighborhood of the so<ailed critical in-
clination, the elements which become in-

determinant merely leave the circulation region

and enter the libration region. Since the theory

isn't prepared to handle points of this type along

withthe more regular points, it ceases to apply

in this region. This behavior is no reflection

on the theory in general, since other approaches
can be utilized in these neighborhoods.

in the latter cases (i.e., e = 0 or i = 0] the

:?roblem is ,me of tndetermfnac;; in une _,:" ,::m'e

of the eleme,:ts being utilized to describe the
motion. More specifically, the angle _ cannot
be utilized for e = 0 because of the fact that the

line of apsides cannot be located. Similarly, the

nodal angle f_ becomes meaningless if the plane
of motion is the primary :?lane of reference.

Spec[al sets of elements have been developed

however, which may be utilized effectively for

very low eccentricity orbit. These sets will not
be discussed.

One set of solutions obtained using this

method including J2 and J4 terms in secular

perturbations, J2 to J5 terms in long period

perturbations and ,I 2 terms in short period

perturbations, is presented below. This form

is exactly analogous to those referenced pre-

viously; however, there are differences in the
notation and in the coefficients

a. Secular terms

1 P t 1+ J2
Ms = a-'0

•(-I+3cos _%) +::_J_ V0 _-e0

.[i0 + 16 i- e2. 25 e2 + (-60- 96 _/I- e0

+ 90 eo_)cos 2i0+(130+14, _-eo 2 +

continued
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_s

s

)

- 30 cos 2i 0 + 35 cos 4i O)I + MO
(74)

1 t J2 (-1 +5 cos 2 i 0)
a 0

3 2 (_0)4 [_i0+2 4 i_/__ e02_ 25 2+T2-8 J2 U

+(-36- 192 _1-e_ + 126 e_)cos 2 i 0

_i 9 9 4 1+ (430 + 360 - e_ - 45 e_) cos i0

- _ J4 2 + 9 e 0 + (-144

-126 e20 ) cos 2 i0+(196 + 189 e 2) cos4 iJl

+ _0 (75)

= - 2 J2 cos l0

3 2 _) 4 _4+ 12 _I-e_+-_ J2

-9 e 2) cos io +(-40- 36 _f1"-e_

. 15 _)4 e_)(3+5 e_)e°s3101 _'2 J4 (2+3

I

- 7 cos 2 1O) cos i OI +_0

b. Long period terms

(76)

[i"_ J2 e 0 (1 - e02) - 11 cos 2i 0

40 cos 4 i 0 J4

- e02) 1 - 3 cos 2i 0 ....

1 - 5 cos 2 i 0
cos 2_ s

i_ = -

1 J3 R
(I - e 2 ) sin i0 sin _s

2 J2 Pn

e0 e t

(1 - e02) tani 0

(77)

(78)

M, I_ J2 (_0; (1 e2)3/2 /l= - - Ii cos 2 i 0

40 c°S4io l_6 J4 R(_0)2 2 3/2
- ,U 5_o_ 2 i_ _ (i- e0)

- 3 cos 2 i 0 2 sin 2 _s

1 - 5 cos l 0

1 J3 R (i- e0 i3/2

"2 J2 P0 e0 sin i 0 cos _s (79)

i (_00)2 [2 2 2 2
_; = "-_ J2 + e 0 - 11 (2 + 3 e 0) cos i 0

4 6

cos i0 400 e2cos i0,2]J
- 40(2+5 e )_ 2 (1 2 )I - 5 cos i0 - 5 cos i0

_t

5 j4 /,_ i.o r- 2 2 2
+ e 0 - 3 (2 * 3 e 0) cos i 0

32 J2 L"
4 ,

COS 1{.)

2 .

I - 5 cos i_.J

8 (2 + 5 e02 )

sin 2_
S80. co,i0.... 1}

(i - 5 cos 2 iO)

1 J3 H (sin i 0 eo cos2 io ) (80)
J_ p-_ _" _ sini 0 cos o_s

- i-6 J2 e 0 cos i0 I +

200 cos 4 i 0 _ 5 J4 R 2
4

2 .

80 cos _0

2 .

1 - 5 cos i0

e0 cos i0 3

16 c°s2 io 40 c°s4 io ]l
+ + sin 2_

I - 5 cos 2 i0 (I - 5 cos2 io)2JJ s

1 J3 R e0 cos i 0

-2 J2 PO sznz 0 cos ws

(81)

h°

a
P

Short period terms

=2 J2_o (@- sin2 iO) -(i- e02) -3/

3

+(___qO) sin 2 io cos 2 (e +_s +,)} (82)
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- 2 J2 sin i0 3 e0 cos (8 + 2_s + 2_)

+ e 0 cos (38 + 2_s + 2_t)_l (83)

ip =-_ J2 cos i0 sin i0 cos 2 (8 + _s +_t )

+ 3 e 0 cos (8 + 2_-s

+ 2_s + 2'"t )]

+ 2_ t) + e n cos (38

;';' [6p -'4 J2 cos i0 (8 - M s - M t

M
P

(84)

w

P

+ e0 sin 8) - 3 sin 2 (8 + _ +s _l )

_- + 2_ t )- 3 e 0 sin (8 . 2- s

- e 0 sin (38 + 2_ s + 2¢zt)] (85)

2 3/2 (_'i-.) I=-(1- eO)8e0 J2.,u_ 2 2(-1

[<_o;+ 3 cos 2 i0) (I - e_) + + 1 sin 8

f-

+ 3 sin 2 i0 Isin (8 + 2¢_s + 2_t)
L

- (I - e0) - -_ + 1 + sin (38 + 2w s

(1-eo 2) . 2{  (rol

[.+ 3 sin 2 10 in (8 + 2_s + 2_!) -

(1 - e )- + 1 + sin (38 + 2w s

If}

+l J2 6 (-1 +5 cos 2i O) (8 - M s - MI

+ e 0 sin 8) + (3 - 5 cos 2 i0) [3 sin 2 (8 + ¢_ +s _o! )

+ 3 e 0 sin (8 + 2¢_s + 2_t ) +e0 sin (38

+2w +2W,s )]} (87)

where

= _ Mr,E - e 0 sin E Ivls

8 __ +e0

tan -_ = W_e_ E

The solutions for the perturbed elements are then

+x t +xx =x s p

where

x = a, e. i. 9. _, M.

These expressions provide all of the in-

formation necessary to describe the motion of a

satellite to the order J22. However, there exist

requirements in many studies for the perturbed

expressions for r and _, (_ = 9 +_.). This in-

formation can be obtained from the equations

presented above; however, the procedure is

lengthy and unnecessary in view of some of the

work quoted in (Ref. 18) by Kozai. This ref-

erence gives r and _ to the order J2.

r-

I R 2 1 3 2 1- 1r = r 0 +_ J2 _ (1 --_ sin i) 1 - e (1

-{1-e 2)eos8+r l ]
]

I R 2 1 sin 2 i cos 2 (8 + _) (88)
+-_ J2

3 (R)2 {( 5 2 )4_ =_0 +-2 J2 2 --_sin i (8 - M+ e sin 8)

(1 3 2 ) [__._ (1 e 2 1_--__ e 2)+ - _sin i --_-- sin

+._(l- i__ 82> sin 28]- (1

- Z sin i e sin (8 + 2_) -

-_2sin2 0 sin2 (8+_)-;cos2isin(38

+ 2_)} 189)

where r 0 and ¢_0 are values computed from mean

orbital elements.
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Oblateness of the central body tends to make

a twisted space curve out of the satellite orbit.

It is customary to map this orbit as a plane curve
on the orbital plane which contains at any instant

the satellite radius and velocity vectors. In this
plane one may e.ither approximate the trajectory

by an osculating ellipse (the astronomical ap-

proach) or try to assume the actual equation of
the plane curve to the desired accuracy. This

latter approach is the one taken by R. Struble

(Refs. 20 and 24). Another significant difference
is that in this work some of the conventional
orbital elements become variables to the order

J2" Struble in this reference derives per-

turbations based on the following model

---= u =-- 1 ÷e cos (-_- _) - J2 c + J2 d
r r 0

Jr0, e, _, cod variable]. (90)

"In the solution obtained, the short period pertur-

bations are isolated in the c and d variables, while

r0, e and _ have only long period oscillations

(with a secular variation in _). The independent

variable _ ks related to the central angle from the

node, 1%, but provides simpler solutions than lb.

In particular, _ = 1% when J2 = 0. The solutions

for some of the elements, accurate to the second

order, are included below. Note is made of a

shorthand notation employing a set of inter-

mediate variables q2 " " " q6 and v I and v 2.

These terms are presented following the

equations for the terms c and d defined in

Eq (90).

=..I_I [1 +ecos ($ 9) J2 c 2 ]
u ro - - - J2 d

I-- (÷o)"<,-,-4)=
'- =Q),,l"2

a s_ 2to)+_-9"_0 n2 (91)

2 dA
p = r sin 2 0* a_-

where A is the right ascension and 8" = 90 - L.

3 R/_ 2 -I 1

e =e0 --2J2 e t-_-J (5 cos 2 i0 -i) (-2']3c°s 2_

1

+4 ']4 sin 4_) (92)

ffi_0 + J2 (5 cos 2 i0 -I)

, (=),,1+=5_=I To _ +

3

+2 J2 (_0)2 (5 cos 2 i0 - I)-I (']6 sin 2¢_

1
- -_ ,14 sin 4_) (93)

= Ii =i 0 + 83-J2 sin 2 i0 e cos (_ +_)

+ cos 25 +'icos (31;-

2 wl sin 2 i0 (94)+_6 J2

i0 = i00 +'3"2 J2 sin 2 i0 (5 cos 2 i 0 - i)

[. ,]14 + 15 sin 2 i0 - 5-_-(6 - 7 sin 2 i0 cos 2w

52
(95)

= 1'.1% =_ +'i J2 e cos i0 sin (_ - ¢_)

+ 2e (l - 2 cos 2 i0) sin (_ * _)

+ (I - 3 cos 2 i0) sin 25 +I e (I

9 2 v2 (96)- 4 cos 2 io) sin (3_- w)] +_ J2

Now adopting the shorthand notation

35 J4

Dl= " y8 j2-_

The short period terms c, d can be written

-' I<'"=e _ sinIi0 +-3-=) cos 23

2

+ e cos (3_- _) + -_,-cos (4_- 2_)

3e2 _I+ "I- cos 2

I /R _ 2e2 (2
+ _r \_-_0 ] -3 s£n2i0}cos(2_- 2 ,_) (97)

9 [R _"- = " "J--- D1 sin2i0

T_ 0)

cos
I=

continued
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+ (z_7 11 5 4 I

+-8- Dl)Sin i0 cos(3_-3_)

-_ [e I(3DI -_, s_n2[0

(_"+ _-4"DI) sln4i0 cos (4_ - 4_a)

1
-Ir_ /e 2 I(_ D l - l)sin2i0

25 23 4
- (T,/+-_--DI}af n i01

+e 4 I(T_D1-_)sLn2t 0

1

+o'I_o,.,n',olJoo.._
l I'T s_n i Ocos _0 cos (4_'+2_)

1 C3-_,L.t,_o.-,_,,,o_,o
- (_" Dl)Sln410 Cos (5_- 3_)

" TI )T2" sln_i0

- _2"Jf e3 sln2t 0 cos2i 0 cos (5_+ _)

T%" 3
- cos (5_ + 3_)

- _5" D 1 s_n _0

cos (SH_- 2_)

-,_[.' lo,,_s_',ol]oo.,,,-,o,
+ [.' t('D1 +_-)stn2,0 -{_._ +___.Dl)sin4/.Ot

" _+_'Dl'sin41101] cos 2_a

[.' to,_ ._',olJoo.,ot,,,,
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Finally the pseudo variables ,12 . . . ,16

and v 1 and v 2 can be defined in terms of the

true variables.

+

vl"' I-

+ _- (36 - 89 sin210) cos _- _)

+_ [3D 1 (4 +e 2) - 28(6-Tstn2t0 )

- 7e 2(2 - 3stn2i0) ] cos('_+_)

+ _stn2t 0 D 1 cos ('_ + 3w)

2

+_-(9 -25 sln210) cos (2_- 2_)

+-_ [2D I (6- 7stn2t0)-7(4-5 sln2t 0)

and

V •

2

+_"Z [28(2-sln210) +9Dl(4+e2)(6-TsLn2i0)

,]-- 21e2(2- 3sin2i0 cos (3_- _)

+_" [D 1 (4+e2) sln2i0

- 2 (3 - 2sin210 )] cos(3_+ _)

+_3"_ 7 (10 - 9 sln2i0)

+ 18D l(6-7sLn2[0) Icos (4_- 2_)

+_-_ /18D I(2+3e 2) sln210-s(3+sln210)

- e2(12-7sln210 )] cos 4_

3

+ _ D 1 (6 - 7sln210 ) cos (5_- 3_)

+ _ [27D I (4 + e2) sln2i0

- 20(3+sln210 )] cos(5_-,_)

+_'T [18DlSin2i0-(2+stn210)] c°s(6"_-2_)

+_'l_ DI stn2t0 cos(7_- 3_) (104)

I[-Dle3-_-. B- (6- 14sin210

+ (T-_: DI) sin4t 0 sln ('_+ _)
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+_[,._ Di,+(#°I

+(_-_ Di) sin41o÷e2

+(_ D_- _ s_n2io

,163 3 Dl)Sin2.+ ty-_ - _- i 0

D 1 (4 - ii sin2_0

+ I]
[" +

+ (_. D l 17) 2.- _ sin x0

+(_-_ Dl)sin4101 ] sin(3_ -_) +_ I" I_

5 11 1- (1 + _ D I) sin2i0 + (_-D I +-_f) sln4i0

-e

+_ [e2 I- (_ +_Di) +(_Dl+_)sin210

- _) s in2i 0

sin (4 _ - 2_)

5 2 + (_ D1+_i_,_i+._n_0 _>_n_i0

_ I_ _ "_'_n2_0+ - (I-4.4-+ T

sln(5_- 3_) +

- (_DI +_) sin2i0 + (_DI-@ sln4i0}

- _ _ sln2i0 ) s in (5 _ - ,.)

+ (I_DI

(105)

In these equations _0, i00 and e 0 are inte-

gration constants and as before the singularity

at [ = 63.4 '_occurs. However, Struble notes

that for this inclination the motion is given by

the si_!_le !_enduhirn _qu'atio_i _xld concl,lJc._, as

was done earlier, _Nat an oscillation occurs in

the ele_ncnt _.

Still a third approach, though somewhat more

similar to the second than the first, to predicting

the mot{ons of a satellite has been developed by

Anthony and Fosdick (Ref. 25). This work,

based upon the method of Lindstedt, is the re-

sult of series expansions for all variables in

power series of the small parameter J2" Since

the higher order coefficients (J3' etc.) are

neglected, these series are truncated following

terms of the order J2" This being the case,

each of the variables may be represented as

_ 1 _ u0 (_)+ 3/2 J2 Ul (g)U r

P = r2_ = P0 (_) + 3/2 J2 Pi (_=)

8' = (90 - L) = ¢/2 + 3/2 J2el'(_

where the new variable _ is defined by

_, = $ (1-_ 3/2 J2 _ i )

1 = constant to eliminate secular
variations in u

and u 0 = i/r (for Keplerian orbit)

(io6)
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Now starting the solution .for the motion at an

apse (i. e., at a point where r = 0), the equsttions
of motion were found to be as follows:

General First-Order Results (Arbitrary _0 )

I 10--gi+ (v0)(2-3sin2i)( iven

_0" use this equation to find t 0 (107)

= g + - 4 3n sin _0
4c

- 2n sin t 0 cos (_ - t 0)

+ (3+ 2_) cos t 0stn(_ - E_0)

- n sin _0 cos 2(t - _0 )

-n cos t o sin2(_ - gO )

-3(_-t o) [cos_o (g -t0)

-sin_0sin(_- _0)]I

I J2 R 2

+ 4_) cos 2t 0 - 3n cos 2_ 0

+ 3Tl sin 2t 0 sin (g - _0 )

- 3 cos 2_ 0 cos 2(_ - _0)

+ 3 sin 2g 0 sin 2(_ - t 0)

-n cos 2t 0 cos 3{g - t o )

+ n sin 2% sin 3(g - _o)]}

1,{u--F=---g i+ n cos (_ -_0)
rOc

J2 R 2 1

I 1+ _ _r : r 0 I+ n cos (g- %0 )

J2 R 2

(108)

sin 2 i [(3

cos (C - _0)

(lO9)

(110)

L1 }(1+n) [1+n oos(t-%)] _

VO 2 { 2
V 2 1 +n + 2n cos (_ - _0 )

J2 R 2 M 1 }

(111)

(112)

V =

+

where

L 1 =

M 1 =

V 0 I+ n + 2n cos (g - _0 ) i "

1+13

J2 R 2 [1 + 2

#
{24 + 12'; 2 + (sin 2 i) [-36 - 18"I2

+ ,24+ 32_3 + 3_ 2) COS 2%]}

+ {- 24 - 8J. (sin_ i) [(-20 - 27_
+ 4_ 2) cos 2C O+ 36 + 12_2]} cos (_ - t O)

+ {-[8+15n

+ 16T12] (sin 2 i) sin-2_O} sin (g - t O)

+ {- 4,2+ [6_2+ (-4

-6_2)¢os2%] _i-2 i} _os2(g-%)

+ {(4 +6_5 (si_2i)s_ _to} sin 2 (_

- t O) - {5_ (sin 2 i)cos 2_0} cos 3(C

_o)+ {5_ (sin2i)s_ 2Co} si_ 3(_-%)

+ {_(_in_"i)s_n_gO}_n4(_-%)
(114)

{16(3 - 3q - q3) + (sin 2 i) [24(- 3

+ 3_+ 3)+ 8(3 - _3 - 6_ 2 - 3q 3) COS 2_0]}

+ {4(-12 + 12'I - 4']2 + 3_ 3)

+ (sin 2 i) [6(12 - 12_ + 4q 2 - 3_ 3)

+ (-40 - 18n + 8_ 2

+ 12_33) cos 2_0] } cos (g -gO )

+ {- (16 + 661] + 32_32

+ 6n 3) (sin 2 i) sin2CO} sin (_ -_0 )

+ {16n 2+ (sin 2 i) [-24_ 2+ (16

+ 24_ 2) cos 2%0] } cos 2(_ - _0 )

{(16 + 24,_ 2) (sin 2 i) sin 2_0} sin 2(t

- to)+ {4_3+ (si. 2 it[- sn3

+ (26. + 9_ 3) COS 2_Q]} COS 3(C - _0 )

- {(26_ + 9'I3) (sin 2 i) sin 2_0} sin 3(g

%)+ {16J(siJitoos_.t0}oos_(_-_o)

continued
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16n (sin2 i) sin 2_0}

3_ 3 (sin 2 i)COS 2_01

3,13(sin2 i) sin 2%0_

2
c =_+l

sin 4(t- t o)

cos 5(t- t O)

sin 5(6 - tO).

(it5)

(116)

VO 2 r 0
n = -- - i (li7)

U

Under the assumption that the trajectory is
nearly circular these equations can be simplified
to yield

Nearly Circular Orbits (Arbitrary t0)

i (2 - 3 i)jg (given
3J_ 2 s_n ")

l

+ -_-\r0/

_0" use this equation to find _0) (I18)

I9'= 7r . 2 .
+ -_ sin I cos %0 sin (6 - t0)

-(% -t o) [cos t ocos(t -t o)

sin _0 sin ($- $0)]I (I19)

I " 3J2 [ R_ 2 2
P = roV 0 1 --T-_O0 ) sin i

[cos2g0

- cos 260 cos 2(g - t O)

+ sin 2_0 sin 2(% - 60)]t (120)

i

i

U=r0

52 R 2 16 %o)]

+ (sin2 t) [- (9 - 6 cos 2%0)

+ (9 - 5 cos 2gO) cos (g - t o )

- 2 (sin2% O) sin(g - %0)

- (cos 2g O) cos 2(% - %0)

+ (sin2% 0) sin2(%-%0)If j (121)

{,-oo,,,-,o,}
J2 R 2 {°

+ (sin 2 i) [-(9 - 6 cos 2_ O)

+(9-5 cos 2%O) cos (g -t o)

- 2(sin 2g O) sin (g - 60 ) +
continued

- (cos 2go) cos 2(6 - t o)
.'1

+ (sin 2go) sin 2(g - go)]}J

V2 = VO 2 [1- 211 {1 - cos (g - %0)}

+J2 (r_) 2 {3 i1 -cos (_- _0 )]

+ (sin 2 i) [(- _+ _ COS 2_0)

+ (9_5__ cos2_0) cos(_-%)

(122)

- (sin 2%0) sin (% - to)

+(cos 2g 0) cos 2(_ - t 0)

-(sin2_ 0) sin2(6-,0)]}]

V=V 0 II-q {1 - cos (6 -g0) }

J2 R 2 13+-_(_o) • [l-cos(g- t0)]

)-2" cos 2_0 cos ($ - t o)

(123)

- (sin 260 ) sin (C - C0 )

+ (cos 2g0) cos 2(_ - %0)

(124)

The solution obtained using these equations
exhibits no singularity at the "critical inclination"
and indeed is well behaved at every point. For
this reason this set of equations, though not pre-
cise. seems well suited to ana3.yticstudies involv-
ing computer programs.

4. Analytic Comparison of General Perturba-
tions Formulations

Recently several analytical methods of deter-
mining the oblateness perturbations have been
published (Refs. 18 and 23 to 28) in which basically
different mathematical approaches are employed.
These approaches include:

(1) The classical approach of general
perturbation theory in celestial me-
chanics, using the concept of an oscu-
lating ellipse and solving for the varia-
tions in orbital elements.

(2) Integrating the equations of satellite
motion by seeking a solution in the
form

I _ i [l+e cos (_-_)- J2c+ J22d1
r r 0
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(3)

where c and d are unknown functions

in terms of short-period perturba-

tions {to be determined by the integra-

tion process), while r0. e and _ ex-

hibit only long-period perturbations.

Direct approximate integration of the

equations of motion with oblateness

perturbations, solving directly for the

instantaneous coordinates of the body
in orbital motion.

Depending on the variables and mathematical

tools used, the final solutions of various authors

are seemingly different and physical interpreta-

tions of certain important variables are some-

times hard to visualize. The transformations

between the different sets of variables employed

in the literature have not been obtained previ-

ously.

Due to these facts a somewhat bitter contro-

versy has arisen about the merits of classical

celestial mechanics (Refs. 20, 23 and 29) for the

solutions of near-circular orbits. The present

analysis, which was made by J. Kork (Ref. 30)

compares the solutions obtained by all the above

mentioned authors for nearly circular orbits

within the first order accuracy in the oblateness

2 terms).
parameter J2 (i.e.,neglecting J3' J4" J2

a. Kozai's formulation (Refs. 18 ind 26)

Upon a change in the notation utilized by Kozai

to that utilized by Vinti and upon changing the

symbols to be consistent with those presented in

Chapter III, the first order perturbation in posi-

tion may be written

- _-sm I

_le (i- 1_-_cos B+ ra -__e -]

+ _ J2 sin i cos 2 (8+_)

125a)

6¢ = J2 (2 - _-sin i) (e-M+e sin8)

3 . 2 F__2 2
+ (1 -_sm i) uae (1 -e

sin0* (1- ¢ -e2)sin20]

- l-_ sin sin 2(0 + ¢o)

- _ cos 2 i sin (30 + 2¢_)I (125b)

and the secular perturbations in the orbital ele-
ments are

G =o_ 0 + J2 _ - _- sin t

(126a)

2

_=_0- _J2 (}) Et cos i (126b)

= M 0 + n't (126c)

E=n0 _j2 (R)2n0 (i 3 . 2+ -_-sm i) _

(126d)

where _ 0' _0 and M 0 are the mean values at the

epoch, i.e., the initial values of the osculating

elements from which the periodic perturbations
have been subtracted.

There are no first order secular perturba-

tions of the semimajor axis, a, of the eccentricity,

e, and of the inclination, i.

The mean value of a (i. e., a) is given by. Kozai

in terms of the unperturbed semimajor axis a 0,
as

(127)

Notice that the classical relationship n02 a03 =
becomes in these variables

_. =,u - .J2

- _r sm i (128)

The value of the mean semimajor axis, E. has

been already used in the derivations of Eq (5t.

If the eccentricity, e, of the orbit is a small
quantity of the first order or less, Eqs (125) can

be reduced to the simple form given below (Ref.
26).

5r = a J2 sin i cos 2k

l _ • 2 .

=_a, sm z cos 2k (129a)

=- _ - I-2" sin sin 2k

where (within a first order accuracy)

k=M+w

sin 2k

(1295)

Since , is a small quantity, and since the relation-

ship between M and 0 is (Ref. 31)

M = 0 - 2e sin 0+ . . .

it can be shown that for small eccentricities,

i.e., e = O(_)
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I +• cos 2k = I +_ cos 2 (e+ _)

+ 4, sin 0 sin 2(e + _)

I +, cos 2d_

(i 30a)

and similarily

i + E sin 2),= 1 + E sin 2# (130b)

Thus Eqs 129a and b can be written also as

i- 2

6r _ _-a t sin t cos 2_

6¢p _ - ( - _ sin sin 2_b (131)

Finally, the expression for the instantaneous ra-

dius vector in near-circular orbits can be written

as

F

r :_ L1 - e0 cos (_ - j)

+ sin i cos 2 (132)

From Eqs (126) and (130a) it can be seen that

for small eccentricities the average angle from

node to perigee _ can be approximated for one

revolution by its initial value, _ 0"

Kozai's solution for near-circular orbits con-

sists basically of two independent components

varying about a mean radius, a-. These com-

ponents are:

1 2.

(i) An oblateness term. T' sin t cos 2c>

which has a period of 7r (double periodic

within one full revolution) and depends

mainly on the shape of earth seen by

the satellite vehicle (i.e. oblateness

parameter J2 and inclination of the or-

bit, i) but is independent of the orbital

eccentricity, e, and nodal angle to

perigee, w. The oblateness term de-

pends also on the semimajor axis

C?through the term t = g J2

(2) An elliptical term, e 0 cos (¢-_0) de-

pending only on the geometrical prop-

erties of the orbit, e 0 and w0 but being

completely independent of the oblateness

of the planet or the orbital inclination.

It is obvious from the mathematical, form of

Nq (132) that depending on the retative size of the

oblateness and ellipticity terms, in connection

with proper phase shifts between the two, two,

three or four "apses" can be obtained during a

single revolution (i. e. points where i" = 0).

This fact will be graphically illustrated in the

discussion of Izsak,s work.

b. Struble's formulation

If only terms to the first order in J are re-

tained° Struble's main results, periodic in ra-

dius, can be presented in the following form (Ref.

24, p 93).

1 - 1 [I + e cos (@- _) - J2 c] (133a)
r r 0

r0 Pm

+ 2) (2-3 sin 2 iO) ,133b)

= e cos i sin ($ - _)

+ 2e (I - 2 cos 2 £0) sin (_-+ _)

+ (I - 3 cos 2 i0) sin 2"_

+ _ e (i - 4 cos 2 [0) sin (3_- - _0

(133c)

where

C= _- sin i + cos 2_

2
e

+ e cos (3_- _)+ -8- cos (4_- 2c_)

.+ cos 2 _-

- 3 sin 2 i0) cos (2_ - 2c_) (133d)

dA

2 8'-_Pm = r sin = angular momentum
about the polar axis

8'= 90 ° ° L (133e)

In Ref. 32 it is shown that the angular mo-

mentum orbital plane is given by

h=r 2(_+_+oosi_): _ (134)

From Eqs (133) and (134) it can be shown that

2.

Pm= cos i or _ = ---2--- (135)

Pm

For small eccentricities of the order J2

1 + e cos (@-- _)= 1 + e cos (¢- _) (136)

at least for one revolution. Similarly all terms
2

containing e , J2 e, etc., can be neglected. Using

Eqs (135) and (136) the results given in Eqs. (133)

can be simplified to read

r = r 0 [1 - e cos (¢ -w)

+ _J2 sin icos 2 (137a)
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2

j P i}1

(137b)

Furthermore it should be noted that for small

eccentricities

J2 I_01 = J2

p = a (i - e 2) = a (138)

Remembering this approximation and comparing
Eq (137b) with Eq (127) similarily Eq (137a) with

Eq (132) it becomes obvious that for e = O (J2)

the first order results of Struble are identical with

Kozai's formulation and the constant r 0 is given

simply by the mean semimajor axis:

r 0 = _" (139)

c. Izsak's formulation (Ref. 23)

The instantaneous radius is given by Izsak as

follows

where

r = a* [1 - e cos (¢_ - _)+ _e 2 cos 2($ -_)

+ J2 sin" i cos +..

a* = a - _e2 + J2 (1 - _sin i

w = (1 + E ') e + _ (140)

' = a constant for the motion of the perigee

of the order J2

For e =O(J 2) the solution for one revolution is
simply

r=a* II-ecos(_-_)
I

L,.

+ J2 sin icos 2 (141)

Comparing Eq (141) with Eq (132) it is seen that

Izsak's solution can be also reduced to the form

given by Kozai and the parameter a* is simply

An interesting feature of Ref. 23 is a set
which represents parametric families of curves

obtained by solving Eq (141) of this study nu-

merically for various values of e 0 (0.0, 0. 00012,

0.00030, 0.00049) and for three particular cases

of _0 (0% 45% 90°). The curves show clearly the

possibilities of 2, 3 and 4 "apses" (i. e. points

where _" = 0) during one revolution, depending on

the relative sizes of eLlipticity terms with respect
to the oblateness terms and also on certain phase

shifts between them. These figures have been
reproduced and are presented for convenience

as Fig. 7.

d. Equations derived by Anthony and Fosdick

The form of the resulting equations in Ref. 25
is completely different from the results obtained

by the authors considered previously. In Ref. 28
the equations of motion in spherical coordinates

are integrated directly and certain new variables

are introduced, which do not have a simple phys-
ically intuitive connection with the variables used

previously. There may exist some doubt, how

the initial value, t 0, of the "independent variable

for which the first-order analytical results for r

and V are periodic" compares with the classical

V02

_0' and how the analog of eccentricity ,i -= _ - i
c

may depend on the classical eccentricity, e.
These transformations are far from obvious,

thus, they are derived in this section by reducing

Anthony's solution to an analytical form similar

to Kozai's results and then comparing the coef-

ficients term-by-term.

The equations for arbitrary near-circular or-

bits are given as Eqs (118) through (124) assuming

,I = 0(J2). Certain terms in these equations can

be simplified by using the equality

cos 2g 0 cos 2(_ - _0 ) - sin 2g 0 sin 2(_ - _0 )

= cos 2g (143)

Next, using the previous notation _ = J =

32-J2 the expressions for r and V can be

written as follows

r = ro 11 +'I[I - cos (_ - _0)]

-, +_ cos(_ -_0 )

- _-, sin [ -9 + 6 cos 2_ 0)

+ (9 - 5 cos 2_ 0) cos(_ :_0 )

2sin 2% sin %) cos 2 ]I(144a)
[

V =V o Ii -n +n cos (_ -_0 )

+ c t_ E cos (_ - t 0) + 1 . 2 .

[(-9}- + _ cos 2_

+ - _-cos 2g cos (_ - _0 )

-sin 2_ 0 sin (_- _0)+ cos 2g[ 1 (144b)

3!

where

_ = [1 -_E (2 -3sin2i_ ¢ (144c)

Notice, that in Eqs (144a) and (144b) the sine and

cosine terms appear combined with a small con-
J
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stantoftheforma1cos5, where_=(1 -a2} _b.
Sincefor thenearlycircularorbit consideredhere
botha1anda2areoftheorderE, it followsbya
reasoningsimilar to Eqs(130a)and(130b)that

1+a1cost --1+cz1cos6, etc. (145)

Equation (145} indicates that for the purposes
of this analysis it does not make a noticeable dif-

ference, if during any single revolution _ is simply

visualized as the central angle from the ascending

node, 0.

Next, collecting the cosine and sine terms in

Eq (144a}

r = r 0 (i + A 0) [1 - A 1 cos (5 - _0 )

"I

_- A 2 sin (_ - _0 } + _ sin 2 i cos 2_J
(146)

where

3 2 2

A 0 = ,i - c + _ sin i - _ sin i cos 250

AI = 'I _ _ + 3__ sin 2 i
5 2

- _-_ sin 1' cos 250

l . 2.
A 2 = _ sm t sin 2_0_

By trigono me t :'y

- A 1 cos x +.A 2 sin x

r A22= _A12 + cos

Fhus Eq (146) becomes

r = r 0 (i + A 0)

+ a 0)

1 - _A12+ A22 cos (_ -t 0

1 2 5]+ _-c sin i cos 2 (147)

where

a0 -- tan-1 _Q1

Kozai's form of radius, given by Eq (132) can
be written as follows

r = a I1 - e cos (¢-_0)

1 2 ,]+ _-E sin i cos 2 (148)

By comparing Eq (147) with Eq (148), while re-

membering that within the first order accuracy

5 = _, the following important transformation

equations can be derived by equating the corre-

sponding coefficients of two Fourier series ex-

pansions of the same function ¢. Thus, Anthony's

variables are related to Kozai's formulation by

the following equations:

_=r 0 [1 +,i -, + }, sin2i+

continued

e =

sin 2
2

-, tcos 250J

(n -, +_' sin2 i

5 .2. _.\2
- _-E sin t cos Z_O)

+ (_' sin2 isin 2_0) 2]

i12

(149a)

(149b)

_0 gO tan-1 I} )= - _ sin 2 i sin 2g 0

3 25 _ ,-t]

n - _ +_ csin i--_ _sin" i cos 2¢0

(149c)

The inverse transformation equations for _ and

r 0 can _Iso be obtained from gqs (149a) and

(149b) to be:

= - _ sin i sin 25

3 2 5 2
+ E - _-_ sin i+ _-, sin i cos 2_ 0

(150a)

r 0 _ [I n + E }_ sin 2 "= - - ].

* _. sin" i cos 250 (15Oh)

= - - _ sin i sin 2$ 0

+ 1 sin2 icos 250]

to = _o (_o' i, e, _) (15Oc}

Unfortunately, Eq (149c) is transcendental and

the third transformation must be found by nu-

merical successive approximations. Character-
istic solution curves for Eq (150c) can be obtained

by the following procedure:

(1) For a given e, io , solve for various

values of _a 0 by assuming values for

_0 in steps of 10% for example.

(2) Plot the data and obtain a value of t 0

corresponding to the given _ 0"

For step (1) it is advantageous to write Eq
(149c) in the following form

_-_ sin isin 250
_0 _ _0 - tan'l

2 l 2 2 /z

(151)

Note:

If in Eq (151) the eccentricity becomes smaller

than a critical value e* = J"rsin 2 i. the values of 50
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can no longer be picked arbitrarily. This fact

is illustrated by assuming e = 0 in Eq (149b) and

observing that the required value of gO = 0% 90%

180 °, 270 ° . Physically this means that for e = 0

the "apoapsis" always occurs at the equatorial

crossings (_ = 0% 180 °) and "periapsis" always

occurs at the maximum latitude (g0 = 90°" 270°)'

there being four "apsidal" points during one
revolution.

It is noted once again that _z 0 gives the loca-

tion of the minimum point of tlle eccentrical coal-

ponents of orbital radius, while t 0, gives the ex-

treme of the radius.

Finally, it should be remarked that the state-
ment made in Ref. 28

"e = Irll for an elliptical orbit"

is misleading since it is true only for the non-

oblate case, while in general e = e 01, _, i, ¢0 )

and must be computed by Eq (149b). Only for

large eccentricities is the approximation e = I_l
valid for rough engineering estimates.

e. General comparisons

It was shown above that to the order J2 in

oblateness all the methods considered are identi-

cal at least in the case of nearly circular orbits.
Mathematically, Kozai's formulations for the

instantaneous radius, Eq (132), and secular per-

turbations, Eqs (126) are generally the simplest
to use. However, if for any fixed orbit the or-

bital injection conditions are desired, the results

of Anthony and Fosdick merit investigation. It
was thus shown that the classical method of oscula-

ting ellipses is still valid for nearly circular or-

bits and that it provides a somewhat clearer ge-
ometrical interpretation of end results.

5. Solar and Lunar Perturbations

The problems of defining the changes in the

motion of an earth satellite due to the presence

of distant gravitating masses and the discussion
of the stability of an orbit are of necessity closely

related. This relationship exists because the two
analyses differ only in the time intervals consid-

ered and the fact that forces other than those pro-

duced by external masses (for example atmospheric

drag) must be included in the discussion of sta-
bility. For this reason much of the material

presented in the following paragraphs is applicable

to subsequent discussions.

Analytic expressions for the perturbations due

to the gravitational attraction of a third body may

be derived by techniques similar to those used in
the oblateness derivations. This approach has

been taken by Penzo (Ref. 33) with the result that

one set of equations for the variations in the or-
bital elements may be obtained. This solution is
outlined below:

Choose geocentric coordinates with the X-Y

plane being the orbit plane of the disturbing body.

Let F be the central angle between the ascending

node and the disturbing body, and 1_ be the

central angle between perigee and the disturbing

body. Also, let ip be the angle between the ve-

hicle orbit plane and the plane containing the
origin, perigee and the disturbing body.

Z

-- Perigee

--i --Y

F

Disturbing

_ody

The deviations in the elements are derived in a

system based on this latter plane. In this system,

= 0, Wp = 0 and ip is the inclination. The

solutions obtained for the perigee system are then

transformed into the solutions in the original X,
Yo Z system. The solutions are:

3

_d rp sin 1" cos 5sin i sin 8= P P 13

_tp A_ r d (l-e) 3 (I+ e cos 8) 3
L'

+ 2e 2) e - 3 (1-ge 2 - 2e 4) cos O

- e(1-6e 4) cos 2 O]

/_d rp 3(1+ e) 3 sin 2 % sin ip

A_ r d e 2 (I+ e cos O)_

cos i

P (1

Z_ np

+ 3e cos O)

_d 3rp 3 (1+ 4e 2) sin _ cos % sin tp E

r d (1 - e) 3

+ Ci (152)

= /_d rp3 (1 + e) sin 2 rp cos ip sin 8

rd (1 - e)2 (l+e cos O)
L"

+ 3(1+e 2) cos 0 + e (1+ 2e 2) cos 2 e]

3 (l+e)3 sin (1+ O)
"d rp rpcos rp 3e cos

rdeZ (I + e cos e)3

/_d 3rp3 (l+e) sin 2 %cos ip E+C

/J r d (I- e) 2 _- e 2 fl
(153)

J
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P = -cos ip_flp

+__Pdp rp s (1 +e) 3 sin 2 Fp cos tp [4 -

r d2e 4(1 +ecosO) 3

5e 2

3e (4-e 2) cos 0 + 12e 2 cos 2 el

_d rp3 (!+e) sln° I_

rd e 3 (I -e) 2 (i + e cos 8 )_ 6

- 44 e 2 + 13 e 4- 2 e 6) + 3 e (4- 25 e 2

+ 3e 4) _o_ 0 + e 2 (8-37e 2

+ 2e 4) cos 2 0] (cos 2 Fp - sin 2 FpCOS2ip)

+e 2 [(2+e 2) +3e(l+e2) cos 0

+ e 2 (1+ 2e 2) cos 2 e] (1-3 sin2 Fp cos 2 ip) 1

3 (l+e) (4cos 2 r . sin 2 r cos2i
u d 3 rp P p p

+C_

r d (l-e) 2 ]/l-e 2

(154)

Pd 2 a 2 p2

rd e2 (I+ ecos O)2

3e sin 2 rp cos ip

-e e (cos2 rp- sln2 rp cos

- 3 cos 2 %+ 3(1+e 2) sin 2

Ae= --_--Aa
2ea

- 9e 2 - 8)

sin O cos O

2 ip) cos 8

rp cos 2 ip-e2]+ C a

(155)

/_d _f_ rp 3 sin 2 Fp cos pl- sin I0 [e(2e4

N 2rd( 1 . e)3 (1 +ecos 9) _

+ 3(2 - 9e2-3e4)cos 0 +e(2 -9e2-8e4) cos 2 8]

_d _r_ r 3(l+e) 3 _ (c°s2+ r -sins rco,2 )(1
P r d e'_(l +e cos O) P

+ 3 e cos 8)

3 e 2 sin2 % cos i+Pd 15_rp P E+C

p 2rd(l .ei3 __--j_ e056)

where #d and r d are the gravitational constant and

orbital radius (assumed constant) of the disturbing

body, respectively, and the Cl, C_, etc., are con-

stants of integration, i.e., they are functions of
the initial conditions.

The transformations to the elements in the X, Y, Z

system are

I [( _ cos Fp) _, IpAt = _ cos asinlp sina con £p

- sin a sin ip sin Fp _ _p] (157)

AQ - 1 I[sin ip Sin FpCOSi(cos a sin i
con v sin31 P

• sin acos ipCOS rp)- sin21cOSlp sin rp] Alp

+ (sin 2 isln ipCOS Fp- sin 2 IpSin 2 Up cosi sina) Af_pl

(158)

/k(_ l sin a [(sina sin 2 F cosistnl
cos ¢_ sin 3 i P P

- sLn2i cos I'p) Aflp

+sin Fcos i(cosasini
P P

- slnacos IpCOS rp) Alp] + A_p

where

slna •
sin_ sin i

sin Fp

The assumptions in the derivation of these solu-

tlons are that rd >> r and that the disturbing

body does not move during the interval of varia-

tion.

Thus, in order to solve for the perturbed mo-

tion of a satellite it would be necessary to compute

the perturbations (for some small time, say i

period) due to each body being considered, resolve

these perturbations into a common coordinate sys-

tem, add the resultant motions, adjust the orbital

elements and then continue the computation. This

is obviously a lengthy procedure and is not intended

to be performed by hand.

Another approach to perturbations has been

reported by Geyling (Ref. 34), who presents the

effects of these remote bodies in terms of varia-

tions in the position of the satellite in cartesian

coordinates• Only circular satellite orbits, how-

ever, are considered•

IV-37



Choose X, Y, 7. axes such that the orbit

plane of the disturbing body is the X-Y plane,

the X axis being in the direction of the satellite, s

ascending node. The deviations from the nominal

trajectory will be given in the _, _, _ system,

which moves with the position in the nominal or-

bit. _ is radial, and _ is in the direction of mo-
tion.

Z

X

The position of the disturbing body in the X-Y

plane is given by the central angle _ = _0 + k f

where T0 is an inR[al value at t = f = 0 and k is

the ratio of the angular velocity of the disturbing

body to that of the vehicle. Geyling,s solutions
are

'r3 Pd rc 2 "

= " _ N 3- _(2cos2i - sin2i)

r d

4 2

+ "_" stn2f cos 2 , + 4k--_. I sin2i cos2_"

+ (_ -P 2) (1- cos l) 2
cos2 (_ +,)

(k+l){'2k+l) (2k+3)

()`- 2) (1 + cos 0 2 cos2 (_- ¢)]
+ (k- l)(2k- I) (2k- 3) J

+ k I + k 2 sin4b + k 3 cos@ (160)

_ C

T]= _ _ rd 3_ (2 cos2t -s_2llf

. 11 2 sin 2 t

"--6"- stn2i sin 2, - X(4k2_1)

(4k 2 + 12k+ 11) (1 - cos t) 2

4 (x+1) 2 (2),+ 1) (2k+-3)

sin 2_

sin 2 (_'+*)'

+ (4k2 "12X+11)(1+c°si)2_ smz"- ('_'_P)I
4()`-i)-(2)`-I)(2)-̀ 3_

÷ k 4 + k 5_ + k 6 sin_ + k 7 cos _b
(161)

3 /'_d re 4 [I_=" _" _- --3" sln2 Istn_-fsfn21cos_b

r d

. (1- cosi)sinisin(25+ ,)2k(k + I)

" _ sln (2_'- dP)I

+ k 8 cos %% + k 9 sin4p (162)

where r = radius of the circular nominal orbit,
c

and the k' s are constants to be evaluated from

initial conditions. These solutions are indetermi-

nate for k = 0, ±1/2, ±3/2, ±1. However, for

k = 0, i.e., for a stationary disturbing body, the
particular solutions are

4

3 _d rc F-

"" _" _" "-=3" L _- (2COS 2t - sin 21)
r d

sin2icos2, - 2sin21cos2;c

+ -_ (1 - cos 02 cos 2(, ÷ _'o)

+ 3" (I + cos i)2 cos 2(* - _0

3 Pd rc4 I°- _ ('eos2 -sin'i

+ 3 sin21 cos 2;O)f - _ sin21 sin2,

(is3)

11

(i- cosi)2"sin2(¢+ -,0)

" "_r (I + cosl) 2 sin2(* - ;0 )] (164)

3 /Jd re4 {_
_-_ -_- _ 1 +cos l) sintcos (_p- 2¢ 0)

-(1 - cos t) sinlcos (, +2_ 0)- sin2 tcos*]f

1 1
+-_ sin2lsin, +_ (1- cos t) stnistn(_

+2_0 )--_ (I +cos t) sinlsln(*- 2_0) (165)
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Again, if more than one disturbing body is
considered, it is necessary to consider them in-

dependently, compute the resultant displacements

n, _, _ in the respective coordinate systems, re-

solve the displacement vectors and add. Despite
the limitation imposed by the assumption of cir-

cular orbits, this approach affords a simple means

of computing realistic coordinate variations for

many satellite orbits.

The magnitude of these radial perturbations
for near earth circular orbits can be seen in

Fig. 8. This data is based on the work of Blitzer
(Re.*'. 35).

Another approximate method for computing
the effects of external masses on the orbit of an

earth satellite has been reported by M. Moe (Ref.

36). This work is outlined below:

First consider the perturbations of a satellite

orbit due to a disturbing body assumed to be in

the X-Y plane. The geometry is shown in Fig. 9.

The orbit will be described in terms of the oscu-

lating ellipse whose elements are a, e, M 0, _,

_, and i, and expressions will be derived to com-

pute the approximate changes in the elements

during one revolution of the satellite. The param-

eters i, _, _, and Fare taken relative to the dis-

turbing body plane. For an earth satellite, this

is either the ecliptic or the earth-moon plane.

_ow, if the equations for the variation of ele-

ments of Section C-1 of this chapter are utilized

together with the components of l&, S and W, the

approximate changes in the elements can be evalu-

ated. Moulton (Ref. i, p 340) gives the form of

these forces. Under the assumption that the ratio

of orbital radius to the distance to the disturbing

body is small these components may be expanded

in powers of r/a d and all but first order terms

can be neglected. This procedure yields:

R = Kdr (I + 3 cos 2 Fp)

6Kdr [cos F sin (¢_ + 8) - sin F cos (c_S

+ e) cos i] cos F
P

W = -6Kdr cos F sin i sin FP

where

K d = _d/2ad 3 = _H

a d = assumed constant.

Letting E stand for any orbital element and /_ E

for the change in that element after one revolution
of the satellite (from perigee to perigee}, we have

t = 2_In 2_

y d. y d. dt/xE = _t- dt = _-_ d8

t=0 O=0

(166)

where t is time measured from perigee passage

of the satellite Since ixE is supposed to be

small compared to E, it is permissible to approxi-

mate all variables in the equations for element
variations for dE/dt by the values they would have

in the unperturbed orbit, and to approximate dt/

d0 by its relationship to the conservation of angu-
lar momentum, h

2
dt r
_-6 -- -B-

where h = na 2 _1 - e 2 is assumed constant.

Since the angular velocity of the satellite is usu-

ally large compared to the angular velocity of the

disturbing body, we may further assume that F
is constant during the time the satellite takes to

complete one revolution. Then integrals of the

type in Eq. (166) can be evaluated easily. The
results are

:a : 0 (i67)

__q = 15. HTra4e _'_ {sin 2 1" COS 2_cosi

- sin 2_(cos 2 F - sin 2 F cos 2 i)}

(t68)

where q = rp : a (1 - e)

e = -_I _J'q (169)
a

Ai =-3 Hva 3 {2 sin2 F sin i [I -e 2 (i

/--Je

- 5 COS 2 _)] 4-5 e 2 sin 2 F sin2 usin2i}

/,_ : - 3 HTra 3 {5 e 2 sin 2 F sin 2 _ (170)

+4 sin 2 F cos i [(I e 2) cos 2

/x_ = - cos i /x_2 + 6 H_ra 2 I_- e 2

5 sin 2 F sin _cos _cos i

- 1 +3 sin 2 F cos 2 i - (5 sin 2 _J

- 4) (cos 2 F - sin 2 F cos 2 i)}

(172)

where

H =

M D GM D

3 3
2 aD--_M E 2 2 aDa

Here, M E and M D are the masses of the earth and

the disturbing body, a D is the average distance to

the disturbing body.
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G is the universal gravitational constant and n

is the satellite's mean angular motion.

For the moon as the disturbing body

H = H = 0.68736 x 10 -18 (naut mi) -3
m

= 10. 8207 x 10 -20 km -3

= 2. 80763 x 10 -8 (earth radii) -3

If the disturbing body is the sun, then

H = H = 0.31584 x I0 -18 (naut mi) -3
S

= 4. 97207 x 10 -20 km -3

= 1.29010 x 10 -8 (earth radii) -3

Note that H m = 2. 17631 Hs, but remember that

the fundamental planes are different for the two

perturbations. Assuming that the other variables

(a, e, i, and _.) remain constant during one period,

_q can be integrated from 0 to _ (the period of F)

to give the approximate total change. Dividing by
gives the average change in q for one revolution

of the satellite. Similarly, formulas for the
average change in the other parameters can be
determined to be:

_qsec
= -7.5 HTra 4 e i - e 2 sin 2 _sin 2 i

(173)

1 (174)
&esec = - a _qsec

/k W
sec

sea

= 6 H=a 3 _ _ + 5 sin 2 _ (e 2

- sin 2 i)] (175)

= -3.75 Hlra 3 (e 2 sin 2 wsin 2 i)

(176)

-3 HTra 3 cos i [(1 - e 2) cos 2

Ai]se C =

+ (I + 4 e 2) sin 2 _] (177)

where the subscript sec means secular. To com-

pute the changes per unit time, divide by the

period of the satellite in the specified time units.

Note also that H and a must be in units consistent

with those used for q.

The above expressions indicate the secular

trend in the various parameters due to a disturb-

ing body, for example, the moon. To illustrate

the meaning and importance of these formulas, it

is helpful to return to the complete formula for

the perturbation of perigee distance q.

Recall from Eq. (157) that

Aq = A Isin 2 F cos 2 _cos i

-sin2 _ (cos2 F - sin2 F cos2i)l

where

A = 15Hva4e _- e_.

Using trigonometric identities, the expression

for Aq can be written in the following form:

Aq = _qper + _qsec'

where subscript per means periodic

Aqper = A [sin 2 F cos 2 wcos i

- 2 cos 2 F sin 2 c_(1 "+ cos 2 i

and

Aqsec = - ½A sin 2 _sin 2 i.

Thus /Xq can be expressed as the sum of two

terms; the first of which is a periodic function

of F, and the second is independent of Y. This

nonperiodic or secular term is precisely /_qsec

which was previously derived.

The effect indicated by the periodic term

(eqper) can be better understood if its form is

changed as follows

qper = AB (sin 2F cos a - cos 2 F sina)

= AB sin (2 r - a)

where

B = los 2 i+_ sin 2 2 _sin 4 i

and a = ± cos-I cos 2 _cos i
B

holding if sin 2 _ is negative.

with the minus sign

The formulas for _w, txi, and Af2can each be

expressed in a similar form, and in each case the

secular terms have already been derived. Since

the forms of the periodic terms are not important

for most purposes, they will not be given.

From this point the method of computation

parallels Penzo' s.

6. Drag Perturbation of a Satellite Orbit

The effect of air drag on the osculating orbital
elements of a satellite can be determined using

the approach outlined by Moe and discussed under
solar lunar perturbation. The effect on each ele-

ment is expressed as the change in that element in

one orbital revolution. That is, if the elements

at a certain perigee are a, e, i, w, and _, then
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the elements at the following perigee will be

changed by the amounts ZXa, &e, ZXi, A_, and

&i2 (Refs. 37 and 38).

a. Perturbation equations and the drag force

To obtain expressions for these changes,

start with Eqs. (178) through (181), relating the
time derivatives of the orbital elements to the

components of a general perturbing force. A

particular form of these equations, given by

Moulton (Ref. 1, pp. 404 to 405) and Moe (Ref.

da 2e sin@ 2a _l - e 2
- R+ S

_- 4 2 nr
n - e

(178a)

cle i-7_e2sin0 a + [2 (,__t- = na na_e r

7

- r I S (178b)

d_ r sin (0+w)
_- = w (178c)

2 i e 2na - sin i

39), is

di r cos (e+_.,) W (178d)

na 2 i_e -_

d_ r sin (0 + _) cot i W -_-jyt=
2 i e 2na

_11- e 2 cos 0
R

nae

(,+ ,)nae 1 + e cos 0
sin 0 S

(178e)

R is the component along the radius vector

(measured positive away from the center of the

earth), S is the transverse component in the in-

stantaneous plane of the orbit (measured positive

when making an angle less than 90 ° with the
satellite's velocity vector), and W is the com-

ponent normal to the instantaneous plane (meas-
ured positive when making an angle less than

90 ° with the north pole).

When the disturbing force is caused by air

drag, the perturbing acceleration is

1 _ V 2 CDA _ V 22 p (r) m - B p (r)

which has the components,

R = -B p (r_) V V 0
e sin O

_1 + e 2 + 2e cos O

V (l+e cos 0)

vg:7 _ _+ 2e cos 0

-V a cos

(179a)

(179b)

and

W = -B p (r) V V a sin (179c)

where

B

m

CDA

=-I_--

= mass of the satellite

C D = drag coefficient

A = effective area of the satellite

r = radius vector from the center of the

earth to the satellite

p (r) : density of the atmosphere at r

V = velocity of satellite relative to the

atmos phe re

V 0 = velocity of satellite relative to inertial
space

V a = velocity of the atmosphere relative
to inertial space

= the angle between V and the plane of
the orbit a

b. Assumptions and approximations

Equations (168a), (168b) and (168c) can also

be expressed in terms of the eccentric anomaly

E, instead of the true anomaly 0. This step is

desirable since the integration of Eqs. (167a)

through (167e) over an orbital revolution can be

most easily carried out by using E as the variable

of integration (limits 0 to 2Tr). To facilitate the

integration, the following assumptions and ap-

proximations are made:

(1) The density, p (r), is spherically sym-

metric. It is assumed to change ex-

ponentially above perigee height, i.e.,

-(h - hp)/H

p (5) = pp e (180)

where pp is the density at perigee. It

is a function of the height, hp, of peri-

gee above the surface of the earth. H
is the scale height at perigee altitude

and h is the height of the satellite above
the surface of the earth.

(2) In integrating the effect of the perturbing
force over one revolution, the satellite

is assumed to move along the unperturbed

Kepler orbit. This is a good approxima-
tion because the perturbation has little
effect on the orbit over one revolution.

This is not true during the last few
revolutions of the lifetime. Other

methods must be used to determine the

effect of air drag during that short
time.

(3) The integrand is expanded in the quanti-

ty e (I - cos E) (which is always small
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wherever the perturbing force is im-

portant). Only the most important
terms of the series are integrated.

(4) The entire atmosphere rotates at a

uniform angular rate equal to the rate
of rotation of the earth about its axis.

Several investigators (Refs. 40 and 41} have

carried out integrations using variants of the

above approximations. Sterne (Ref. 41), for

example, in addition to treating the problem with

a spherically symmetric atmosphere, also made

a more refined analysis taking account of tile

atmosphere, s flattening. However, for altitudes

above 200 naut mi or 370 km, the neglect of the

diurnal bulge causes errors, which overshadow

the improvement obtained by considering atmos-

pheric flattening. This was shown by Wyatt (Ref.

42). Moreover, fluctuation in the density of the

atmosphere causes uncertainties large enough
that highly refined expressions for the changes in

orbital elements are not warranted for most pur-

poses.

c. Approximate changes in osculating orbital
elements

Given below are methods useful in simplified

programs, based on approximations (i), (2), (3)

and (4). Most of the results were obtained in

series form, but only the dominant terms are

given here. For higher order terms see Sterne's

paper (Ref. 41).

The case of ae/H >2. When the parameter

ae/H "_2, the changes m the orbital elements per

revolution are

Aa = -Q

_e -- -Q

i+ i - 8e + 3e 2 lso (I - e_) J

8c (i - e 2) J

&i = -D(1 - e) 2

+ (4f* +

(181a)

(181b)

{COS 2 i [8 (! +el

9e2 +6e"15)c°s2_]}(i- e) 2 sini

(181c)

{,[,Al2 = -D(1 - e) 2 1 +_-_ f*

+ 9e 2 +Be - 15] _ sin_cos

(I - e) 2 ] !
_J

I/2

_ = -_ cos i

where

Q = 2B pp a 2 f (i + e)2 ___)

(i - e2) I/2

(181d)

(181e)

c = ae/H

2_ 1/2

e (1 - e) 1 - e

,.:_.1 - e _ +

_e fl/2 (2rrc)- I/2
D = 2_B --6- app

cos i

c_
e

angular rate of rotation of the earth,s

atmosphere in inertial space (2,-.in

approximately 24 hr)

It might also be useful to know how the radius of

perigee, q, changes in a revolution; q is simply

related to a and e through the equation

q =a(: -e)

Thus, the change in q, ",,/henac,/H > 2, is

I -e i
(181f)

and the change in the period can be found from the

change in a through the relation

The case of ae/H : 2. When the parameter

ae/H ( 2, the appropriate changes are

Aa : -G (I +e) 3/2
(I - e) I/2 i - 2e) I° (c)

+ 2e II (c)] (182a)

_e : - Oa _, 1 - e I(I - e) 11(c)

_ = -K [I 2 (c) - 2e I 1 (c)] sin _cos

{182d)

{182b)

+(cos2_) _2(c)

(182c)

/_ = -AI2cos i (182e)

and

_ .1_e - e) (c) (1Aq :-LifT-r- _ [(I _ I° -

- 3e) I1 (C) - _ 12 (C)] (182f)

where

CDA a 2 e-C
G : 2_ _ ppf

/
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CDA _e a pp _-e -cK = '_ m n

and In is the Bessel function of imaginary argu-

ment and nth order. The secular time rate of

change of the elements may be obtained by

dividing Eqs. (181a) through (181f) and Eqs. (182a)

through (182f) by the Kepler period,

= 2_ra3[2/ _.

From Eqs. (18I) and (I82) it can be seen that

the rotation of the earth's atmosphere relative to

the satellite affect3 the inclination, node, and

argument of perigee of the orbit. If there were

no atmospheric rotation _e =0), only the semi-

major axis and eccentricity (hence the height of

perigee) would be affected.

The orbital parameters most sensitive to

drag are the heights of apogee and perigee, the
period, and the eccentricity The rea__on for this

sensitivity is primarily the fact that V relat%ve to

the atmosphere is not vastly different than V rela-

tive to space. Thus, the perturbing force is

nearly planar and therefore affects semimajor

axes and eccentricity.

The procedure for evaluating the effects due

to drag is now clear: First the element variations

are computed, then the elements are adjusted and

the process continued. If a sufficiently small in-

terval of time is utilized for the stepping proce-

dure, say i revolution for satellites above ap-

proximately 180 kin, then the element changes

will be sufficiently small so that they may be

added to those produced by the sun, moonL ablate-

ness, etc., to produce a first order approximation
to the total solution. Numerical data and discus-

sions of the planar effects are presented in Chap-

ter V (Satellite Lifetime). Thus, graphical data

will not be included at this point. Data for the non-

planar parameters will not be prepared because

of the fact that too many parameters are involved

to make such a presentation meaningful. Rather

it is suggested that these effects be evaluated for
each orbit.

d. Contribution of random drag fluctuations

to error in predicted time of nodal cross-

ing of a satellite, assuming perfect initial
elements*

If the period is known to be exactly P(0) during

the zeroth revolution, then the period will be pre-
dicted to be P'(n) during the nth revolution. This

prediction will be based on the average rate of

change of period during the preceding revolutions.
But suppose there are random fluctuations about

the average change in period. Let these random

fluctuations be Pl' P2 ..... Pj ..... PN"

Then after N revolutions the period will actually
be

N

PiN) = P'(N) + Z PJ

j--i

*This subsection was included as "Appendix E,

Special Derivations" in Flight Performance

Handbook for Orbital Operation, STL report

prepared under Contract NAS 8-863.

The time of nodal crossing will be predicted
to be

N

t'(N) = t(0) + > p, (n)
Z...

n=l

while the actual time of nodal crossing will be

N N

T
P'(n) + >tC'a = t(o)+ /.C ,...,

n=l n=l

r(n)

where

n

r(n)- I PJ"

j=l

The error, E(N), in the prediction is

N N n

E(N) = -Z r(n) = - _, _] Pj-

n=l n=l j=l

This double sum can be written out explicitly as

E(N) = - [(pl ) + (Pl + P2 ) + o m

(Pl + P2 + " " + ON)]"
+

Rearranging terms, we obtain

E(N) = - L_Npl + (N - 1) P2 ÷ Q O + PN] "

(183)

Case a: Fluctuations Independent from Revo-

luti_)n to Revolution. If each pj _s independent

and has the standard deviation F, then the

standard deviation of E(N) is

Grins(N) _ E(N)rm s = n

=i

= F [N(N + l) (2N + i)/6] 1/2.

(184)

Case b: Fluctuations Correlated over 25

Revolutions. On the other hand, suppose that

the random drag fluctuations are perfectly cor-
related over intervals of 25 revolutions, but in-

dependent from one interval to the next. A 25-

revolution interval is chosen because it is the

usual smoothing interval in published orbits.

We begin with Eq (183).

Since the accelerations are assumed to be

correlated over intervals of 25 revolutions,

Pl = P2 = " " " = Pq PA

Pq+l = Pq+2 = " " " = Pq+25 = PB

Pq+26 = Pq+27 = " " " = Pq+50 = PC
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The fluctuations in acceleration about the

smoothed value are illustrated in the following

sketch.

Pn

L......_
+a_/_ Pa PC

oV///A "" -p.--,

0 q q + 25 q _- 50

n = Rcvolution number

The possible values of q range from 1 to 25.

In the absence of particular information, all

values of q will be assigned equal weights. When

n = I, p = PA" When n = 2, p will equal PA tf

2 < q < 25, and p = PB i.f q = i. When n = 3,

P = PA if 3 < q< 25, and p = PB if q = I or 2, etc.

The equal weighting of the 25 values of q can be

expressed by averaging over the ensemble of
possible values, that is

Pl = PA

P2 = 0/25) (24 PA

P3 = (1/25) (23 PA

+ pB )

_- 2 pB )

*°°o°**°.°.o.oo°°°o,oo°o

P25 = (i125) (PA + 24 pB )

P26 = PB

P27 = (1/25) (24 PB + PC )

PS0 = (i/25) (PB + 24 pc ), etc.

The timing error, averaged over the ensemble
of possible values of q, is found by substituting

these pj _s into Eq (184).

= - [Np A+ (N - 1) (24 #A + PB)/25

+ (N - 2) (23 PA + 2 pB)/25

+ ... + (N - 24) (PA + 24 pB)/25

+ (N - 25) PB + (N - 26) (24 PB

÷ pc)/25 + ... + (N - 49) (PB

+ 24 pc)/25 + (N - 50) PC

+ (N - 51) (24 PC + PD )/25 + " " "J

for all (N - k)> 0 ... (185)

Collecting coefficients of PA' PB' and PC

Let

E'CST= - (PA/25) [25 N + 24 (N 1) +
o m g

+ (N - 24)] - (pB/25) [(N i)

+ 2(N - 2) + ... + 24(N - 24)

+ 25(N - 25) + 24(N - 26) + ...

+(N - 49)] - (PC/25) [(N - 26)

+ 2(N - 27) + ... _ 24(N - 49)

÷ *''] -''" 3

for all (N - k) _ 0...

r

=(X) -_-L25 x ÷ 24(N - I) + ... _- (N - 24)] g

b(N) _ [ (N - 1) + 2(N - 2) + + 24(N 24)
o @

÷ 25(N - 25) + 24(N - 26) + ...

+ (N - 49)]

e(N) =- E(N - 28)+ 2(N - 27) + ... 24(N - 49)

+ 25 (N - 50)+ 24(N - 51)+ ...

+ (N - 74)]

=- [(N - 51) + 2(N - 52) + ...d(N)

+ 25(N - 75) + ...]

e(N) _ ... etc.,

for all (N - k) > 0.

If the standard deviation of pj is a, and each pj
is independent, then the standard deviation of
E-I-Nffis

Krm s (N)-[_r('l_')']rms = (a/25) [a2(N)

1/2
+ b2(N) + c2(N) + ...1 °

.J (186)

In case N <_ 25, a(n), b(n), and c(N) are calcu-
lated as

b(N) = (N - 1)+ 2(N - 2) + ... +24(N - 24),

for all (N - k) > 0
and for N < 25

N -I N-1 N-I

q=l 1 1

= N2(N - 1)/2 - N(N - 1) (2N - 1)/6

b(N):E (N-1)/2][N-(2N 1)/3]
for N <_. 25

a(N) = 25(N + N - 1+ ... + 1) - b(N)
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a(N)= 25 N iN + 1}/2 - biN).

for N _< 25

ciN) = 0. for N _< 25.

In case N is greater than 25, the contribution

of the first 25 terms in Eq (185) to biN) is

24 24 24

bl(N) = I q(N _q) = N Z q __ q2

q=l 1 1

Ol(N) = 100 (3 N - 49),

for

a(N) is then given by

N >25.

a(N) = 25(N - N - 1 .... - N - 24) - bl(N)

a(Z) = 625 (N - 12) - bl(N),
for N -. 25.

We define b2iN) to be the contribution to biN)

of all those terms of the second 25 terms in Eq

(185) for which the quantity N - k is positive.

For N < 25, b2(N) = 0, and for N k 26, b2iN) is
given by

b.2(N) = a(N - 25),

for N 2 ;26.

biN) is given by

biN) = bl(N) + b2(N).

The quantities ciN), diN), etc., are given by

ciN)= 0, for N < 26

ciN)= b(N - 25),

for N _> 27

d(N) = 0, for N < 51

d(N) = b(N - 50),

for N ._> 52

etc.

Comparison of Case a and Case b. The limits
of the equations for correlated _md uncorrelated

errors will now be calculated, to show how the
two cases are related. For uncorrelated errors

ICase a), take the Ilmit of Eq (184}.

lira F iN(N+ i) (2 N + 1)/6] 1/2 = F(N3/3) 1/2

N--_

(187)

For correlated errors (Case b), take the limit of
Eq i186)

lira (a/25) _[s25iN -12)-100(aN-49)]2
N --* oo

+ [100 (3 N - 49) + 625(N - 37)

- 100 (3 N - 124)]2 +
J continued

+ kl00(3 N - 124) ÷ 625 (N - 62)

-ioolaN-199_]2+ .}1/2

= lima {[13 (N - 8)]2+ [25 (N - 25)] 2

+[25 iN- 50)]2+ ...} 1[2

Let N : 25 M. where M is an integer. Then the
above limit becomes

(25) 2 _ _ M 2 + /M - I)2 + (?.I - 272 ...lira

M -.*_
L

12 2+ _M2+ [(13/25) (M _ 8/25) ] } 1/2

= lira (25) 2 a {M (M + 1) (2 M + 1)/6
M.-,

1/2

- M 2 _ [(13/25) (Xl - 8_25)]' (

:um (_.5)_o _I (M + I)i2M + I)/6_i/2
M --_cc t !

i/2 t12
: (25) 2 (_ (M3/3) = 5_ (N3/3) (188)

Thus, the limits (5) and (6) for correlated and

uncorrelated errors approach the same asymp-

totic form for large N. This makes it possible

to evaluate the constant F. which must equal 5q.

The rel:_donship F = 5a corresponds exa,-tlv to

the situation in the theory of errors, tn wcich

the standard deviation of the mean of k [ndei)en-

dent observations equals the standard deviation

of one observation divided by the square root of k.

The asymptotic form Eq (188) is a convenient

approximation to represent the error contributed

by random fluctuations, when the initial elements
are perfect. The satellite accelerations, i.e..

the rate of change of the period published to

Juty 1961, furnish no evidence _or choosing be-
tween Case a and Case b, because they are
smoothed over intervals of 25 revolutions.

7. Radiation Pressure

Above a height of 500 naut mi or 926 km,

radiation pressure usually has a greater effect

on the orbit of an artificial satellite than air drag

(though for ordinary satellites, the effects of
radiation and drag both are very small). How-

ever, both effects are significant for balloon

satellites since the area-to-mass ratio is large.
IThe area-to-mass ratio of the Echo I balloon

satellite was 600 times that of Vanguard I.) At

first glance it may appear that it is possible to

handle this force as was done in the previous

sectlons. However, this is not the case because

of the fact that the earth affords a shield from

the sun's rays during a portion of the orbit. This

shadow effect is investigated in detail in Chapter

XlII.

Kozai (Ref. 43) has integrated the pertur-
bations of first order over one revolution, in

terms of the eccentric anomaly, E. The satellite

leaves the shadow when E equals E l, and enters

the shadow when E equals E 2. (Reradiation

from the earth is ignored. )
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The perturbations over one revolution are

given by

5 a = 2a3F (S cos E + T _i - e 2 sin E)I E2]

IE 1

E2 (189)II

+ T (-2e sin E + _ sin 2E) I

IE 1

+ _ ,_ TdE l (1907

6i
=a2F W [ {(l+e2) sin E

e } ie 2- 2i- sin 2E cos _ + - (cos E

e I E22[ cos 2E) sin

E 1

- _- e W cos Lo dE (191)

sin i 6_ = a2F
W [ {(l+e2) sine

Vt - e

e "_ '6 e2- _- sin 2E sin_ - - (cosE
!

e I E22[ cos 2E) cos _o

E 1

'S ]- 1/ e W sin_ dE

5¢_ = - COS i 6_ + a2F "--%q_ee [

(192)

S(e sin E

+ _ sin 2E) + T _(e cos E

- cos - [SdE (193)
E l

2=

[ ,a (i
,%

- -_Tcos i 6_

[{ e }- 2a2F S (i + e 2) sinE 2[ sin2E

- T _1 - e 2 (cos E- _[cos2E)] E2

IE 1

_r e SdE (194)

where the limits of integration are E 1 and E 2

unless other values are written; S and T are the

expressions of S (e) and T(0), in which _, is re-

placed by ,.,; that is,

s = s(0).
(195)

T = T(0).

If the satellite does not enter the shadow dur-

ing one revolution, the terms depending explicitly

on E vanish, and, in particular, 6a vanishes.

In the expressions of 5_ and 6_, indirect

effects of the solar radiation pressure du'ough
L and {2 must be considered as

dSa _ d_ d_ d{_ (196)

de 6e + _- 6i+ _-_- 5a.

The disturbing functions S(e), T(e), and W

are

S(8) = - cos 2 i 2 ,cos _ cos &0 -¢ - £)

_ sin 2 i 2
_-sin _cos (kn + £2 - _b)

1

- _ sm t sm e Ic°s (k 0 - d_)

- cos (-x. 0 -4,)}

2i 2 E
- sin 2-cos 2" cos (£_ - k 0 - ¢)

W

2i .2(
- cos -2 sm 2 cos (-k 0 - e -n),

2 _ (197)

= sin i cos 2- sin (X 0 - £)

- sin i sin 2 _sin (k 0 + _)

- cos i sin, sink 0 (198)

where k 0 is the longitude of the sun, and _ is the

obliquity. The expression of T(8) is obtained if

cos in S(e) is replaced by sin except for the trig-
onometrical terms with an argument i, E, i/2,
or _ /2.

The conventional symbols are used for the

orbital elements: a is the major axis, e the ec-

centricity, i the inclination, _ the node, w the

argument of perigee, M the mean anomaly, and

e the true anomaly. In addition,

=e+_

and

p = a (1 - e2);

n2a3F S(8), n2a3F T(8), and n2a3F W are three

components of the disturbing force due to the
solar radiation pressure in the direction of the
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radiusvectorof thesatellite,in thedirection
perpendicularto it in theorbitalplane,andin the
normalto theorbitalplane;andF is aproductof
themassarearatio, solar radiation pressure,

and a reciprocal of GM,

The smallness of the effect of radiation pres-

sure on an ordinary satellite is illustrated by the
orbit of Vanguard I{Befs. _4, 45 and 46).

Radiation pressure periodically changes its height

of perigee by about one mile. The effect of rad-

iation pressure on the period is obscured by the

fluctuations in air drag. Both radiation pressure

and air drag would have had very small effects on

a conventional satellite at the original perigee

height of Echo I, but both effects were magnified

by the area-to-mass ratio, which was 600 times

that of Vanguard I. The consequent large effects

on the rate of ehango of period are shown in

Fig. I0, which originally appeared in Ref. 45.

The correlation of air drag with the decimeter

solar flux is also shown to persist to this great

height (see Chapter If). Note also in Fig. i0 that

radiation pressure sometimes has no effect on

the period. This occurs when the whole orbit is

in sunlight. [E 2 = E l + 2 _ [n the expression for

6a of Eq (194).]

The radiation pressure sometimes acts to in-

crease the period. Echo I was the first satellite
for which this was observed (Ref. 45). It was

also the first satellite for which the eccentricity
was observed to increase. This can be clearly

seen from the increasing distance between peri-
gee and apogee in Fig. 11, which is modified

from the NASA Satellite Situation Report of

July 18, 1961, though for most satellites the

eccentricity has decreased during the lifetime.
Detailed behavior of a satellite due to this per-

turbation cannot be tabulated in a parametric

form due to the large number of factors affecting
the solution. These factors include longitude of
the nodes, orbital inclination, position of the

earth in its orbit and semimajor axis and eccen-

tricity of the orbit. Thus, it is necessary to ob-
tain a particular solution for the perturbed rates

of the elements given a set of desired elements,

then incorporate them in a numerical manner with
the rates produced by other forces.

The analyst is urged to consult a growing body
of literature for this perturbative influence.
Some of these references have been coUected and

presented as Refs. i, 34, and 43 through 57.

8. Satellite Stability

The study of satellite stability concerns the

long term orbital behavior of artificial satellites.
It attempts to provide the mission analyst with

answers to such questions as: How will the various

orbital elements change? What will be the magni-

tude of these changes? Will their pattern be highly

erratic or regular? Will there be a change in the

pattern from erratic to regular or vice versa?
In order to answer these and other questions it is

necessary to combine the perturbing forces acting
upon the satellite orbit and their effect upon the

various orbital elements of interest for a particu-
lar mission.

This section discusses some approximate

methods for dealing with satellite stability
problems. The formulas and methods given

here can be used to: (i) construct approximate

computer programs, which are much faster and

cheaper than "exact" programs; (2) solve some
satellite stability problems without the need for

a high speed computer; (3) help in gaining more

insight into the behavior of satellites.

Section C2 of this chapter discussed the ap-

proximate method of M. Moe and presented most
of the formulas which will be used in this sec-

tion. The following discussions present some of
the results obtained using this method. Although

only earth satellite results are given here, these

methods have also been used extensively for
lunar satellites and can be applied to orbits

about other planets. Part 2 illustrates a method

for computing satellite trajectories by hand.

Care must be taken not to use the methods of

this section on orbits which are physically too

large, in which case the approximations for

luni-solar perturbations break down. While
definite rules cannot be laid down, Table 4

should prove helpful. The table lists the various

bodies and the approximate upper limits where

"very good, " "good, " and "fair" results can be
obtained. The parameter used is the period of

the satellite in days.

TABLE 4

Validity of the 'Approximate" Method as
a Function of Orbital Period {days)

Very
Good

Earth 2.

Moon 0.5

Mars 45.

Good Fair

4.

1. 1.5

60. 90.

Venus 15. 25. 35.

Mercury 5. 8. i0.

A special case arises for very remote earth
satellites which do not pass near the moon.

These may also be treated by approximate meth-

ods and in these cases some orbits with periods

as long as 45 days can be studied. For this class
of orbits the effects of the moon are ignored and

the sun is treated as the only disturbing body.
Another class of orbits for which the methods of

this section are not very helpful is the very
near earth orbit where drag and oblateness

perturbations are predominant.

Accurately predicting the future history of an

artificial satellite is difficult and expensive.

Fortunately approximate methods often give good

results. This section discusses approximate

methods which have been extensively used for
terrestrial and lunar satellite orbits.

It is convenient to consider the stability of the

orbit of an earth satellite as a two-body problem

with perturbations introduced by the sun, moon,
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earthshape, drag and radiation pressure. These
effects must be analyzed separately and then

combined. This procedure is accomplished only

after allowing for the fact that the various equa-

tions refer to different planes; the results can

then be summed to yield the new orbit. The

process can then be repeated.

Performing this operation by slide rule or

desk calculator is very slow and requires about

8 hr to compute the change for one revolution, or

I man-year for 1 month of the satellite's orbit.

However, the combined equations can be eval-

uated on a high speed computer such as the IBM

7090 at the rate of about 5 rev/sec. Subsequent

paragraphs of this section discuss results ob-
tained in the latter manner.

When high speed computers are not available,

good results can be obtained by using the secular
terms to estimate the results over many revolu-
tions. This method is illustrated in Part 2.

Part 1: Sample Results by "Approximate"

Method. Early in 1961, a study (Ref. 58) was
at STL to determine the lifetimes of earth

satellites in highly eccentric orbits. The project
was the Eccentric Geophysical Observatory

(EGO). Some of the results of this study will be
used to illustrate the approximate method and

the general problem of orbital stability.

The experimental objectives of Project EGO

made it desirable to keep perigee height as low

as possible consistent with lifetime require-

ments. A graph of the suggested nominal an-

swering these requirements is shown in Fig. 12.
This graph will be discussed in detail since it

illustrates most of the important features of this

type of orbit. The initial conditions in terms of
equatorial spherical coordinates are given in the

figure. These were the suggested burnout con-
ditions of the missile which were to inject the

satellite into orbit. The resulting orbital param-

eters in terms of equatorial coordinates are as
follows:

a = 32,879 naut mi _a = 135. 617
= 60,892 km

e = 0. 891057 Launch time =
3 hr 30 min GMT

i = 31. 289 °

Launch date =

_a = 41. 796 ° 1 April 1963

The most important parameter in the EGO

study is perigee height or equivalently perigee

distance q and to the first order, the only per-

turbations affecting q are caused by the sun and

the moon. The periodic term for the lunar per-

turbations of q may be written as

ix qper = Am Bm sin (2r m + a m )

where A m, B m, and a m are as given in Section

C5 of this chapter. Therefore the moon causes

the satellite's perigee to alternately rise and
fall. The period is one-half the moon's sidereal

period or a little less than fourteen days. The
amplitude for EGO-type satellites is about 40
naut mi or 74 kin. The sun has a similar effect

but the period is one-half year and the amplitude

is about 200 naut mi or 370 kin. Figure 12 is a

graph of perigee height versus time. Note that

the moon waves are shown only for the first 100

days. The rest of the curve shows the envelope

of minimum perigee height. This simplification

is adopted for all similar graphs in this section.

Note also that the moon waves should be just a

sequence of separate points plotted at 1.73-day
intervals since perigee is reached only once

each revolution of the satellite whose period was

1.73 days.

Now consider the comOined secular effect

caused by the sun and moon. This is given by

the following formula which is derived in Section

C5 of this chapter.

1
A qsec = - ,_ A sin 2_ sin 2 im m m

+ A_ sin 2(.E sin 2 ic) (199)

where

and

A =15H
m m

,{; 2va e -e

!

A = 15 H ,ra4 e _I - e 2.
E S

Recall that H m and H s are positive constants.

Note that the subscripts m and E indicate moon

plane and ecliptic plane parameters. Equatorial

parameters will be indicated by the subscript cr

in the following discussions.

Initially, the nominal orbit had equatorial

= 31.29% D = 41.80 ° andparameters i cr

= 135.62 °, and ¢_ = 94.68 °, i = 20.30%_ m c

= 87.47% and _ = 85.69°° respectively. At
E

the end of 402 days, the orbit parameters take

on the values: a --32, 793 naut m[ or 60, 733 kin,

e = 0.8893, ia --37.56% m R --8.55 °, ¢J --181.38%

i = 16.11 °, ¢_ = 187.07% i = 14.75 °, and
m m

_ = 167.96 °. Note that the secular trend is now

nearly 0 which is again shown in Fig. 12. At

the end of 554 days, the orbit parameters are:

a = 32, 779 naut mi or 60, 707 km, e = 0.8902,

ia = 36.87% _a= -1.65 °, ¢_a = 195.61%

i = 16.77 °, ,, = 214.50 °, i --13.45 °, and
m m

= 198.43 °. The secular trend is now negative.

Now a brief discussion will be given of the

other figures in this section. In the initial EGO

study (Ref. 58), the burnout conditions of the

missile were given. The only variation per-
mitted was in time of launch. A series of satel-

lite lifetime runs (Ref. 59) were made on the

IBM 7090 with 1 April 1963 as launch day. The
first run was at 0 hr GMT, the next at 2 hr and

so forth to 24 hr. The results are illustrated in

Fig. 13.

At first glance, it is surprising that merely

changing the launch time would have such a large

effect on the satellite's future history. This
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behavior results since changing the launch time

of day changes the satellite' s nodal longitude

(Ra). At 0 h, _a = -10. 849. From then on _a

increases by 30. 083 ° for each 2 hr added to the
launch time. This, of course, is due to the

earth rotating 360. 996 ° in 24 mean solar hours.

Changing _a does two important things. First,

it changes the phase of the sun and moon desig-

nated by F and F . For EGO-type satellites,
m

the moon's periodic effect is only about 40 naut
mi or 74 km in amplitude and hence is not too

critical. The sun's periodic effect, however, is

very important. Secondly, changing f.'_ changes

the ecliptic and moon plane parameters of the
orbit and hence changes the secular trend of the
satellite. The secular trend £s large and posi-

tive for the 8-, 10-, 12-, and 14-hr orbits.

In Fig. 14 comparison is made between ap-

proximate results as obtained from the Satellite
Lifetime Program (Ref. 59) and results obtained

by integrating the equations of motion in a way
that is essentially exact. Note that the agree-

ment is good.

Figure 15 illustrates how oblateness indirectly
affects perigee height even though its direct
effect is zero to first order. It does this by

changing the equatorial inclination ia and the nod_d

longitude 12 . This in turn changes the ecliptic

and moon-plane parameters i _ im, and ¢_ .E' E' m

This then changes the secular effect as is shown.

In Fig. 16 the effect of leaving out the effects

of sun or moon is demonstrated. Here the nomi-

nal graph is shown in comparison with the same

orbit computed with the sun only and with the

moon onty. Note especially the difference in

secular trend.

The effect of making various changes in the

initial parameters of the nominal orbit is shown

in Figs. 17, 18, 19 and 20.

The graph of the 6-hr orbit for a period of

I0 yr is shown in Fig. 21. This orbit illustrates

an important phenomenon. From the secular

trend in perigee distance given by Eq (185) it

follows that A qsec depends mainly on the incli-

nation and argument of perigee. The inclination

does not change very rapidly; however, the argu-

ment of perigee is perturbed very much by oblate-

ness and to a lesser extent by luni-solar effects.

As i increases, oblateness perturbations get

smaller (0 < i< 63.7 °) and as a result_m and

change slowly. Thus the secular term can be
{

nearly constant over a long period of time. If

this happened when the secular trend was down,

the satellite would probably expire. This effect

also explains the short life of most lunar satel-

lites (Ref. 58).

Part 2: Hand Calculation of an Earth Satellite

Orbit. The detailed revolution by revolution ap-

pr-'_mate calculation of a satellite orbit is too

slow and tedious to be practical by hand. However,

the process can be accelerated by treating the

periodic and secular terms separately.

To illustrate this method, part of the tra-

jectory of the EGO Nominal will be calculated

{see Fig. 12}.

Consider first the periodic term for the

lunar perturbations (given in Section C2 of this

chapter).

_qper(mt) = Am Bm sin (2Fret -a m)

where

-18 -3
H : 0.68736 x 10 (naut mi) was

m evaluated in Part 2.

A : 15. 3 naut mi = 28. 3 km
m

B = 0.961
m

am = -170,64 °

(Note that the minus sign is taken when

sin 2w m is negative.)

The parameter Fret denotes the angular

position of the moon measured from the satel-

lite's ascending node at time t (see Fig. 9).

"Fhis parameter is given by the e,_!lowing formula.

Fret: (t - t m) nm - _:mt

where

t : time the moon was at its ascending
m equatorial node

2_

n m = moon's angular rate - r
m

= satelHte's moon-plane ascending
9"mt node measured from the moon's

equatorial node

t = time.

If time is measured in days, and angles in degrees

and if the initial time to = 0

then

t : -6.9658 days (ephemeris)
m

n : 13. 176°/day
m

D : 67.58 °
m

t : 0 (initially)

1_ = 24.14 °
mo

rmt = 24.14 + 13. 176 °

where t is measured in days.

Substituting the computed values of A m, Bm.

and a m gives

Aqper(mt) = 14.7 sin (2I_mt + 170.60)

- 14.7 sin (218.92 + 26.352 t).

IV-49



The period of the satellite once again is 1.73
days. Hence the periodic term alone indicates

that the moon's gravitational field will push the
satellite down for four revolutions. The satellite

will then be at a minimum height as far as the
periodic effect of the moon is concerned. From

then on this periodic motion can be ignored (see
Fig. 12).

Evaluating Aqper(mt) for time t = 0, t = 1.73,

t = 3.46, and t = 5.19 days, and then summing

gives the initial downward push by the moon to
be 36.2 naut mi or 67.0 kin.

Consider now the periodic term of the sun's

perturbation in perigee distance as measured
from the center of the earth (q)

_qper(_t} = A_ B_ sin (2rEt - a )

where

A = 7.03 naut mi = 13 km

B =0.961

o = 171.38".
E

The parameter F t is given by

--(*-t )N -_ °
Fet _ s et

t = - 11.4258 days

n = 0. 9856 °/day
E

L = 87.47 ° when t = 0
et

. = - 76.2! o.

Thus

Pet = - 76.21 + 0.9856 t °

where t is measured in days.

Combining the above equations gives

Aqper(_t ) =6.59 sin (2 Pet - 171.38)

= 6.59 sin (36. 20 + 1. 9712 t).

Note that the sun's periodic effect is initially
upward. But after about 146 days, this upward
move is cancelled. The satellite than has about

18.4 days or eleven revolutions to reach a min-

imum. Evaluation &qper(, t) at time t = 147.05 J

t = 148.78. t = 150.051 , • • - , t = 164.35--that
is, once each revolution from time t = 147.05 to

t = 164.35--and summing yields the net downward

push of the sun as 21 naut mi or 39 kin. The

satellite will then be at a minimum height as far
as the periodic effect of the sun is concerned.

From then on this periodic motion can be ignored
(see Fig. 12).

Now consider the combined secular effects of

the sun and moon on perigee distance q:

1 ( sin 2 i +Aqsec = - g A m sin 2_ m m
\

+A sin2c, sin2ic)

Aqsec _ +0.0319 naut mi/rev. = +0.0591 km/rev

Assuming the various parameters are relatively
invariant during the first 164.35 days, the secular

rise in perigee height for this period can be com-
puted as

._ _ 164. 35 3.
-_qsec = _(0'0310) = 0 r.aut n:i or

5.6 kin.

The combined periodic and secular results indi-

cate that perigee height should have decreased by

36.2 + 21.0 - 3.0 = 54.2 naut mt or 100.4 kn-.

This checks reasonably ,veil with the results

shown in Fig. 12.

Better results could be obtained by summing
the secuiar perturbations over perhaps 20- or 50-

day intervals and taking into account changes in

the parameters e, i m, '_m' i and ._ (in such COm-E E

putations the periodic terms in these parameters

are not important). The main difficult) here

would be m converting solar and lunar perturba-
tions :,nto _?hanges i:', :kr equatorial parameters.

Using this method 'vith, say, 5,3-day steps

should yield results of fair accuracy for man),
satellite orbits. For example, the 0 hr, 2 hr,

8 hr, 10 hr, 12 hr and 14 he would be quite easy

to compute by hand (see Fig. 13). Hand com-
putation of the orbit of a lunar satellite is also

easy because the moows equator is very close
to the ecliptic, and because the sun,s effect is

very small compared with the effect of earth.
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A. INTRODUCTION

For most of the low altitude orbits for satel-

lite payloads it is either interesting or necessary

to study the effects of the atmospheric perturba-
tions on the orbital elements of the satellite and

on the lifetime. (Some material of this sort is

in Chapter IV; however, the scope of the previ-
ous discussion of this subject is not adequate for

the present task. ) Many analytic approximations

to these effects are presented in the literature;

however, in obtaining these solutions approxima-

tions have been made which at times drastically

restrict the validity of the results. For this

reason, it is the purpose of this chapter to present

not only the information but also higher order

solutions to the nonlinear equations of motion for

the effects of atmospheric drag. The combina-

tion of these effects with those due to gravitational

accelerations, etc., will not be discussed beyond

the statement that such a process requires the

simultaneous utilization of special perturbations

and general perturbation techniques as discussed

in Chapter IV. (The present analysis, of course,

falls into the latter category. ) As a matter of

fact. special perturbations will be utilized even

in this study in the integration of the analytically

determined decay rates.

It is believed that this approach is inherently

more accurate than those utilizing either general
or special perturbation techniques alone. It

should be noted in support of this statement, that

even thouga numerical integration of the equations

of motion has become increasingly popular with

the advent of faster digital computers, special
perturbations have three definite limitations:

(i)

(2)

(3)

Loss of numerical accuracy, if long

integration times are involved (hun-
dreds or thousands of revolutions).

Long running times even with IBM 7090.
or 7094.

Lack of general trends, since only iso-
lated particular cases are solved.

As an additional step to enhance the value of the

results, the analysis will be conducted, where

possible, carrying the density as a parameter.

Thus, the final result of the study will be of value
for all atmospheres. This advantage is quite

significant due to the fact that the atmospheric
models are constantly changing and the fact that
there are seasonal and other variations (discussed

in Chapter II).

In order to develop an appreciation of the ma-

terial and methods of analysis, this chapter will
be presented in three basic parts:

(i) The drag force.

(2) Two-dimensional atmospheric perturba-

tions.

(3) Three-dimensional atmospheric perturba-
tions.

B. THE DRAG FORCE

As a preface to the discussion of atmospheric
perturbations, certain phenomena and techniques

must be presented. These discussions will be

divided into three general areas:

(1)

(2)

Gaseous flow regimes.

The force exerted by the atmosphere
on the vehicle.

(3) Tumbling satellites.

Each of these areas will be divided in turn into

discussions of the factors necessary in subse-

quent discussions. In particular they are slanted

CDA

toward the evaluation of the quantity _--_--, which

will be d_si_4nated the ballistic co_fflcient.

1. Gaseous Flow Regimes

The work in the field of aerodynamics has

been divided into investigations in four general

regions or flight regimes:

(1) Continuum flow.

(2) Slip flow.

(3) Transition qow.

(4) Free molecule flov..

These regimes are defined in terms of the Knudsen
number:

k mean free path

KN = :_ = characteristic length of body

= l_N for small R N (Ref. i)

M

RN for large R N

where

Cp/C v = ratio of specific heats

M =Mach number

V
=

R N = Reynolds number

Though there is overlap of the regions, and though

no truly definitive numerical values of K N for

these regions exist, generally accepted values

for the four flight regimes are:

V-2
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Continuum flow--_ N < O. 01.

Slip flow--O. O1 < K N < O. 1.

Transition flow--0.1 < K N < i0.

Free molecule flow--10 < K N.

These flow regimes are illustrated in the fol-

lowing sketch (Ref. I):

, _ ! I L t,_ _ : L,] I [ ,, 4, lit i t,l
10 ' _o_ r•_ on t r , i r,_lo_

( _ i L I ' J_ , | I ,

," , .._lli! ,,, L II , iL /I / i
= ] i I IT I _'il°" I

,I, 1/
E ,,/Y[ ,.'11'5/1i /,,', /. l,

io "3 lo "1 to "t io _ lo io I IO io i _ Io 1oT

It is noted that in addition to the defining lines men

tioned above, a second set of lines denoting alti-

tude is also included on this figure. It is also

noted that for any satellite above the altitude of

i00 sLat mi (161 kin), the flow is always free
molecule and that free molecule flow could be

considered to extend down to as low as 75 slat mi

(121 km) without introducing significant errors

in the analysis. Since this region (121 to 161 km)

is the lowest possible altitude for even moderate

durations in orbit, the entire lifetime analysis

can be conducted, based on the assumption of

free molecule flow. This assumption, however,

makes it necessary in subsequent calculations to

stop the decay analysis or integration at the afore-

mentioned altitude of 120 km (=400, 000 ft). At

this altitude the mean free path is 20.49 ft (6.25

meters); thus the Knudsen number for all but ex-

tremely large vehicles is such that the analyses

will be valid.

2. The Force Exerted b_, the Atmosphere on
the Vehicle

In order to determine the drag coefficients

analytically it is necessary to study the mech-

anism by which the force is exerted on the satel-

lite. This step will be accomplished in the fol-

lowing analyses utilizing the work reported in
Ref. 2 as the basis for the discussions.

Let _', #' and _' be the velocity components

of a molecule of gas relative to the mean velocity

of the gas. In addition, assume that the distri-
bution of these velocities is normal--[, e., that

the number of molecules with velocities in the

regionx to x +dx, etc., is

d. "o@ " ;"= exp _K (x'2 +

+ _,2)] dx' dy' dz'

where

N O : the number of molecules per unit
volume

K = the reciprocal of the square of the
1

most probable velccity = 2 IR-----T

R : universal gas constant

T : absolute temperature

These molecules impact on a surface whose

velocity components in the same coordinate sys-

tem are iV, mV, nV (I, m and n being the direc-

tion cosines for V). Thus, the velocity relative

to the surface is

x = x i -IV

y : y' - mV

Z = Z I -nV

and the distribution of the impacting molecules

with velocities x +I\: to x + IV 4- dx, etc., is:

{= exp -Z [(x*IV) 2

+ (y + mV) 2 + (z + nV)2]) dx dy dz

it is noted at this point that while either positive

or negative values of y and z are permissible,

only negative values of x will yield impacts; thus
the total number of particles of all velocities

hitting the surface is
0

N =- N 0 (K)3'2 I" d_ ; d_ ; exp(

.co _w -_

-KE(x + iV) 2 + (; + mV) 2

+(_ +nV)2])xdz

NO -t 2 V 2 K

N0£V-
+ T---LI+ erf (iV {'_]

where

,vf'ff

err<'V W
2

-Se ds

At this point it is possible to relate the number

of particles hitting the plate to the mass and hence
to the momentum transferred• The force acting

on the surface is the integral of the momenta
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imparted by the molecules for all possible veloc-

ities. Assuming for the moment that complete

energy transfer is made and that the direction

cosines of the stream are I t, mtand n', this

pressure on the surface is:

+m' _+n' ;_) exp (-K [(_ +_v) 2

+ +mY?+ +nV>2])

__2
V_ (If' +ram' +nn') e

V2KI

I " J+ +t (t_' +mm' +nn'

2K V 2

•El. erf v
This estimate is not correct, however, because

of the molecules impacting the surface. Some

are reflected specularly (i.e., according to

Shell's law), while the others are temporarily
absorbed and reflected diffusely (i. e., in random

directions) at a later time. For specular reflec-

tion, the effective pressure is thus,

Peff = 2 p

while for diffuse reflection, the equation remains

unaltered. Thus, the two types of reflection
bracket the actual process and the true force can
be written

p = (2 - f) Pincident + f Preflected

where

f is the fraction of the total molecules which

is diffusely reflected. (Experiment indicates

the value lies in the range 0.9 < f < I. 0. )

At this point attention is turned to the computation

of the drag and lift coefficients, defined as follows:

D _PD dA

CDA 1 V z
_0

L _PL dA

CLA =

_ oV 2

Since dA is a function of geometry and orientation,

these coefficients can be defined for various shapes.

The succeeding paragraphs present data for C D

both for specular and diffuse reflection (see Ref. 2).

Note is made that the surface temperature, which
is calculable as a function of the same set of

variables, has been included in the diffuse re-

sults. The derivations are in themselves not

unique or necessary for this discussion: thus,

only the final forms will be presented. Additional

material may be found in the reference and in the
literature.

Sphere (A = v r 2)

Specular C D = erf (M) + M---2- 2 M

2
-M

e-E + + _--I (la)

Diffuse C D = C D +/2--_-----hJ 2w
specular _3 M®} r T i

(ib)

where T w [s the surface temperature obtained

by iterating the folloxing equation:

( 3+1 / (_ _ )

8K_ gT w o

Tw 3 O R _ = T i + M®"

M = speed ratio = V

T i -- temperature of incident stream

= surface emissivity

a = Stefan-Boltzmann constant

* =; oN

surface

_M 2

e +erf(M>
for a monatomic atmosphere of

oxygen and nitrogen in the shadow.

Since the properties of the atmosphere are

integrally associated with this evaluation of these

coefficients only specific data can be generated

for C D. An example of the application is pre-

sented in Fig. 1. This figure, obtained from

Ref. 2, presents C D as a function of M® and for

an altitude of 120 kin. Though computations for

this figure were made with atmospheric data

available in 1949, the variations which are shown

are representative and the limiting values, which

are rapidly approached, valid for this reference

altitude. Data for other altitudes must be gen-
erated as needed.

Flat plate at angle of attack a to the flow (A = ab)

For this body configuration the drag coefficients

vary according to the following equations:
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F_

Specular C D =

2sina

+(

2 2
2 -M sin a

4 sin _
e

M F

+ 4 sin 3 _h erf (M=stn _)
/

(2a)

2
Diffuse C D -

M

+ _-sin 2 / T
(2 'N

M

where T is obtained from
vY

4
_mT

W

2 2
-M sin

e

erf (M sin _)

(2b)

NEar2_P_0-0 +_ R T i - R T sins

Cone with axis paraUei to flow (A = _ r 2)

Specular C D =

-M 2 sin 2 0
2 sin 9

+

2 sin 2 91 [1 + erf (M®+(©+

i 'Diffuse C D =

.___/_I _w I -M 2 sin 2 9

2M 2- v L _J e " +
ao

2M= i

sine)]

(3a)

1+ 12M'F
elo

+ erf (M_ sin 0)]

(3b)

where T is obtained from
W

3pR# + =Ti I+_M_ 2

and where e is the half angle of the cone. These

results can be extended to nonzero incidence angles
by utilizing the flat-plate results mentioned earlier.

Such calculations are presented graphically in

Fig. 2 (Ref. 3).

Right circular cylinder with axis perpendicu-

tar to flow (A = 2 r L)

Specular C D = _-- (-i) n ®
n _ r (n + 2)

" M=-

+ (-I) n ,
n . r (n + 2)

n--O

+'-Y (-1)n n.-W!"-- _. F(n+31
n--0

M_ 1 _
CD M -- (-l)n ' --Diffuse

,_ n . P (n + i)
n--0

3/2 ] T w

+ =+ (-l)n n----[ F(n +2)

n--O

(4b)

where T is computed from
W

F 4 T. I
_cT KT w _ I 9

p R m-. 21 =-

n _ F(n+l)
0

M 2n _(_)t+ M 2 Z(-l)n=

Figure 3 presents data comparable to that

discussed in conjunction with the sphere. Of

particular interest is the fact that this coefficient

approaches a limit which is not unlike that of the
sphere.

Circular-arc ogive (A = ,r r 2)

This figure is constructed by rotating an arc of

a circle about its chord then cutting the body of

revolution perpendicular to the axis at Lts mid-

point. The angle of the nose (2{}) analogous to the
half angle of the cone is utilized to describe the

shape.

Specular C D = 1 - cos 8 (1 - cos e)

-M 292

-T cos8 + +

+ erf (M 0) +--2-- -
= 2M 8M

(5a)
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DiffuseCD -

+erf (M 8)

1 - cos 0 1 + (1 -cos

-M 202

4M_J

+ _112M____4_Tw 1 + _® (i + erf (M® Ol)

+ e ® (5b)

12 M

where T is obtained from
W

4 pNI_v2$5 _ w]a T w _ g R T i R T sin 0

To provide a feel for the validity of these re-
sults, tests have been performed (Refs. 3 and 4)

and data prepared for the transverse right circular
cylinder. The results of these tests are shown

in Figs. 4 and 5. These figures depict the varia-
tion in the critical region for molecular speed

ratios in the vicinity of 0.7 to 2.5. The agree-
ment between these data and the theoretical values

is observed to be very good. Also noted is the

tendency for the results to agree better at higher

values of the speed ratio with the specular reflec-

tion theory than with the diffuse theory and vice-

versa at the lower speeds.

3. Tumbling Satellites

The preceding discussions have presented

data for bodies fixed relative to the flow field.

However, in most satellite applications this is

not the case. The first class of such exceptions

consists of those satellites which by design orient

themselves relative to the earth or space in order

to perform some mission. The time history of

attitude for this vehicle is thus known, and a time

history of the drag coefficient can be constructed.

The second class of vehicles consists of those

which tumble in both time and space, thus com-

plicating their aerodynamic description. One

path around this impasse is to describe the param-

eters statistically and assume that they are inde-

pendently distributed. This approach, while not
rigorous for either class of exception, provides

a convenient means of computation for the latter

case and an approximate method for long time
intervals in the former case. Consider the fol-

lowing sketches.

Top

o)

Side

Now approximating the effective drag coefficient

based on one of the surfaces" (say A I)

• A 2

CD = CD 1 cos c_cos Z + CD2 A_1 cos H sin a

A 3 A 4

+ CD3A-?-I cos _ sin - + CD4 _ sin _ sin ---

where a and - are uniformly randomly selected
variates always lying in the range 0 to _/2

C D is the affective drag coefficient for
the body

A is the reference area for the nth geo-
n metrical shape

Since the distributions of _ and- are known
2

(the joint density function is (_-)). it is desired

to determine the distribution of the function C D .

This is accomplished as follows:

8CD _'"

but _= |CD*, a) must be obtained from

C D = a 1 cos _= + a 2 sin-

a 3 cos (- - w)
where

A 2

al = CD1 cos a+CD2AT sin a

A 3 A 4
a 2 cos a + sin= CD3 _ CD 4 AT

a 3 cos w =a 1 ? w =tan -1 (a2/al)

J or l 2 2a 3 sin w =a 2 a 3 = a 1 +a 2

thus
#

also

-I

a "C--D_ = - al sin - + a 2 cos -
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(

_a 3 /+w 1

* -1

I CD*= -al(sinlcos-1 (---_-3)1 cos w

-- a D
+ a3 sin + 2 cos ,v

CD* wll -I

thus

a32 - C D a I CD a9

= - + a3 A

+ a2 FCD* (___._./ fa32 - CD * _}-

a3

_a32 - CD* 2 (a22 - al 2)

2

, (2)2 a3

#

The distribution of C is obtained at this point
D

by integrating g (C D 0 c_) with respect to a over

the range 0 to _r/2. First, however, it is nec-

essary to replace _ in the joint density function.

(%*.o,
2 2

a 1 + a 2

.2

a12 +a22 - CD /a22 - a12)

A 2

a12 = (CD1 cos a+CD2_l sina) 2

=(C 1 cos a+C 2 sina) 2

a22

= Cl 2 cos 2 a+2 C 1 C 2 cos asin a+C22 sln 2 a

A 3 A 4

= (CD3_eos _Z+CD4 :_1 sin a)2

=(C 3 cos a+C 4 sina) 2

=C3 2 cos 2 a+2 C 3 C 4 cos _stna+C4 2 sin 2 a

2 a22 2a I + = C 5 cos _ + C 6 cos _sin

• 2
+ C 7 szn

2 2
a 2 - a 1 = C 8 cos 2 _ + C 9 cos _ sin

9

"_Cl0 sin _

At this point it is noted that the area A 1 can be

o 2 thus, since cz and _so that a22 >=1 ; =selected

are always between 0 and Tr/2 the function defined

is everywhere positive in every term. Thus,

the absolute value signs can be dropped

and

2

Z 2-{ i
3 d. co_ e sin a

= (g)- t i=o as

0 I ZDic°s6-i_ sini_z

_--0 (6)

This function may be approximated analytically

upon studying the behavior or integrated numer-

ically. Analytic integration, however, does not

appear attractive. It is noted that for :he s_ec[a!

case of 2-D analysts this problem is circumvented,

since integration is not required. For this case

(CD*) is obtained directly to be:g

2 2

g (CD) = (2) al +a2

1" + a22 - CD 2 1

where

2 2
a 1 = CD1

2

a2 = CD 3

A 2, A4, CD2 and CD4 do not appear in this form

for the reason that only a 2-D analysis is made.

Thus, if the vehicle is tumbling in a known plane
this much simpler solution can be utilized.

The density function is known or at least de-

finable for the 3-D case and known analytically

for the 2-D case, the problem turns to one of

evaluating the moments of the distribution. These

moments may be obtained directly from the mo-

ment generating function in the following manner:

re(t) _,_ _e tu(xl'" "xn).... f(x I" • . Xn)
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dr
dtr

where

-- m(t) J t=0 " ur

_'1 = the mean

2 ,12 = the variance

Substitution for this problem into the previous

formula yields:

•IT w

0 0

+ h 2 cos asin_= + h 3 sin c_cos _=

+ h 4 sin crsin -I)d,_d_:

where

A.

hi = CDI 2_1_ i = 1, 2, 3, 4

But this problem, like the first, is not easily

integrable. Thus, a numerical evaluation is sug-

gested for each case of interest. In fact, even

for the 2-Dcase, in which

C 1

= . dCD_
m(t) -_'_eCD_t (2)it2 CD*2

where

2

,
CI -- 2

2

'/A3)
an analytic form is not readily available.

Since the mean is not available in analytic for_[n,

little can be said relative to the best value of C D

A 1 in the general problem. Many investigators

avoid this problem by using the approximation
derived from consideration of a spherical satel-
lite.

CD*A -- C D (Asurfac e)
sphere

-I

I Asurface of sphere

D

Apro ectedj area of sphere

ffi CDsphere( A surface 1

Though this may seem to be a crude approximation,

there are many cases in which it is reasonable.

In fact, Ref. 5 reports an investigation in which

a body randomly tumbling (about three principal

axes) is analyzed and in which the author concludes

that for convex surfaces the average drag on a
surface element in random orientation is the same

as that on a sphere of equal area. This work thus

lends credibility to the previous assumption and

provides a numerical value which can be utilized
as an initial estimate tn the numerical calculations

outlined previously.

C. TWO-DIMENSIONAL ATIVlOSPHE1RIC

PERTURBATIONS (REF. 6)

The motion of a point mass in a nonrotating
atmosphere surrounding a central force is given

by the following set of simultaneous differential

equations

"r" = r_ 2 - -_ - Bp_:V "]
r

d(r%) -BpVrd

where

I )2 .2V = (re + r

= earth's gravitational constant

de
= _ = angular velocity (rad/sec)

(7)

B = _ = ballistic coefficient

(8)

It is noted that this set of equations is nonlinear

and that a solution can be obtained only by nu-
merical integration. This fact [s somewhat dis-

concerting, since these equations neglect atmos-

pheric rotation, which introduces considerations

of a third dimension and complicates the analysis
further by entering the equations explicitly in the

drag term. This latter factor results in the re-

placement of V as defined previously with

V
r

= velocity relative to the atmosphere

I--I= V + Vat m

Thus, if analytic approximations are desired, it

becomes necessary to divide the problem into two

phases--a perturbed orbit phase and an aerody-

namic entry phase. In the first phase, a region
is considered where the orbit is determined by the

inverse square gravity field and only small per-

turbations are caused by the relatively small drag

forces. In the entry phase, the aerodynamic forces
(lift, drag, etc. ) become the important factors

influencing the trajectory of the satellite and grav-

ity forces become less important. This last phase

is by far the more complicated, and fortunately

for a lifetime study it can be neglected, since rel-

atively short periods of time are spent at the alti-

tudes where drag forces become dominant. Thus,
the present problem is the analysis of only the

first phase. References 7 through 20 present a
portion of the pertinent literature and will be

discussed as the presentation progresses.
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1. Near-Circular Orbits (approximate solution)

To initiate these discussions, consider the

decay of a circular orbit. The energy loss due to

drag during one revolution, AE D, is given by the

loss in total energy

5E D ; ET1 - ET2

V 2 / V 2

-- _____ -
(9)

Equation (16) shows that the decay rate for this

special case is a linear function of the ballistic
coefficient. This fact will be utilized in much of

the future work in order to restrict the number of

variables in the analysis. Equation (16) is not

directly integrable because of the odd fashion in

which the true density varies. However, if the

density is assumed to vary exponentially with
altitude, approximate lifetimes for circular orbits
can be obtained:

rf
tL _ - dr

} J K (r - ra)
dt (17)

r'---
0 r 0 2BP0e _A_r

Using the equation for circular velocity and letting

,.-%r -- r 2 - r I ,

uAr (i0)
AE D -- _ 2_-1 r 2

The energy loss per unit mass due to drag is also

equal to the drag force per unit mass integrated
over a full revolution

AE D = ,_ Dm " ds (II)

Assuming small altitude losses during each single
revolution

A E D _ _ ,/

r I +r 2
where _- - an average radius for the

revolution.

(12)

Now using the approximation that the circular
velocity is averaged approximately as

V 2 _ 2_ (13)

c rl+r 2 '

Eqs (12) and (13) and the relation D = _pV 2 yield
m

AE D = 21rpBPa v (14)

Ar 2
_ ravIf rl << 1, then r 1 r 2 and Eq (I0) with

Eq (14) results in the decay rate of the orbital
altitude per revolution

A--_rrev = " 4'rB Pay r2av (15)

Ar

This decay rate can be converted to s-_ by

considering that the orbital period for this per-
turbed circle is

r

T z 2_ av

Thus

2E_ -- - 2BPav (16)

where

rf = the final radius --R + 120 km

r + re

o ' (see Figs. 6aP0 = the density at the

and 6b)

K = the negative of the logarithmic density

slope (see Figs. 7a and 7b).

(Note: This data is for the 1959 ARDC Atmos-

phere. Data for the U.S. Standard !962 Atmos-

phere is presented in Chapter If. Either can

be utilized if the lifetimes are adjusted, as will

be discussed on p V-20. )

Thus

rt e-K rdr

TL = -I -mr

2  Boo e a ro F
let

2
x = Kr

2x 1 (_
2xdx = Kdr or dr = _dx = _ 2 dx

Thus

fff e -Kr dr K_f
__ = 2 f e-X 2 dx

r0 F °

and

-K r

TL = e erf

2 {-_Bp o

(18)

The disadvantage of utilizing this form for the com-

plete lifetime is that the density does not vary

exponentially, and thus the approximation becomes

poorer as the difference in r 0 and rf becomes large.

This deficiency can be circumvented through the

simple expedient of breaking the true radial incre-

ment into several subdivisions and evaluating the

times required to descend through each interval.

These times can then be summed to yield the life-

time. Computations utilizing this philosophy will

yield accurate estimates provided that the intervals

are no larger than 50 stat mi or 80 km.
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Thecase of even slightly elliptic orbits must

be treated in a different fashion since the assump-

tions made in generating circular orbit lifetimes

are not valid for other orbits. Thus, it is neces-

sary to consider the equations of variation of ele-

ments derived in Chapter IV or to approximate the

motion in some other fashion. If the latter approach

is taken, one possible avenue of investigation is to

linearize the equations of motion by expanding the

variables in Taylor series and retaining only first-

order terms. This approach is valid only for

small variations in the parameters. One such in-

vestigation is reported in Ref. 12. The author

utilizes a small parameter _' defined as

2' = BP0r 0 (19)

All orbital parameters are expressed as power
series of _, considering only the first order terms

r =r0+B'r 1% 1

9 80 + _' 81 L

V V 0 + B' V 1

H H 0 + f3' H 1

(20)

where

H = r 2 @ is the angular momentum per unit

mass (to differentiate from h = altitude).

Substituting Eq (20) into the differential equations,
Eq (7), the following relationships are obtained

9 : e 0 1 + _ 4cos 80 + 280 "

r = r0 _ ll+2Bp0r0 (sing0 -90_)]p0r0 (21)= +B (-2 sine 0 +@0V V c

H = H011 -BP0r0@01

where

Vt
= c

80 r---O

Expressions for these quantities on a per revo-

lution basis are next obtained from the differences

in Eq (21) evaluated at the limits 80 = 0 and 2_r:

Ar _ 2
rev 4_rB P0 r0

AV
rev = 2=B P0 r0Vc (22)

AH

re---V= - 2BP0r0

dVBut, for circular orbits V c = and --_ =

- _-_ , giving the following condition:

AVe 1 Vc &r
= - (23)

rev _- F re"#

Now, from the first two relationships in Eq (22),

exactly the same relationship follows:

&V Vc &r
__ = -

rev _ rev

This implies that for a first order approximation

in B P0 r0 the speed at any given altitude re.mains

exactly equal to the circular speed during the drag

decay- of a circular orbit.

And, from Eq (21) for 90

angle 9 is obtained as

9 = 2_r + 6v 2B;)0ro

= 2Tr the corresponding

(24)

Equation (24) indicates that the line of upsides is

advancing by the amount

6_r2B p0 r 0 (rad) (25)Aw

Since the equation for the change in the radius per
revolutton is the same as that for the circular

orbit. The lifetime of this slightly elliptic orbit

will be the same as that presented earlier. Ac-

tually, as will be shown later, the lifetime is

slightly longer, but a quantitative analysis is left

until subsequent paragraphs. These subsequent
discussious '.vEil concern the behavior of these and

other more elliptic orbits.

2. Elliptic Orbits (approximate solution)

The type of expansion outlined for near-cir-

cular orbits can also be utilized for elliptic orbits

as was shown in Ref. 12. This reference pre-

sented power series expansions for decay rates in

elliptic orbits utilizing the small parameter

= B p (hp0) rp0 (26)

where

p (hp) = air density at perigee radius

rp0 = initial perigee radius.

Next, a densit T ratio ts defined

a 0 = p/p(hpo).

For these orbits Eq (7) becomes

]
r u rpo

[
1 d, 2_, _ r@V|

at, °, --.o0 %7-]
1

Using a change of variables u = _., and

neglecting higher order terms in 8, the

power series expansions assume the fol-

lowing form:

u =u0+Bu I 1
V = V 0 + _ V 1

H - H 0 + B H I

(27)

(28)

J
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Now the ratio of the inlt_1 speed at the perigee

radium to the circular speed at rpo is defined as

c =_P_ 129)
O

and the corresponding eccentricity is expressed as
2

.-C2-1-_v-_Pc0> - I (30)

An exponential atmosphere is assumed in the form

-K(r - rpo)

(;0 " p_ " e (31)

The differentia/ equations given by Eq (27) are then

solved for the two cases below:

Case I : near-circular orbits

Case If: eccentric orbits

Case I--nesr-clrcular orbits. The solutions

First,derived by Ref. 12 are summarized below.

the orbit parameters:

+ -

r
__ w

Kr (
p0

+sln9 [Krp0' (I -Krp0'

• +
r (3

(32a)

1 + E COS_ I + ¢ COS

-Krp0' +_(Krp0')2-1_(Krpo')3] 8

- _(Krp0,)30cos@ - [I - _Krp0 '

+ _(Krp 0.)2+ _(Krp 0.)3] sin0

(K rp0 t )2

24 (I - Krp0.) sin 20

(Kr-0 "'3 t_" _5 i sin 38 (32b)

Second, the decay rates obtained from the above

equations :

revZ_I'I• _ 2,Bp(hp0 ) Vp 0 rp02 [l_Krp0e

+ _(Krp0.) 2 -l_(Krp0.) 3] (33a)

Ar B p(hp0)rp02 [1= 2-)- % - 0)" - 4.

. Krp 0' + _ (Krp 0.)2_ T_(Krp 0 ,)3]

(33b)

Ar
a

re'--'V-" r(8 " 3,)- r(6 " _)

2p /I +'h2 [I= - 4_Bp(hp0)r 0\_/ - Krp0'

+ _(Krp0.)2 55 3]- IT/ (Krp0.)

(33c)

Note that for . - 0 both Eqs (33b) and (33c) reduce

to the circular decay rate given previously by

Eq (22).

The given series expansions are adequate only

for small values of K rpo., the upper limit being

suggested as Krp0. < 0.5. Reference 12 gives the

following table, indicating the upper limits of

eccentricity for various altitudes from sea level
satisfying this condition:

hp0 K
(k_) (stat mi) (ft -1) (m'l> !

161 100 9.3 x 10 "6 30.5 x 10 "6 0.0025

322 200 5.1 x 10 -6 16.7 x 10 -6 0.0045

483 300 3.65 x I0 -6 12.0 x i0 -6 0.0061

(1 stat mi = 1.809 kin; 1 ft = 0.3048 meter)

Case H--elllptic orbits. For values of

Krp0. >i, termsup to the seventh power were

carried. The resulting series expansions are

shown below.

. KrpoH • rpo Vpo - e

+_ Cn+ I sin n

n-1

r •

rpo

(34a)

- K rp0 i

B p( )r •

1 +. 1 - hp0 p0

I +. cos _ I + . coa

. [2C 18 - C 20 cos0 +C'sine

_2
C 3 sin20 - _ C 4 sin 30-1_ C 5 sin48

1 C8 8]I
n CesinSe +_ CTsin 68 +n sin7

J]

(34b)
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where

C 1 " I + _(Krp0,)2 + _(Krp0,)4

+ _0_(Krp 0,)6 + ...

C2 . Krp0 ` +_ (Krp 0 ,)3 + T_(Krp 0 ,)5

1
+ _ (Krp 0 ,)7 +...

C3 . _(Krp0,)2 + &(Krp0 ,)4

+ _(Krp0t) 6 +...

%.  (Zrp0,)3+r (Zrp°,)5

+ _2 (Krp0 E)7 +...

c5.r <Zrp0,)4+r <Zrp0,)s+...

%.  (Zrp0 ,)S+ r  V(zrp°,)7+...

C 7 • T_/A-_(Krp0 c)6 + . ..

= 1 (Krp 0E)7 + ...C8 2, 358,720

C*• - 2C 1 +C 2+_C3+ _C4+_C 5

+ _C 6 18 C - ..." l_ 7 _C8 +

The accuracy of the series solution is limited

to a region near the perigee, due to expansion of

cr0 aroung the perigee point. Therefore a limiting

central angle, 0lira, was designated, such that

P < 0. Ol for O < 811m. The limiting angle is
#-_F-

g_ven as

('r)' 'cos011 m • -- 4. 505 " 7 " (34c)

-K-F- + 1

P

For p-_ < 0.1 the constant 4.60 is replaced by

2.30. Figure 8 presents 81i m plotted versus the

orbital eccentricity for two values of density

ratios and two initial perigee altitudes. Since

the alr density has decreased to 1% of the perigee

value at a central angle of 81ira, the following

assumptions can be made:

(1) The drag effects are negligible for ":.he
arc BCD.

(2) All the drag takes place in the region
DAB.

(3) A symmetry exists about the llne AOC

(i. e., DragDA • DragAB).

+2,_

Therefore, the change of orbital radius at a cen-

tral angle 011m is expressed as

Ar - r B, r B + 21r)re'-_ - " r(elim - r(elim)

_, r(_lt m) - r(- eli_m). (35a)

From Eq (34b)

2 -Kr _

Bp(h n) r ne pu [
Ar v_ _ [2

re---v• - i +, cosy [ C ls

- C 28 cOS8 +...]) - 81ira (35b)

But

" (_-_) Aa (36a)
A,

From the chain rule

and from Eqs (36a) and (36b) it can be shown that

the following orbital parameters can be obtained
from Eq (35b):

Aa_ (l+t cosS) 2 Ar (37a)

(I - ,)z (I - cos e)

&h = 2(1 + _ cos 8)2 Ar (37b)

a (l-,)Z(l-cose)

Equations (37a) and (37b) are based on the assumption

that Ah a >> Ahp. Thus the apogee decay rates can

be obtained by the expansion of a small parameter

method by Eqs (35b) and (37b). For perigee decay

rates no information is given by this solution.

3. Variation of Elements

As was noted in the previous paragraphs, a

second method of solution for the effects of drag
is available in the form of the equations for varia-

tion of elements. These equations will be utilized

in the investigations of elliptic orbits which follow.
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Since the interest in this discussion is in the
solution for the lifetime of a satellitein a nonro-

tating atmosphere, the disturbing acceleration
will be due to drag and will act along the velocity
vector that is tangent to the path. Thus, since

S = (I + E cos e) T + (c sin 8) N

If + +2, cose 1 + +2, coseE 2 E 2

H = (E sin 9) T + (I + E cos 8) N

ll +_2+2, cose 11_-,2+2, cos8

where

S = circumferential disturbance

R = radial disturbances

T = the tangential acceleration

N = the normal acceleration --0

--the eccentricity to differentiate from the

base of natural logarithms

The equations of variations of constants can be
'written as

da 2 _ 1 + 2 + 2q cos 8

El - E

de 2 _1- ,2 (co_ _3 + _) T
=

na _1 + 2 + 2G cos 8

cl_ 2 _1 - 2 sin e
_- = T

naE
" 1 + 2 + 2t cos 8

do-

2 (1 - _2) (1 + 82

+e COS 8) sin 8] [na, (I

+, cos 8) (i + 2 + 2, cos 8) 1/2 ]-i T

d_ di
i_ =0, _%- = 0 (38)

where

2_ _a _ mean angularn " -_--

T = . D drag deceleration.
m

velocity

From Eq (38) it follows that for a nonrotating
atmosphere, drag does not cause any variations
in the inclination or the nodal position of the orbit.
Aerodynamic drag will, however, cause a forward
rotation of the perigee in the orbital plane, as Was
shown quantitatively in Eq (25). An appreciation
of the reason for this advance can be obtained

from the following qualitative analysis.

Consider a slowly decaying elliptical orbfl as
shown on the sketch. Take points 1 and 2 as
shown in the sketch in such a manner that the

angle from perigee is constant.

Then 81 - e 2, r 1 > r 2 and Pl < P2" From the

basic equations of elliptic orbits

1 - c _ (39)

From Eq (38)

¢b=2 Bp sine _ 1 -,

The ratio b/_o2 becomes

(40)

! cos e I _/2

2 cos _2 /

Then for the first order of eccentricity

But,

_ P2 el al ! + t 2 cos Vl

1 + tI cos 81

I + t 2 cos _2

(41)

a2-- < 1, '2 Pl
al _-1 < 1 and P2 < 1

Therefore -,---< 1 and the perigee advances
_2

due to air drag as was stated. This advance does
not affect the lifetime of the satelliteto the order

of approximation of this analysis; however, since
the atmosphere is not considered to rotate, den-
sity need not be considered to vary with posi-
tion around the earth. Thus, the orientation of
the orbit while it changes does not change the de-
cay history (again, to this order of approximation).
For this reason, attention can be focused on the
change of the three elements in the plane of the
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orbit (a, E and a). Further, since ¢; relates posi-
tion in the orbit as a function of time and not a

change in the size or shape of the orbit, the ele-

ments of primary concern are a and E. Variations
in both of these elements are discussed in the fol-

lowing paragraphs. However, before these dis-

cussions it is desirable to relate the change in

altitude of apogee and perigee to the changes in
the elements a and ,.

The altttuae variations during one revolution

are quite large for elliptic orbits with high eccen-

tricity, and therefore it is necessary to pick certain

reference points during one revolution,-for which

the altitude, air density and decay rate can be

found more easSy. Since this geometry of a two-

dimensional ellipse is completely determined by

the perigee and apogee altitudes, and since air

drag occurs prlmarfly in the vicinity of perigee,

apogee and perigee radii will be utUlzed as the

reference points. These radii are expressed in

terms of the semimajor axis and eccentricity as

= a(l + .)
ra (42)

Jrp "a(l - ,)

Now, orbital altitude is given by h i = r i - Re,

where R e is the radius of the equivalent spheri-

cal earth. Therefore the partial derivatives be-
ah. 8r.

1 1
come, since -_ = -_

ah a 8hp = I - q-y_ "I+,

J_)h a Oh

And from the chain rule for derivatives

dha 8ha da 8ha dt

"-dr" ''8-_- _r + -'_%-

dhp 8hp da 8h dt
"dF= a_ - aT" + t'_ "P- _f"

Substituting Eqs (43) into Eqs (44) yields

(1 + ,,,)-._--+a _-
dhp

(I - ,) da d,_- -a_t-

(43)

(4 4)

(45)

Thus, after the time derivatives of semimajor

axis and eccentricity are determined from the

Lagrange planetary equations, the time rates

of the perigee and apogee altitudes can be found

by substitution. The instantaneous orbital alti-

tudes can be determined by integrations of Eq

(45) either by numerical or analytical expres-
sions.

A_ssumlng an orbit with a very high eccentricity,

the significant part of air drag takes place near

the perigee and the maximum variations of orbital

parameters can be found approximately by setting

cos 0 _ 1.0. Equations (38) hecome

da 2 (I + ,) T

n 1 -,

de 9 _/1 - ¢2
. T

_ na

and the ratio of a to _ is found as

(46)

-- _ or = (47)
|

Substituting Eq (47) into Eq (45) yields

_---- = _-=2

dh d_ d¢

--_ = a _F- a _-- = 0

(47a)

Equations (47a) indicate that orbits with large ec-

centricities tend to become more circular during

the drag decay process. For highly elliptic orbits

the perigee decay rate is zero for a first approx-

imation and in all cases it ks considerably smaller
than the apogee decay rate, as proven by numeri-

cal integrations (Ref. I0).

Now continuing, using the expression for
drag deceleration

T =_D : _ BpV 2 (48)
m

Equations (38) become

da 2 a 2
BpV 3

dt _

(49)
de

d-T =-2pV (cos @+ , )

Substituting for V and 8 from

V 2 , (1 + 2, c%s O+, 2 ): (50a)

2
dt r

= (50b)

i_ 2{ 2na 1 -.

the equations for the variation of elements can be

expressed as derivatives with respect to the cen-

tral angle @. At this point it should be noted that

Eq (50b) applies rigorously only if angular mo-

mentum is conserved, i.e., r 28= _- na 2 l 1-. 2.

In Ref. 17 the correct expression is gAven in terms

of the osculating elements as

r + _ + cos i dr] (51)
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However, as seen from Eq (25)

A_
_-_ = 3;rBP0 r 0 (rad/rad)•

(D
But since 1>> -;, Eq (50b) is justified for the

0

present analysis. Thus, Eqs (49) become

(1+2_ cos e + E2) 3/2 (52a)da
_r_ " - 2a2Bp

(1 + t cos e) z

de [( 2 1/2

_r_"-2aBp(1 - _2)L l+2t cose+t )
(1 +, cos o) z

• (cos 0 + t)j (52b)

Next, the functions of the central angle are

expressed as functions of the eccentric anomaly

by the following relationships :

r •a(1 - E cos E)

sine = _f-t- t2 sine

I - t cos E

cos E - E
COS @ m

1 - ¢ cos E

i 2
de - " _

1 - c cos E
dE

(53)

Substituting Eq (53) into Eq (52) and using the approx-

imate symmetry relationship of drag decay functions

2_

0 0

The decays per revolution are found by the follow-

ing integrals:

Aa ..4a2B00 f_p (1+ _ cos E) 3/2
rev = P0 (1-E cos E) 1/2 dE

0

(54a)

ff

Aerev = -4aBP0(l't2) f p (l+_cosE) 1/2 cosEdE

0 P0 (l-t cosE) I/2

(54b)

Note that Eqs (54) basically involve the application

of the Krylov and Bogoliuboff averaging method (Refs.

13 and 14), by which approximate differential equa-
tions are obtained for the variation of orbital
elements by averaging the original equations over

one full revolution (i.e., E = 0 to E - 2_). This

removes all trigonometric terms from Eqs (54)

and is actually equivalent to a conservation of

energy approach (Ref. 14, p. 238).

The fraction in Eqs (54) can be expressed in a

simplified form by employing power series ex-

pansions as:

Z_a . f% [I+2. cosE"4a2BP0 _0

0

+ (continued)

3 7 4
+-,2-,2cos2E+ E3cos 3 E+_-_ cos4E

+...I dE (55a)
J

A_erev = -4aBP0 (1-'2) os E + _ cos 2 E

1 2 3 1 3 3 4 "
+_-E cos E +_-E cos4E +_-, cos _E

+ "''1 dE (555)

In general, the density function P--- is empiri-
P0

cally found (see atmospheric models) and cannot be
expressed in a simple exact analytical form• Thus,

the analytic integration of Eqs (55) is not possi-

ble. Numerical integrations of Eqs (54) or (55)

can be performed on a high speed digital com-

puter, however. If this step is to be taken, the

density is related to eccentric anomaly in two

steps:

(i) Altitude: h = r - R = a (i - _ cos E)
-R e

e

(2) Density: p(h) from atmospheric density

tables. (56)

3 2 9

Defining S = I + 2_ cos E + _, cos- E _-. . . ,

and dropping terms higher than the second power

of eccentricity (Ref. 12) has numerically com-

puted the function of the integrand in Eq (55a) for

Explorer IV, considering both Smithsonian 1957- 2

and ARDC 1959 model atmospheres.

The most important conclusion from this study

and related studies performed elsewhere is that

even for orbits of relatively small eccentricities

(Explorer IV had e = 0.14). The most significant

portion of the drag perturbation takes place in the

vicinity of perigee in a region where IEJ < 40 ° .

Utilizing this conclusion (not the limit on _E])

and approximating the density in this region by

an exponential, Eqs (55) can be put in an integra-
ble form. Let

-K(h-hp)
-_P = e (57a)
P0

where K is the negative :logarithmic slope given

in Figs. 7a and 7b. Equation (57a) implies a

straight line variation of p versus h on a semilog

paper, which does not exist for any altitude range.

Nevertheless, for a relatively small region, say

50,000 ft (15 km) around the perigee point, this

approximation is valid to a very high order if an
instantaneous value of K is selected.

Using relationships r = a(l - _ cos E) and

rp = a(1 - E), Eq (57b) can be written as

-KaGeKaE cos E
P - e (57b)

#0

Now substituting Eq (57b) into (55a, b) yields
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AH

rev _ 4a 2Bp 0 e-KaE f eKat cos E (i + 2 • cos E

0

+ ...) dE (58a)

ff

Zle _4aBP0 (1.,2) e-Ka, f eKa, cos E (cos Erev

0

+ , cos 2 E + ...) dE (58b)

The integrals above could be evaluated in the

form of modified Bessel functions of imaginary

argument, if the brackets contained a series of

sine terms. Therefore, at this point a further

crucial approximation is introduced. It is as-

sumed that significant drag exists only near the

perigee. This assumption breaks down for very

small eccentricities (i.e., as c --0), but the va-

lidity of it is good for moderately elliptic orbits.

Assuming that sin 2 E << 1 then cos n E can be

written as an infinite series of sines for odd n or

as a finite polynomial in sines for n even. The

first five sine expansions are ae follows:

cos E - 1 - _sh12E -_sln4E --_sln6E

5 . 8

- _ sm E- . . .

cos2E = i - sin2E

cos3E - 1 -_sln2E+_sln4E+_ slnBE

(59)

+_sin8E + " ' " EJ

cos4E = 1 - 2 sln2E + sln4E

cos5E =I _ sin2E+_-sin4E -_ sin 6

5 8

sin E + . . .

Substituting Eq (59) into Eqs (58a, b) the fol-

lowing expressions are obtained:

&a 4a2Bp e-Z Ce zc°sE
re--_* - 0 J (a0 " al sin2 E

0

" a2 sln4 E - a3 sin6 E - a4 sin BE-. .. )dE

(60a)

A_ f e z cos E_-v _ -4aBP0 e-z (_]0 - _I sin2E

" _2 sln4E - _3 sin 6 E - _4sln 8E-...)dE

(SOb)

where

z mKa,

and the constants al, _! are power series in terms

of eccentrlcR_z, up to 4 as follows:

a0 i+2¢ +_ _2 +t3+7_ 4 . 3t5+T +_]_ 6 +..

. 3 2 . 3 3 . 7 4+...

I 3 3 7 4
a2 _' -_' -_, -...

i I 3
a3 B'' -IT' -""

56 3 3

_4 "_ ¢ -Y'_ - "" "

(61a)

1 2 1 3 1 4 1 5 1 6 h

_0 = I +' -T' -_-e -_r_ -_r _ T]_' -'"

j31 .,½+, +_ 2 +_ 4+ ...

1 5 2 1 3 33 4

_2 ='g-l'B ' -_' -%'-4-' -""

1 3 2 19 4

;33 ='[B -'3"2 _ *-Y2_ ' + "'"

5 13 2 27 4
_4=T_-ZS_ -' ÷I-V_' +""

(61b) j

It is noted that Eqs (60a, b) conform to the

modifted Bessel functions of imaginary argument,
which can be wrRten as

Ip(Z) = e Esln 2p EdE

P (P+ ,_)F' (,_-) 0

(62)

where:

p = (1, 2, 3---)

and

r (n+ i)= hr (n)

The integrals in Eqs (60a. b) can now be expressed
in terms of Bessel functions as

_eZCOS E dE - _ I0 (z)

0

XeZ cos Esin2

0

_e z cos Esln4

0

_ez COS

0

*_e Z cos

0

I1 (z)
EdE =--

Z

3,_I2 (z)

E dE = --2"--
z

3.5 x 13 (z)
Esin6 E dE =

3
Z

3" 5"7_I 4 (z)Esln8E dE =

z 4

(63a)
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NOTE: For modified Bessel functions I0 (0) = 1

and 12(0) =I 3 (0) = ... ,,Ip (0) = 0, so that for

z = 0, Eqs (63a) are seemingly indeterminate

for p > 2. The limiting values, however, can

actually be found to be finite:

[ (z)
lira _2. - 1

z_ 0 z p 2p (p : )

(63b)

Now in terms of modified Besse! functions the

integrals of the orbital decay rates can be ex-

pressed as:

_ _I 1 (z) 3_I 2(z)[ ]dE =_0_I0(s) - al z °2 ---n-

O z

3.5_ 13 (z) 3. 5'7_14(z)

- _3 3 - _4 4
Z Z

• • (64)

(and a similar equation involving St).

Thus, both Aa and A_ can be expressed as series

of the same form but differing coefficients. How-

ever, the computation of these changes is unnec-
essarily complex due to the fact that higher order
modified Bessel functions can be reduced to a

linear combination of orders zero and one (lo(Z)

and Ii(_)) by tile '_ _f ti:c r_duction formula

Ip+l(Z) : Ip_l(Z) - _ Ip (z) (65)

The reduction formulas up to the order four

are

2 ll(Z )12(z) = 10(z) - _-

I3(z) " + II(Z) - T 10 (z)

I4(z) "( I + 2-_)lO(z)z- - 2_( I +2'3)z-'J-- If(z)-

(66)

Now using Eqs (66) the decay rates of elements

can be written in the final form for elliptic orbits

A--5-arev= - 4_a2BP0 FI (z, ,) (67a)

___e_erev= - 4_aBP0 F2 (z, _) (67b)

where the following nondimensional functions are
used:

FI(Z, ,)-= e'Z{[a 3a2 60a 30 "--2- +----4--

105a 4 (z2 + 24)+ ]6 " " " Io(z)
Z

a 6a2 15a3(z2 + 8)1 "--+_ 4
Z Z

+ (continued)

840a4 (z2+6) ] II(zZ) }6 +... (68a)
Z

F2(z, ,) = e -z _ +
0 z z

I05_4 (z 2 + 24) ]

6 + "'" Jlo(z)
Z

- El z z

840/34(z2 +6) ] Ii(z) Iz6 +'"

Note is made that R_f. 16 tabulate_ e-Zlo(Z),
-Z

e Ii(z). Note also that the following asymptotic

series are given in Ref. 16, p. 271 for large z:

I _ 12 12. 32
e-ZI0(z)

_-_I/2 I l +-- +--I! 8z 2! (Sz) 2

12 . 32 . 52 12 . 32 . 52 . 72
+ + +.

3.1 (8z) 3 4! (8z)4 "'

1 _ I" 3 12. 3- 5

e-z[l(Z)
(22_z) 1/2 I, 1 1.1 8z 2.1(8z) 2

12"32"5"7 12"32"52"7"9 1

3t (Sz) 3 4! (8z)4 "t

(69b)

Note is made at this point that decay rates as

predicted by these formulas have been checked

against the numerically determined rates and

agreement shown to be good for the cases of mod-

erate eccentricity. In no case, however, should

the method be employed for eccentricities less

than approximately 0.03 since the assumptions

made previously restrict the range of applicability

of the method. The value 0.03 was determined

numerically.

r

Now, noting that a = -]-_e' Eqs (67a, b) can be

written in the following form:

_[- = - 2BP0 FI

_[- =_ 2BP0

But, since (-2BPo;_r p ) is simply the decay rate

for a circular orbit at initial perigee altitude,

<d_'_1 , = O" the equations can be rewritten as

aT'= ,=0

(7h)
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• (I - F 2 (71b)

From Eqs (45) and (71)the final decay rates are
obtained

= (i - ,)-I/2 G1
BY-- ,-0

.(drp_ /2 G,f
dhp (1 - ()-I

(72)

0.03<_<0.4

where

"Bt-], =0

G 1 = (I +, ) F 1 + F 2 (nondfmensional)

G 2 = (I- ,) F I - F 2 (nondlmensional)

At this point it should be noted that the functions

G I and G 2, although they are relatively complicated,

are nondimensional and need be computed only once.

In the present study these nondimensional drag de-

cay parameters for elliptic satellite orbits were

hand computed, carrying terms up to 4. The re-

sulting parametric curves are presented in Fig. 9.

Thus, the upper limit on e, _ < 0. 4.max

This figure shows G 2, the perigee parameter,

to be independent of E to a high order of approxi-

mation though there is a variation of G 2 with the

parameter Z. This behavior is not the case with

G 1, the apogee parameter, the reason for this

behavior being that apogee decays much more ra-

pidly than perigee for an elliptic orbit. Special

attention is also drawn to the curves denoting low
eccentricities. These curves will be discussed in

subsequent paragraphs.

4. The Case of Small Eccentricities

Since the Bessel function expansions of the

previous section are not valid for eccentricities

below 0.03, an alternate approach will be applied

in this region. This approach was developed by
Perkins (Ref. 8) and again assumes an exponential

-k_r
atmospheric model p = P0 e In this analysis

a nondimensional parameter C and a drag constant
K are defined to be

c.% ,- "-rtr. V:V (73)
CDA 2 2

K TM go -'W-- P0 ro = 2Bp 0 rpl (74)

Using Laplace transformations, the decay rates
are found as

drdr(Vp)__.I
K '-0 e -C(a +_)

-_ =- rp0 (75)

- K )
--_ - q (a -

But since Vprp rp (1 + .), Eq (92) can be

written as

-'d'C =0

--_ = "0 +4 P

where

•--d-C-/ =0 =-2BP0 _p

p+ -C=e (a+ )

P- = e-C( a - _r)

X
a =

n=0

2

x +x___

= I + (_=_2 (2!)2

+

xn [b=C =C I+ x

0 (n'l)2 (n+l)

+ x__+

3(2:)2 " " "

(76b)

J

p. (77)

and

The nondimemsional parameters P+ and P- of

Eq (76) are plotted in Fig. 10. The trends of

the curves are noted to be the same as those ob-

tained by numerical integrations.

Figure 10 is, of course, limited to small eccen-

tricities, as can be seen from the following ex-
ample:

Assume:

h . = 85 stat mi = 448, 800 ft = 136,794 meters
pl

rpi = 2. 135, 170 x 107 ft = 6. 507998 x 106
meters

E = 0.02

j
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Solution

From Fig. 7a:

k 0 = 1.98 x 10-5/ft = 6.50 x 10-5/meter

P0 = 7.15 x 10 "12 slug/ft 3

: 3. 684 x 10 -9 kg/meter 3 (fi"om Chapter II)

\_/ _ =0 = -2BP0_/_rP = -7.84 fps = raps-2"39

From Eq (73):

kr E

C = +[_- --8.24

From Fig. i0:

p+ = 2.73, P = 0.0088

(drp 
From Eq (76a): r a = /-d%-/

E:O

1_--_+ _ p+

: 2.16 fps : O. 658 raps

: +_ P
From Eq (76b): rp

E:0

: 0. 070 fps : 0. 021 raps

Consider the same example for a slightly

larger _. If _ : 0.04, then C : 16.1 and x : 64.
Proper convergence of Eq (77) now requires an

extremely large number of terms (at least 25)

thus making the solution impractical.

Thus, since Perkins' methods and the Bessel

method are applicable in different regions and

since the solutions have the same form, i.e.,

E=0 _ P+ c < 0.03

1"a : (_t)E :0 I_--_ GI (z) _ > 0"03

and similarly for _'p. Perkin@ parameters P+ and

p-, can thus be considered to be analytic extensions

of the parameters G I and G 2. This fact was noted

to be responsible for the low eccentricity curves

of Fig. 9.

5. Apogee and Perigee Decay Rates and Satellite
Lifetimes

The previous Subsections C-3 and -4 have pre-
sented in nondimensional form equations and graphi-

cal data for i- and _ . However, before determtn-
a p

ing an estimate of the lifetime of a satellite it is

necessary to dimensionalize the various param-

eters. This has been done in Figs. lla, b, c

and 12a, b, c, which present apogee and perigee

decay rates both in English and metric units for

altitudes in the range 75 to 400 stat mi (120 to
640 kin) and eccentricities from 0 to 0.4. It is

noted that there are bumps on these curves.

These irregularities are the direct result of

similar behavior for the density slope of the

ARDC 1959 atmosphere. Correction of this data

for atmospheric variation will be discussed in

Subsection C-6. Changes resulting from changes
in the model atmosphere (e. g., 59 ARDC to 62

U.S. Standard) require recomputation of Figs. 11,
12, 13 and 14.

These decay rates must be integrated to yield
the lifetime. As was mentioned earlier, this

portion of the analysis will be conducted numeri-

cally. The reason for this step is simple--it is

not desired to introduce further approximation,

which could materially affect the accuracy of

study. To be sure, approximations have been

made to this point; however, the validity of each

has been well founded. If a further assumption

were made to obtain an integrable form, the

accuracy would Su.ffer materially and the attention

to detail exhibited earlier would be for naught.

Some have argued that since the atmosphere is

not known and since the other approximations have

been made, such core is unnecessary. While this

is true to a degree, a philosophy such as this will

never yield good estimates even as the various

density variability factors become known, while

the philosophy of this section will reflect such

improvements.

The integration procedure for this computation

is

(_ ha) `

J
where

(a ha) . is the j-th apogee altitude increment
J

(_ is the apogee decay rate at this altitude
J

thus reentry

T L : _ & tj

j--0

This integration is very simple and can be rapidly

performed even for small values of (A ha).. This
J

type of integration also admits several refinements

involving the use of iteration and average decay
rates rather than instantaneous rates. However,

if the step size is sufficiently small this is not

necessary. The correct value of (Aha) . is deter-
3

mined by the repetition of the same integration

until the values of T L for successive values agree

to within a prescribed error. This step size need
not be the same for all orbits, but for orbits of

similar a and e, the step sizes generally are the
same (a value of 500 ft or 150 meters was utilized).

The results of this integration are presented in

Figs. 13 and 14 in both English and metric units
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ft 2

for a value of B : 1 _ or 0.6365 x 10 -2 meters2----_g
Decay histories for typical satellites were added

in dotted lines in order to indicate the changes in
eccentricity and perigee altitude as functions of
time.

Lifetimes for all other values of B are obtained

via the approximation

T L B 1 B 21 = TL2

or TL 1 B1

TL2 =

The basis for this approximation is that the decay
rates were all noted to be linear functions of B.
Thus, since B is a constant, it does not affect the

integration, and as a result lifetime is inversely
proportional to B. This behavior is true in free

molecular flow; however, as B is made signifi-"
cantly larger or as the altitude is decreased, the

vehicle leaves the free molecule region, and the
assumptions of this chapter deteriorate. Thus, the
simpler conversion must not be used indiscrim-

inately. If there is a question as to the regime
of flight, specific data should be prepared. Other-

wise the conversion is justifiable.

Though much has been written on the variation

of lifetime with eccentricity, it is noted that these

figures show the extreme sensitivity of this param-

eter even for small eccentricities. This sensitivity

explains why satellites with the same total energy

per unit mass (i. e., same a} do not necessarily
have the same lifetime.

6. Comparison with Satellite Data

In the final analysi_ the value of a computational
technique such as this must be assessed in terms

of its ability to predict phenomena correctly. Thus,
the actual lifetimes of several satellites will be

checked in order to provide this information.

First the value of B to be utilized must be com-

puted for initial determinations of lifetime or for

preliminary estimates. The value of B must be
computed based on estimates made earlier in the

discussion of free molecular flow. However,

once the initial tracking data from the satellite is
available, a more accurate method is available.

This method is based on the formulas developed
for the change in the element a.

h ra__jL h +f_: : !F_2_

Thus, if a is known, an effective ballistic coeffi-

cient Bef f can be found by utilizing the computed

h a and l_p for B = 1 (rather than the observed

values}. Thus

2 aobserved

Beff = ([*a + [lp)theoretica 1

aobserved

2 pp _(G 1 + G2)

This approach compensates for a variety of sins

since the nature of the body in question, the mass,
the nature of the tumble, and even variations in
the density of the atmosphere are factors included
in the correction.

TABLE 1

Comparison of Satellite Lifetime Estimates

Actual

Effective B* Estimated Lifetimes

. LHetirne s (Ref. 25)
slug) (m 2/kg) ( da'zs} (days)Name (ft" ]

Sputnik I 0.69 O, 44 :( I0 "2 145 92

Sputnik _ i. 00 0.64 155 162

Sputnik 111 I. 13 0. 72 221 202

.... - - 59_

Explorer II/ 3. 59 2. 35 84 )3

ExpIorer P; 1. 55 ). 92 4d r) 455

Score 2. 98 i. 3i 32 34

Discoverer I _1.5 0. 95 12.6 5

Discoverer H I. 50 O. 95 II. 0 13

Discoverer V i. 46 0. 93 45 46

Discoverer %q I. 23 0, 72 62 62

Discoverer Vi_ I. 53 0.97 13 19

Discoverer VIII I. 38 O, 88 100 t09

Discoverer XI i. 65 I, 05 9 11

Discoverer XII/ I. 04 0.56 87 97

Discoverer :C_7 I. 30 O. 53 2 i 25

Discoverer XV 1. 50 3. )5 30 _ 5

Discoverer X_qi 0.95 0. _i 51 47

*Computed from the _atellite data of the inttia_ decay rates of
serntmajor a.xi..

(i ft2/slug = 0. 6365 x 10 -2 m2/kg)

Since effective ballistic coefficient is considered

the more accurate, it was used in the construction

of the following table.

Two things in Table 1 are important and should

be noted. First, the values of Beff as computed

from the orbital decay during the first few orbital

revolutions are not in all cases in good agreement
with the values predicted theoretically. Consider
the following examples:

Beff Btheo

Satellite (ft2 / slug) Affreement Remarks

Sputnik I 0.69 0. 603 Good Neglecting
antennas

Explorer III 3.69 3.71 Good Random

tumbling

Explorer IV 1.55 3.21 Poor Random

tumbling

This being the case, it is necessary to update

the knowledge of B as data becomes available

in order to obtain reasonable lifetime estimates.

The second point is that the agreement between the

computed data and the true data is good. To pro-

vide an appreciation of the level of improvement,

several previous works in the field were reviewed

(Refs. 7, 9, 10, 11, 12 and 15). Data for these

references are not included here because of the
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fact that different atmospheric models and differ-
ent data for the satellites have been assumed and

different corrective procedures (i. e., Bef f)

utilized in the correction of the results. As a

general rule the estimates obtained here are

superior to these works, though there were cases
for which other curves were more accurate.

Since this was expected, the relative value of the

approach was determined by a root mean square
estimate of the errors in the predicted lifetimes.

(The results included here produced approximately
13% error, while those of the literature varied

from approximately 15%5 to 35%. )

This improvement in the agreement seems
very significant. However, the magnitude of the

final error is still large. The reason for this

large error lies in the fact that the method does

not provide for atmospheric rotation, for density

variabiiity for variations in B, or for the oblate

nature of the atmosphere. This being the case,

subsequent paragraphs will be devoted to refining

the previous work.

D. THREE-DIMENSIONAL ATMOSPHERIC

PERTURBATIONS

Due to the fact that the atmosphere rotates,

the velocity of the vehicle relative to the atmo-
sphere will not be the velocity of the vehicle rela-

tive to space. Thus, the drag force will not lie in

the plane of unperturbed motion and each of the

sb: elements or constants of integration will be

affected rather than just the three considered

previously. Since the equations for variation in

the elliptic constants }lave previously been de-

veloped, it thus remains to describe the perturb-

ing force and discuss the resulting motion.

1. The Perturbing Force

is

The drag acceleration which acts on the vehicle

D--BpV2_
m r r

where

--  atm)

V atm = e x r

This acceleration must now be resolved into com-

ponents in order to permit evaluation of the re-

sultant motion. The specific set of components

to be utilized is the set R, S, W discussed in

Chapter IV.

is measured along the radius

is measured in the general direction of

motion perpendicular to

completes the right handed set.

First, the atmospheric velocity

R I S :

V aim = _e sin i sin ( 8 + to) : sin i co s ( 8 + to) : co s i
|

0

r , 0 ; 0

--r %[cosi sini cos18* to1
Secondly, the vehicle velocity

thus

and

=rR+{r@-re cosi) S
r e

,%

+ r _e sini cosle+to) W

I r : 2r2 % oo i+cr.% osil

Cr _e sin i COS (0+ to_ 2

where

= V 2 - 2HQe cos i+ r 2_e 2[cos 2 i

+ sin 2 i cos 2 (8 + to)]

= V 2 - 2}I _ cos i+ r 2 _ 2 C_
e c

- sin 2 i sin 2 (8 + _O)_

H = the angular momentum per unit mass

This result was also obtained by Sterne (Ref.

181 and Kalil (Refs. 19 and 20). Now at this point

the function V r must be expressed in terms of

the eccentric anomaly in order to facilitate inte-

gration with respect to time.

V 2 ; _ 1 + E cos E
a I - _ cos E

2 2 2 2
r = a (1 - 2c cosE+E cos E)

thus

Vr 2 1 + _ cos E 1 - cos il-c cos E= _ 1 - _ cosE n 1 +_ cosE

+ + (1 -, Cos E) 3 (1 - sin 2 2
n (I + { cos E) i sin (8 + to

2
n = _]a 3

But, as was noted by Sterne, _e/n can be no

larger than approximately 1 [ 15 for earth satellites;

thus V r can be obtained in an approximate sense

by the binomial expansion of the quantity within

the braces by neglecting terms of the order
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(_e/n)2. Thisstepappearsjustifiable in view

of the fact that there is such a large uncertainty

in the atmospheric density at any time and in the

aerodynamic characteristics of the vehicle. Under

this assumption, V r can be expressed as

Vr i - _ cosE 1 - n cosi +ccosEJ

This equation shows that to the order of corrective

terms sma!ler than approximately or _

the effect of the earth's rotation is a simple func-
tion of the inclination and of time. The form of

this corrective term being sufficiently simple, the

subsequent integration of the equations of motion

appears attractive. Now, the drag acceleration is:

--=5 _I I+_COsE rl 1-_c°sE7 Ee sin E R^-nP (l.,cosE)3L-Ci+,cosEjm

+ I-E ,2 _ f_e cos i (i -, cos E) 2

+ % sin i cos (0 + w) 1 - , cos E) 2

where

C:

_e I I - E2 cos i

But

cos (O+ to) = cos O cos _ - sin O sin to

cos E - e

1 - • COS E
COS _ "

sin E I 1 - 2

1 -E cosE
sin

Thus the final form of the drag acceleration is

D _Bp_ Jl+. cosE [ -.cosET_sinE _
-m= a_(l _E cosE)3 i "C _+'cosE_J

_ - f_--__E ! _ (1 -_ cos

2. The Change in the Orbit

At this point it is necessary to refer to equa-
tions for the time variations of the orbital elements

(Eqs (60), Chapter IV) or to the form utilized by
Sterne and presented in Plummer (Ref. 21):

da 2 [R tan ¢ sin O + S sec ¢ (1 + E cos O)]

dE a

= Kcos _ [R sin O+ S(cos 0+ cos E)]___{-

di r cos (O + to) W
Hi-= 2

n a sin i cos

df_ r sin (8 + _)

_i-= 2 W
na sin i cos

dto = _ a cos 2 cos 2 O R - r sin O (2+ _ cos O)
S

2
n a sin _ cos $

+ r sin(O+ to) W
2

na cos _tan i

dE' - 2r R q, d (_$ f_)Hi- = --"-2- + 2 sin 2
n a

idf_
+ 2 cos _ sin 2 _-dy-

where

sin

E !

(i E2) I/2= - as is customary in some
of the astronomical texts

: mean longitude at the epoch

R, S , W = the components of the disturbing

acceleration

At this point it is noted that since

n (t - t o ) : E - * sin E,

n
1 -E cosE

Also from Chapter Ill,

cos E - E
COS O =

i-_ cosE

sin 8 = _ 1 - E2 sin E
I-_ cosE

Thus the expressions for the changes in the

orbital elements obtained by substituting for

R, S and W can be transformed into functions of

the independent variable E and its time rate

_,. Integration for the secular change in each

element would then be possible (utilizing the

limits for E of 0 to 2_) ff the density could also

be expressed as a function of the variable E.

As was noted in previous sections of this

chapter, the density of the true atmosphere does

not vary exponentially with altitude. However,

as was also noted for small variations in the

altitude the approximation is valid. Selecting

once again the perigee altitude as the reference

for the approximation (since the largest portion

of the drag force occurs near perigee), the den-

sity can be written as

P = PO e-K (h - hp)
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where

P0 = density at perigee

h = a(l -, cos E) - R e [I

- f sin 2 i sin 2 (8+ _)]

hp = a (I - ,) - R e El - f sin 2 i sin 2 _3

= Esin 2 (0h - hp a_ (i - cos E) + R e f sin 2 i +_)

_ sin 2 _]

R e = earth's equatorial radius

Thus the approximate density is

P = P0 expE-Z (i - cos E) + q (sin 2 (0 + ,,)

- sin 2 _)]

where Z was previously defined to be Kay, and

where

2.

q -- K R e f sin i

At this point Sterne presents a Taylor expansion

of p in the form

-Z ZcosE_ _P = P0 e e (sin 2 (O + _) - sin 2 w) _

co

-Z Z cos E i-" sin 2m E

= P0 e e ._._ q2m' E)2m
rn=o (i - _ cos

In the series, the terms which are odd functions

of 8 are also odd functions of E and may be ig-
nored since they will not contribute to the com-

plete integral for the secular changes in the

elements. Using the even part of the series
4

through terms in q . which gives the series ac-

curately to about 1 part in 1000 for the altitudes

in which this study is concerned, Kalil obtained

qo = I

ql = (I - 2) (_q cos 2w+ _ sin 2 2w)

q2 = (I- E2)2E_ cos 4w - _ cos 2_ sin2 2_

+ _ sin 4 2_ 1

q3 = (I -.2)3 [-_cos32_+_cos2wsin22_

+ _ cos 22_ sin 22_ - sin 42

Since the angle t0 is approximately constant during

any single revolution, the qi can be treated as

approximate constants when integrating over one
revolution, without the introduction of appreciable
error.

It is noted that according to the remainder

theorem for alternating series, a series whose

terms are alternately positive and negative, and
such that their absolute values form a monotone

null sequence, is convergent (this is the case

here for the series expansion of the atmospheric
density). This being the case, the absoluLe value

of the remainder after n terms of such a series

does not exceed the absolute value of the (n+ l)st

term. Hence, the relative error introduced in

the series expansion of the atmospheric density

by retaining only terms through qn is

n+ 1

p < _ exp (q)

Thus, by retaining terms through q2, the relative

error in p is 3.4% at altitudes of I00 naut mi(185 kin)

where q "_0.5, and only 0.16,% at altitudes of

200 naut mi (370 kin) where q ,_0. 2.

Upon substitution of this density model into

the equations of variation of constants and perform-

ing the integration, Sterne reported the following

secular changes in the elements:

(1 + _)3,,"2 [i t - _]2 C-Y-
(Aa)se c = -2B _ (I - ,)i/2 - C T-4-_d P(_I 2_-'_

fl 9 f2

l - 7 -f- 1(_,)sec =
P0 _ 2_a L

.J

i /3+ 4( N+ _-2-+ 4_ C +
-_-Z _- I -, I -C+_+,C "'"

B(Ai)sec = -_'_e sini(1 - 2) (I - C_) aPo

• j+---

B I - ( apn_-"__
(A_)sec = --2 _e sin 2_0 (1 - 2) (i - C i--_) _I 25Z

I - ,2-+ 4E N)+ ---

(AW) sec = -cos i (A f_)sec

(A,')se c = (i - cos i) (Zi_)se c
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or
(_M)se c = 0

where

4_ 2 + I

fl = I - 8, N- 7 8ql_--- _

8 2 (i + 5E 2) 16 _N (5_ 2 - i)+_ 2N2
f2 = i + _ (I - E2) 2 +-'3- 1 - 2

--3- ql (i + I0_ + 8c N) + q2 (i + 4_)

N= I+C
1 -C+_+,C

These results are believed valid for all of the cases

for which Z > 2 to the order of q2 and represent

the solution well for such cases. However, if

Z < 2 a more general solution is necessary. This

solution suggested in Sterne's paper (carried out

for the element a) is reported for the elements

a and e by Kalil. The results are shown below.

5

(_)sec = -6_Ba(l -C) 2 0 0 e-ZT Anl n (Z)

n=0

5

(_,a)se c = -4_r Ba 2 (i -C) 2 PO e-ZT Anl n(Z)

n=0

5

(Ae)se c = -4_'Ba (i - 2) P0 e-Z_ Bn In (Z)

n=0

where the constants evaluated for small eccentric-

ities (i.e., e 3 << i) are presented below:

A 0 = i+ 2 (j2+½)

A1 = 2j, ---,x(j2+½}+_ 1+,2(j2+ 4j+

2 q2

A2 - _ql{ (J+ 1_- 3_ ql (J2 + 4j + _ + 3

q3

A 3 = 6_ q2 (j + 2)+ 15 Z---,3

15q3[ 2 %_)]A4= Z--_- 2, {j+ 3}+_- (j2+ 12j+

105q 4

+ Z

A 5 = 510 q4# (j + 4)

B 0 = c (2C+ i)

_ 3C+ 2 ql
B1 =(1 -c)2 --2-KE-+R_(3- 2C)

B 2 -- 1 -C) 2 _ (6 - 5C

B3 = Z--2 -'2-' + 1 -C) 2+_(10+ 17C

q3 15

+ Z---2 _ (7 - 10d+ 6C 2)

3q2_" 97B_:z--_L-r_+, (5- 4c

15q3K 2(__

_ q4 105, 9 14C+8C 2)- 30C+21C 2 + _ -.K-g t -

q3 I_ _ q4 iB5 = -z--4 (105,2) - 33c+ _Ic + z-_ (io5)I

6 1
I+C

K = negative log density slope

The symbols C, Z, , and qi are the same in this

set of equations as previously defined. The re-
duction formulas discussed earlier can also be

utilized, to relate all of the higher order Bessel

functions to the fundamental functions I 0 (Z) and

I 1 (Z). This step simplifies the numerical evalua-

tion of the time history of the decay; however, it

only serves to make the functional form of the

resultant equations more complex. For this

reason the equations are left in their present
form.

This set of equations is believed valid for

satellite orbits extending down to approximately

180 km with errors less than several percent.
Thus, if the inclination of the erbit were to be

specified, the equations could be integrated

numerically to yield realistic lifetime and decay
histories for the vehicle as was done in the

discussion of the nonrotating atmosphere. The

possibility of being able to construct a family of
lifetime figures for various inclinations is also

noted, though to date this has not been accom-

plished. Indeed, this step does not appear at-

tractive for general computations because the
procedure would result in an error source when

data is applied for values of B other than that

utilized in the construction of the figures. Thus,
the most attractive procedure involves the numeri-

cal integration of the decay rates for each satellite
of interest. This approach, though more cumber-

some, will be more numerically exact and should

result in errors approaching an order of magnitude

less than those obtained with the nonrotating at-
mospheric analysis.
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Though numerical data is not presented,

several general observations will be made. First,

the equations show that the effect of the atmospheric
rotation is to decrease inclination for all orbits

(inclination defined 0 ° < i < 180 °). Secondly, the
effect is to decrease th'_ r_te at which a and

vary for i< 90 ° and increase the rate i> 90 °.
Thirdly, rotation produces secular regression

and precession of the osculating ellipse.

Numerical computations reported by Sterne

substantiate not only these general trends but

also to a good degree, the numerical values of

the perturbed elements. This beingChe case, the

theory as evinced by the equations of this section
is believed to represent the best theoretical esti-
mate of the behavior of the vehicle.

E. THE EFFECTS OF DENSITY VARIABILITY

(Ref. 22)

To this point the approximations made in the

discussion of atmospheric effects have been re-
fined to include oblateness and rotation. Still

no mention has been made of the effects of density

variability. If the time intervals are large and the

altitudes sufficiently high that the forces are not

extremely large, the density variability effects
will tend to null out due to the fact that the model

atmosphere approximates average conditions.

These cases are treated in previous discussions

to varying degrees of approximation. However,
if the time intervals are short or the densities

more significant, the effect of variability will be

more pronounced, and the equation should be

integrated with the estimated density rather then

with the model density. One approach to the

problem of analysis of this latter case was shown

in Chapter IV-C-6-d, which discusses random

drag fluctuations. The following paragraphs

(l:tef. 22)extend this approach and provide some

numerical data which is of general interest. The

parameter of these discussions is the time of

nodal crossing, a readily observable and easily

computed quantity; the other parameters, be they

orbital elements or position and velocity, should be

checked as time permits. One such investiga-

tion is reported in Ref. 23.

i. Errors in the Time of Nodal Crossing due

to Drag Fluctuations Alone

The contribution of random drag fluctuations
to the rms error in predicted time of nodal

crossing depends on the correlation function of

the random fluctuations, which is unknown. Upper
and lower bounda however, can be constructed.

These bounds on the random error are given in

Fig. 15. In the upper bound, the random drag

fluctuations are assumed independent from one
revolution to the next. In the lower bound, the

random fluctuations are assumed perfectly cor-
related over intervals of 25 revolutions, but un-

correlated from interval to interval. The curves

actually show the ratio of the standard deviation

of the prediction to the standard deviation of the
random fluctuation, a, which is calculated from
observations smoothed over intervals of 25

revolutions.

The estimation of a is thus necessary to trans-

late the data of this figure to errors in the pre-

dicted time. No completely satisfactory method

is available to perform this function; however,

observations of satellites with perigees in the

range 220 to 650 km indicate that a (in minutes/

revolution) is given by the empirical equation

: 2.2 x lO"3 hp I+]. (78)

where h is the height of perigee in kin, and 7 is
P

the smoothed rate of change of period (unperturbed

by sinusoidal and random fluctuations) in minutes

per revolution.

For orbiting satellites the smoothed rate of change

of period, +, can be determined from observations.

For satellites not yet launched, the values obtained

from the previous discussions can be used as an

estimate for the smoothed rate of change of period.

A simple approximation for the prediction

error caused by both of the assumed random drag
fluctuations is dashed in between the two bounds

in Fig. 15. It is

i/2
G (N)/e = 5 (N3/3) (79)

rms

where G (N) is the rms error in the predicted
rrns

time of nodal crossing (in minutes), N revolutions

after the orbit was perfectly known. Equation

(79) is asymptotic to both bounds and all three

curves derived in Chapter IV.

The contribution of a different assumption

(i. e. , of a sinusoidal drag variation) to the error

in the time of nodal crossing is given by

(80)

Hrms(N)--(2) -1/2 A(k)-2(II -oos(kN)

- (kN)2 /212 +[kN - sin(kN)_2 } I /2

where:

Hrms = the rms sinusoidal prediction error

(in minutes) for arbitrary initial
phase of the sinusoidal drag

(81)

A = 1.8 hp IDI x 10 -3 (empirically

determined for same conditions as

a, Eq (78)).

hp = perigee altitude(kin)

k = (1.61v) 10 -4

= the period in minutes

Thus the sinusoidal and random errors can be

combined to give the rms error in timing of an

orbital prediction when the initial elements are

perfect:
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/k T
n (N) =(G2rms (N)+ H2rms (N)_ I/2

(82)

Now, if the local speed of nadir point is V 0, and

changes only slightly during the N periods over

which the prediction is made, then the correspond-

ing positional error tangential to the projection of
the orbit on the earth is

X (N) = V 0 _ _n(N) (83)

Errors in Orbital Predictions When the Elements

and Rate of 'Chan_e of Period are Obtained by

Smoothin_ Observations

2.

In the preceding simplified formulas, a perfect

knowledge of the orbit at the initial time, or epoch,

has been assumed. In actual orbital predictions,

the elements at the epoch and the rate of change of

period are usually found by some smoothing pro-

cedure, using data containing observational errors.

(Discussions of the errors made by various satellite

tracking devices appear in Chapter XI.) Thus, to

be rigorous these error sources must also be in-

cluded in the analysis.

Suppose that the rate of change of period is cal-
culated from M(< i) '_measured" times of nodal

crossing, which--are uniformly distributed through-

out an interval of i revolutions. Assume that there

are three independent causes of fluctuations in the

"measured" tLrne of nodal crossing:

(1)

(2)

(3)

A 27-day sinusoidal variation in the rate

of change of period

A random fluctuation in the rate of change

of period, which is independent from

revolution to revolution

A measurement error introduced by the

tracking device.

Of course, only (3) can be regarded as an error of
measurement, but (1) and (2) will contribute an

error to the smoothed values of the period and the
rate of change of period. The errors will be

given as a function of the number of revolutions
N, after the epoch. The epoch is taken to be at

the center of the smoothing intervals.

(1) The contribution of the smoothed sinu-

soidal drag variation to the rms error

in an orbital prediction which runs for

N revolutions from the epoch is

S(N) A (a2 /_2) 1/2
- + (84)

k
where

2i (ik) + 64
= COS kN- _ sin _- _ sin (_)

--sin - + 8N[-i(i+ 2)k]-I

and A is given by Eq (81), i is the smoothing in-

terval in revolutions, and k = I, 61 x 10 -4 _,

where 7 is the period in minutes.

As the smoothing interval, i, approaches zero,

Eq(84) approaches Eq(80), which represents the

sinusoidal error when there is no smoothing. The

quantity S(N)/A is graphed in Figs. 16a through
16d.

(2) The contribution of the smoothed random

fluctuation to the rms error in orbital

prediction is

(N 3 3 _" 4
R(N) = 5_--_ +2 /_) L 64

2 112

for i >> 1 (85)

where _ is given by Eq (78).

Equation (85) should be compared with its

unsmoothed counterpart, Eq (79). The quantity
R(N)/(5a) is graphed in Fig. 17.

The contribution of smoothed measurement

errors to the rms error in the predicted time of
the Nth nodal crossing is

O(N) = cr0 (M) -1/2 (i)-2 ((i)4

%.

._%I (M +2)-I +(16/9)(M +2)2/M 2]

+ 256 N 4 + 16 (Ni) 2 FM (M+ 2) -I

- (8/3) (M + 2)/M

2M (M + 2)-2J- +32Ni

•Ei)2/(3M)-4N2 (M+ 2)-1])I/2

(88)

where all the observations are assumed to have

the same standard deviation, _0" and M is the

number of observations in a smoothing interval

of i revolutions. The quantity O(N)/cr 0 is graphed

in Fig. 18. The observational errors, _0" made

by various tracking devices are given in Chapter XI.

In order to have the error given by Eq (86) in

minutes of time, it is necessary to use a0" the

error of a single observation in minutes of time.

Angular errors, A 8 (in radians), can be approxi-

mately converted to timing errors, a0 (in minutes)
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by

a 0 (I+R_-) -I z_°. h "_0 '
(87)

where h is the height of the satellite, and R e is

the radius of the earth, and V 0 is the local speed

of the nadir point in units of length per minute.

Doppler errors are more difficult to convert

to errors in timing. They are subject to refraction

and azimuth uncertainties, and it is difficult to

tell how many independent observations are made

in one pass. In addition, refraction and oscillator

instability can create biases as large as the random

errors of observations, and these biases cannot be

reduced by smoothing observations from a pass

over a single station. The observational error
in minutes for one independent doppler observation

is approximately

_.
• _. . (88)

a 0_(tf-t i) (ri ri)

where the range rate changes from an initial value

of /'ito a final value bf during the time (tf - ti), in

minutes, that a doppler signal is being measured

by the station. The range-rate error in a doppler

observation is A f-. For a typical case, (tf - t i) is

10 minutes, and (_'i - f'f) is 20,000 feet per second

(or 6100 mps).

There is an important difference between Eq

(87) on the one hand, and Eq (88) on the other.
Equation (87) is applicable to each individual

observation, hence to the average of a group of

observations. Equation (88) only represent average
conditions, so they only apply to the average of a

group of observations, such as would be used with

Eq (86).

The errors are given as a function of the number
of revolutions after the epoch assumed to be at

the center of the smoothing interval. Now assum-

ing _e observational, sinusoidal, and random

errors are independent, they can be combined to

give

Erm s (N) =(EO (N)3 2 + ES(N)3 2

+ [a(N)32) 112 (89)

where E (N) is the standard deviation of the
rms

predicted time of the Nth nodal crossing after the

epoch, when the elements and rate of change of

period are obtained by smoothing observations.

Erm s (N) represents the error tangential to the

orbit of the satellite projected on the celestial

sphere. Errors at right angles to the orbit are

usually an order of magnitude smaller.

Errors in actual predictions issued by the

Vanguard Computing Center, NASA Computing
Center, Smithsonian Astrophysical Observatory,

and Naval Weapons Laboratory are compared
with the theoretical model in Tables 2 and 3.

Table 2 contains the errors in one to two-week

predictions made near the peak of the sunspot
cycle• Table 3 shows the errors in predictions

half-way between sunspot maximum and sunspot
minimum. In the tables, N is the number of

revolutions predicted, beginning at the center oi'
the smoothing interval. The smoothed rate of

change of period is + (minutes per revolution).

The root-mean-square prediction error, E
rm:

(N) (in minutes), includes the contributions of

observational errors and drag fluctuations.

theoretical prediction error caused by obse,

errors alone is designated by O(N).

SateLlite

Explorer IV

Sputnik III

Vanguard I

Vanguard I

Vanguard I

Atlas-Score

Dates

1958

1958

Fall, 1958

Summer,
1959

Winter,

1959 to 1960

Dec. 1958 to
Jan. 1959

TABLE Z

Prediction Errors Near Peak of Sunspot Cycle

No. of

Predictions
,,,, ,,=

8

7

20

Ii

(Min IRev)

2. 15 x 10 -3

I. 32 x 10 -3

5.5 x 10 -5

2. i x 10 -5

6.5x 10 -6

2.2 x 10 .2

N O (N)

(Rev) (Min)

165 0. 024

220 0.01

154 0. 056

154 0. 056

154

271

0. 056

0.3

Erm s (N)

Actual

(Min)

3.2

3.3

0•25

0.13

0.062

67.0

Theoretical

(Min)

3.7

1,9

0.22

0. 097

0.061

74.0

*A single observation has no statistical significance. This case is included merely to show how large the

error can be when the rate of change of period is large.
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TABLE 3

Prediction Errors Hal.f-Way Between Sunspot
Maximum and Minimum

Satellite

Tiros H

Vanguard l

Transit III-B

Echo I

Dates

Dec. 1960 to

May 1961

Oct. 1960 to

May 1961

Feb. to Mar.
1961

Oct. to Dec.

1960

NO. of

Predictions

12

12

I0

6

-÷

(Min / Rev)

3.7x l0 -6

7.4 x 10 -6

I. 05 x 10 -2

6.8x 10 -4

N

(Re v)

25O

150

22

145

O (N)

(Min)

0.08

0.06

0.04

0.04

Erm s (N)

Actual Theoretical

(Min) (Min)

0.12 0.08

0.12 0.06

O. 74 0.50

4.4 3.3

TABLE 4

Errors in Individual Orbital

Predictions for Vanguard I

Number

of Pass

2309

2986

2836

2234

2459

2535

3173

1934

2911

2610

Errors

(seconds

oftime)

+37 2159

-25 1708

+21 2685

-21 2009

+17 1633

-16 2384

+14 2760

-14 2084

+12 1858

-12 1783

Errors
Number ( seconds

of Pass of time)

-12

-12

-11

- 9

- 7

+ 6

- 3

+2

+2

+ 1

E = 15 seconds = 0.25minutes
rms

It is interesting to note that observational

errors were the principal cause of errors in

orbital predictions for only one of the cases shown,

that of Vanguard I with its perigee in darkness

(Winter 1959-1960). In all the cases, the pre-

diction errors attributable to observational errors

were smaller than the total error for Vanguard I

in darkness. If the errors in predictions had

been caused mainly by observational errors, then

the prediction errors would have been independent

of the smoothed rate of change of period. A de-

tailed discussion of the theory and the method of

calculation is given in Ref. 21.

Theoretical calculations of the errors in

orbital predictions by the methods described above

are subject to uncertainties because of variations

in methods of fitting, spin of nonspherical satel-

Iites, and sampling errors as well as uncertain-

ties in the estimates of the smoothing intervals.
The uncertainty in the theoretical rms error is

approximately +100 to -50 percent. All of the
examples in Tables 2 and 3 were within these

bounds. Deviations from the theoretical model

have tended to be on the high side so far (1958 to

1961). During the two years near sunspot mini-

mum, the percentage variations of the decimeter

solar flux (which is correlated with atmospheric

density) are only one-third as large as during the

rest of the sunspot cycle, so the deviations from

the theoretical model can be expected to be on the

low side during 1963 and 1964.

Erm s (N) in Tables 2 and 3 is, of course,

a root-mean-square error. The error inan

individual prediction can be larger or smaller
than the root-mean-square value, and can be

positive or negative. The distribution function

appears to be normal. Table 4 shows the individual

errors in twenty predictions made for Vanguard I

when its perigee was in sunlight (Fall, 1953).

3. Errors in Orbital Predictions When the Rate

of Change Period is Calculated from a
S_and_,_'d Atmosphere

The usual way of making satellite orbital
predictions is to compute the elements and rate

of change of period at the epoch by smoothing all
the observations made during a certain time in-

terval (usually a few days). This orbit is then

projected forward in time. All of the predictions

listed in Tables 2 and 3, with the possible ex-
ception of the predictions for Transit III-B, were

made by this method. The theory appropriate to
this method of making predictions has been de-

scribed above. The theory for the case in which

the rate of change of period is derived from a
standard atmosphere will now be described. Such

a method might be used when there are not enough
observations to determine the rate of change of

period. In this case, the error can be separated

into three parts, described under the following
headings:

(1) The error in the period and the time

of nodal crossing.

(2) The error caused by computing the

rate of change of period from a standard

atmosphere.
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(3) The error caused by the sinusoidal and

random drag fluctuations.

(i) if the period and the time of nodal crossing

at the epoch are obtained by a single orbital fit

over N revolutions containing M independent ob-

servations, then the errors in the period, Av (in

minutes), and time, At (in minutes), caused by

observational errors, are

At = _0 M-I/2 (90)

and

AT = 4:0 i-I ._'I-I/2 (91)

where cr° is the error of a single independent ob-

servation (in minutes of time) and may be obtained
from the observational errors in angular and dop-

pler units by V_qs (87) and (88), respectively.

In the case of precision doppler observations,

an alternative method of calculating the period is

feasible but is not recommended, because it pro-

duces large errors in the period. This method

is to compute independent _alues of the elements

from each pass of doppler data recorded by a

station, and average all the sets of elements de-

rived during i revolutions. The errors in period

and timing (caused by observational errors) pro-

duced by this method are roughly

At = c_0 (M) "112 (90a)

and

(_ I/2 _- (91a)
AT = o"0 _ '

where (tf - ti) is the time interval during which

a single station is recording doppler data during

a pass.

(2) The rate of change of period + can be ap-

proximately calculated by using the theory of drag

perturbations in Chapter IV and one of the stand

ard atmospheres described in Chapter H. This

method is not precise and a certain amount of error

is thus inserted. However, the magnitude of this

error can not be described analytically and must

thus be accepted.

(3) The errors caused by sinusoidal and ran-

dom drag fluctuations are given by Eqs (80) and

(79), respectively. The reason for using models

which do not include smoothing is that + is ob-

tained from a standard atmosphere.

Now that the three factors have been discussed,

the predicted time of nodal crossing can be

written in the following form:

tp (N)=t+ N_'+ (_--) _" (92)

where the errors in predictions contributed by

the time of nodal crossing, the period, and the

rate of change of period are At, N A_', and

(N 2/2) v, respectively.

if the coupling among the period and the time

of nodal crossing (which should not cause much

error) is ignored, then the root mean square

error in a prediction made with a standard

atmosphere, N revolutions after the epoch, is

approximately

Erm s =

(93)

+ IIrms(N -

where the epoch is taken to be the center of the

smoothing interval employed in calculating the

period and time of nodal crossing. Equation (93)

applies in cases in which a standard atmosphere

is used for calculating the rate of change of

* (N) is tangential to theperiod. The error Erm s

orbit of the satellite projected on the cele_t:al

sphere. The error at right angles to the orbit

is usually smaller.

4. Example

Problem:

Calculate the root-mean-square error in an

orbital prediction for Explorer IV, 165

revolutions from the center of the smoothing

interval. The period at the time of interest

was 109 minutes, and the heights of perigee

and apogee were 142 and 1190 naut mi or

263 and 2200 kin, respectively. The smoothing

interval is estimated to be i = I00 revolutions,

the number of observations, M = 25, and the

prediction interval, N = 165. The smoothed

rate of change of period, 4 = -2.15 x 10 -3

min/rev, and the observational error is es-

timated to have been 0.7 milliradian. The

elements and rate of change of period were

derived by smoothing observations.

Solution:

The errors given by Eqs (84) through (89) are

appropriate. The average height of the

satellite h, was 666 naut mi or 1232 km and

the approximate speed of the nadir point was

V 0 -_ 2_ Re/P = 198 naut mi per minute or

367 km/min, so Eq (87) gives for the average

error of an observation, a 0 = 2 x 10 -3 minutes.

From Fig. 18, O(N)/cr 0 = 12, so the con-

tribution of observational errors to the error
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in an orbital prediction is 2.4 x 10 -2 minutes.

The normalized random error, R(N)/(5a) is

1.6 x 103 , from Fig. 17. According to Eq

(78), a is 3.7 x 10 -4 minutes per revolution.

Therefore, the prediction error caused by

random fluctuations is 2.95 minutes. The

normalized sinusoidal error is S(N)/A = 7.5 x

103, interpolating between Figs. 16b and 16c.

According to Eq (81), A is 3.06 x 10 -4 minutes

per revolution. Therefore, the prediction

error caused by the sinusoidal variation is

2.3 minutes. Combining the three errors

by Eq (89), the theoretical error of prediction

is 3.7 minutes. For comparison, the root-

mean-square error of eight predictions issued

by the Vanguard Computing Center was 3.2

minutes.
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VI. MANEUVERS

SYMBOLS
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A. INTRODUCTION

Because of many reasons, including guidance

inaccuracies in launch and ascent, change of

mission for the satellite, and evasion or rendez-

vous maneuvers, a requirement exists to transfer

from one position and velocity in space to another

at some subsequent time. This chapter treats

some of the problems associated with such ma-

neuvers and presents computation routines and

data useful in analyses of these maneuvers.

Due to the fact that two general trajectories

do not intersect, it is necessary to perform at

least two maneuvers in order to produce the de-

sired trajectory. Thus, the first order of busi-

ness is the analyses of impulses (the mechanism

of investigation) and of the independent adjust-

ment of the six constants of integration or ele-

ments. These discussions will be followed by

the analysis of small maneuvers in nearly cir-

cular orbits, a general two-impulse transfer

discussion, propulsion requirements for cor-

recting the effect of atmospheric drag and the

earth's oblateness. At this point, the emphasis

changes slightly to the presentation of material

pertinent to differential corrections, the errors

in the final orbit and trajectory optimization.

These discussions are followed in turn by the

analysis of the effects of finite burning time and

the in-orbit propulsion system. The chapter con-

cludes with a discussion of the adaptability of
microthrusts for orbital corrections.

B. IMPULSIVE CORRECTIONS

Because the impulse is the medium of analysis

in these discussions, the accompanying assump-
tions and methods will first be reviewed. Be-

cause the burning time is infinitesimal, the ef-

fects of gravity, variations in position due to

thrust, etc. , can be neglected and the governing
law considered to be the law of cosines.

By this law, the characteristic velocity of

the maneuver (AV) may be expressed as a func-

tion of the velocity vector prior to maneuver

(VI), the velocity vector after the maneuver

(V2), the turning angle of the maneuver (@) and

the angle of thrust application relative to the

initial flight direction (_T).

V 1

2 2

= V I +V 2 - 2V I V 2 cos @ (I)
AV 2

where

AV = g0 Isp tn _ (2)

1 - -'-_0"

= the ideal velocity increment obtainable.

A convenient graphical representation of this law

can be found if it is first nondimensionalized.

=I+ -2 cos@

(3)

Similarly the law of sines is:

AV V 2

"_I sin cbT = _ sin @ (4)

These equations are presented in Figs. 1 and
2. The velocity increment itself is related to

the mass fraction \re(l/ in Fig. 3. The form

of these figures is the nomogram; the philosophy

of construction along with a general description

of the utilization of such a figure is presented in

Chapter Ill. The effects of errors in AV and

_T on the final velocity V 2 can be seen immedi-

ately from the law of cosines to be

<_ _) y +cos CT
*T x (5)

(a_) = - Y_ sin_b T (6)

Y

__) sin d)T
z

_T xg (71

o(<).. (8)
y ¢hT

where

V 2
X s __

V 1

AV
y =

and the subscript on the partial derivative

indicates the parameter held constant.

Figures 4 through 7 show these error
coefficients.

J
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C. INDEPENDENT ADJUSTMENT OF

ORBITAL ELEMENTS

The impulse having been considered, atten-
tion can be turned to the correction of the or-

bital elements. This series of corrections will

be treated first for the case when the target

orbit is circular then for the case of elliptic

orbits. (The distinction is made because of

minor differences in the maneuver formulation. )

i. Circular Orbits

In general, :he ascent guidance sys:em will

not be capable of placing the vehicle in a speci-

fied precisely circular orbit (even for a spheri-

cal earth). Therefore, maneuvers to change
each element must be defined.

a. Correction of eccentricity and semimajor
axis

The first of these maneuvers is the placement

of the satellite in the proper orbit. This prob-
lem is considered in three cases, in which the

planar orbit ,,vlll be described by apogee and

perigee radii and the time of perigee crossing.
The three cases are:

(1) r > r > r
a n p

(2) r > r "_r
a p n

(3) r > r > r .
n a p

The r is that radius which is specified for the
n

satellite.

Case l--r a >r n >rp. Consider first the

pulse necessary to change an initially elliptical
orbit to a circular orbit.

From the law of cosines

AV _2 =V: +Vn2 _ 2V cv ncos AY

where

Vc -

V n = velocity in the incorrect orbit at
r

n

Ay = change in flight path angle

This expression may be written in terms of the

knowns by considering

V
n

A'y = COS
-i

r a rp
r n (ra + rp - r n)

2 ;Jp _ 2V2 (i rn)_= 2 2 e r +r
Vn r cos I%7 a p

n

2
VC n r CO_ --_:

n n

cos AY

t/ 2 r a rp

= 2V: _r n (r a +rp)

Then, the nondimension solution for the correc-

tive pulse may be written so as to involve or.l,f

twO ratios.

/Av \ 2 _ 2 __a
, ej =3 rp r

VVc/ r a r a2- r a + 1 +

rp

(9)

The direction of thrust application is determined

by noting that

&V( sin¢t_ " Vc sin A'¢

or

°,.8,ni= sin Ay (I0)

If a timer signal is used to trigger the pulse, the
time to make the correction must also be com-

puted.

3/2

/r +r\ [E - E]t =1 ____p) -ra-rp sin +t

r a + rp p
(11)

where

rn r)r• +2

sin E r a - rp

+---_ 1+2 +

r a

{continued)
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-2
÷ 2 rn rn

1/2

and t is the time to initiatethe correction.

The orbit resulting from the correction (s),

the magnitude, direction and time of which are
given by Eqs (9), (10) and (11) is a circular orbit
of the desired period. However, this orbit may
be slightly in error due to inherent inaccuracies.
For this reason, the following error analysis for
changing the size and s_ape of the orbit to a
circular orbit was condhcted.

&V
sin Ay = V-- sin @t

C

COS AN a(AY) = _sin,t +_cOs (_t%_t
C C

_T

- V---,2- sin _'t AVc
C

where

V c = _ and

0V V
C C

0---7- = --2-'_ "

Thus,

COS 2W 6 (AY) 6 (AV) sin Ct &V= -V--- + V- cos ¢t &¢t
C C

AVAr
+ _ sin *t

C

or

cos A_ 6 (AY)

sin #t

6 (av)
xy

C

+ _c + cot *t 40 "

It is noted that both sides of the last equation be-

come infiniteas Ct goes to zero. This problem

may be resolved by going back one step to the

preceding equation and noting that for _t = 0,
AY=O.

AVA_b t
6(ay)=

C

b. Correction of the plane

The second maneuver to be considered is

that necessary to change the orbits/ plane. Con-
sider the case of maneuvers in circular orbits to
change orbital inclination or the node (Fig. 8). A
vehicle in a circular orbit with inclination angle
(i) and nodal longitude (_I) is given a horizontal
thrust pulse (AV. the characteristic velocity of

the maneuver) at latitude (L) so that the orbital
velocity remains constant in magnitude, but
changes in azimuth by an angle &_. (Azimuth is
determined by the intersection of the meridian
at the point of the maneuver and the great circle
projection of the orbital path. ) Using primes to
indicate quantities after the maneuver,

/3' = _ + /x_.

A new node (_') and new inclination (i') re-

sult from such a maneuver. If d is the longitude
of the maneuver, measured from the reference
axis, then

v=_±d.

(Note: Use a plus sign if fl and d are on opposite
sides of the reference axis, and a minus sign if
they are on the same side.)

Since d is fixed, the longitude of the new node
is

_' = v I - d.

From spherical trigonometry,

cos i = cos L sin I_

sin v : tan Lcot i

cot _ : sin Lcot v

These expressions can be manipulated by main-
taining L constant to yield

v' = tan -1 (sin L tan fl'), (12)

and

[' :cos -I (cos Lsin t_'). (13)

The energy requirement to accomplish this
constant speed turn is then simply

AV
= 2 sin Aft [2 (14)

and the impulse must be directed according to

@t =+ ("_ +900

in the plane normal to the radius vector.

The_..\error derivatives _ L = constant

and ,_rl may be readily determined
L • constant

as

_-_/ cos L cos a
• .... sin L cot i cot I,

L sin i
(iS)
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and

L sec 2 v

(16)

At this point, it is of interest to note that if it

is desired that the nodal position be maintained

constant, the maneuver must occur at one of the

equatorial crossings. If, however° the inclina-

tion is to be maintained constant, all maneuvers

must be made at ±-_ (sign depends on the

direction of the A_2) from the longitude corre-

sponding to the maximum latitude.

Equation (14) shows the very large energy re-

quirements for significant changes in azimuth
at low altitudes where V is of the order of 8000

c

raps and suggests that a more efficient procedure

might result if the maneuver could be made at

a point where the velocity is low. Pursumg this

thought further, consider the following sketch.

J
J Initial _

-_ c irc u la r
it \

&_ ha //iAp°gee

/Maneuvering

_ --_ __ __ I _ J orbit

The philosophy is first to inject into an elliptic

orbit the parameters of which will be investi-

gated, secondly to change azimuth at the maxi-

mum radius (minimum velocity) and thirdly, re-

establish the desired circular orbit but in a

new plane. Now

or

Vp --V c + AV 1

V 2 - V 2 = 2_
p a

2
2V

V = c - V
a "W-- p

P

Having reached apogee, the second increment

of magnitude defined by

AV 2 A/l 2

-_--- -- 2 sin -- 2-
a

is applied.

Then at perigee, the initial velocity adjustment

must be canceled; thus

AVtota I = 2Av I + AV 2 •

By combining the above equations, the following

explicit expression for ,hV T in terms of the

radius of the circular orbit and the ratio of

apogee to perigee radii can be obtained.

I {_a"_ 1/2 ra -1

(ra __ r c) (15)

This function has been plotted in Fig. 9 (r a _ r c)

in nondtmens[onaltzed form (by dividing %hrough

by V e) for various values of _I_. For the smaller

values of &l_, the impulsive incremental velocity

required to perform the transfer maneuver is

seen to be greater when the vehicle is injected

into an elliptic orbit, that is, when the nodal

point _s stretched or lengthened. On the o_her

ha_d. for the larger values of-X:_ the [hree-ir_e-

pulse maneuver becomes more efficient, and, in

fact, there [s a definite ratio of ra/r c at which

the total energy required for the maneuver is a
minimum.

This condition is more clearly illustrated by

analyzing the variation of AV T with respect to r a

for a given value of r c. Performing the indicated

differentiation yields

--D-Fa =_cc _"c 1÷

• - sin- 

(16)

This function defines the minimum points when

(AVT) = 0 (17)
_r

that is, when

1 +2 sin- 2-
(18)
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or when

An

r_aa = sin "2-

rc I - 2 sin- 2-

(19)

The right-hand side of Eq (19) is plotted in Fig.

I0 for the range 0"< Ai < 90° and also in Fig. 9

as a dotted line. T-he vaTues given by the curve

are the minima, while values selected within

the shaded area represent choices which

require more energy than the minimum, but tess

than that required to make the correction on the

initial circular orbit itself. Another factor which

in inferred from this curve is that since r a >rc,

the value of A[_, at which the function is exactly
unity (about 39°), defines the minimum azimuth

change for which it becomes profitable to effect
the transfer to an eccentric orbit.

The vertical boundary at Zkq = 60 ° arises

because of the fact that the formulation breaks
down at this point because the vehicle is re-

quired to transfer to infinity (i. e., escape)

maneuver, then return. In this region all

maneuvers will require the same energy, since
the velocities at these large radii are essentially
zero. However, this solution is of academic

interest because of the impracticality of such an
app roach.

Another factor of interest in this study is the
period T of the elliptical orbits being considered,

since one would normally want to keep the transfer
time within reasonable limits. The equation for

the period of a vehicle in an elliptic orbit about
the spherical earth is

2_ a3/2
= "ITT (20)

which may be reduced in terms of the variables

used in the previous equations to the form:

-r --
1/2

U rc/J

3/2

312

where Vc is the period of the (target's) circular

orbit. Figure 11 is a plot of the nondimen-

sionalized orbital period of the interceptor

_c rc/J (22)

as a function of the parameter ra/r c for the

same ra*nge as was considered previously, with

the same equation applying in this case, for the

entire range of ra/r c.

The factor of interest here, however, .is the

additional amount of time required to perform

the eccentric maneuver, as compared to the
period of the circular orbit. This factor is

given by

- ffi - "r (23)
T T c C

The new circular orbit may also be described
in terms of the lateral separation from the old

orbit as a function of the central angle from the

point at which the maneuver is made (¢b0) if the

maneuver is small. Let the spherical separation
of the new orbit from the original orbit be z ex-

pressed in radians.

Then

sinz sin ¢0

but sin All . AV/Vc sin CT from pulse geometry.

Therefore,

AV
sinz =-_-- sin¢o.

C

For small angles (z < 0. 1 radian) sin z _- z
"_ z (kin)

(radian) - _ _--_-_, and with a maximum error
u

of about 1% we have:

z_ "_ AV
r 0 - V--O- sin ¢0 (24)

The separation z (kin) versus mass ratio re-

quired is plotted in nomograph form in Fig. 12

for circular orbits at altitudes of 0,200,400,600,

800 and 1000 km for various ¢0 and Isp = 200,

250, 300, 350 and 400 sec. The maximum separa-
tion between the orbits is seen to occur at

_b0 =(2n- I) 90 °, n = I, 2 ....

This fact is true because both orbits must con-

tain the original radius vector.

There is no time separation between satellites
because the satellite is in a circular orbit at the

same altitude with the same period both before
and after the maneuver.

c. Correction of position

The equations to correct the position of the

satellite in its corrected circular orbit are

derived as follows. If it is assumed the satellite

is displaced A8 from some desired position, then

the time in which the satellite passes through
_0 is

T

at =_-_- 40 (25)
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This&t mustbelostor madeup,dependingupon
whetherthesatelliteis aheadof, or behindits
desiredzenith. Thesimplestsolution,fromthe
standpointof computationsinvolved,is tocause
thesatellitetoenteranellipticalorbit possess-
ingaperiodv ±At/n (with perigee or apogee, as
the case m.ay be, at the altitude of the desired

orbit) by a pulse tangent to the original orbit,

and to re-enter the original orbit by an equal and

opposite pulse after n periods of the transfer

orbit. Then, if vt and a are parameters of the

transfer orbit,

}-- - ± (r t r) : ± r 1

Combining Eqs (25) and (26) and noting that

.(2_)

/Jr
n

a =

2U - r V 2 '
n n

V is determined as
n

2

2 3

The n,

&V8 1 Vn

n-V----V--- 1 = 2-
C C

1
- 1

2/3

(27a)

and

AV82 --- AV81

where:

&Vo 1' &V0 2 are the first and second cor-

rective pulses applied tangentially at an

(, _0 )interval n r ± _ .

n = number of revolutions in transfer

orbit

A8 = + if vehicle is to move backward in

orbit (i. e., AV along velocity
vector)

= - if vehicle is to move ahead in

orbit (i. e., AV opposes velocity

vector)

Equation (27a) is presented in Fig. 13.

For large values of AO, A v approaches

av "%_'y (_- n,

which is the difference between escape and circu-
lar orbit velocities. For small values of AS,

The time required for carrying out the maneuver
is

t = 2,,n_( r_ ) 3_'_ 2. - r (v + av)2

where &V is negative if &O is + and positive if
&O is -.

The more general case where thrust is not

assumed to be along the velocity vector results

in the following expression

= _ {_ _ 1 t
2\3/2 1A8 (1 K 2) _ 1 (2 K2}

k

+ 2 K 21tan-l[tana I
+

%

2

where

and

E - e sin E I

23 3/2
(27b)

a = tan -lj(K2 " K1) 'sin_TI }

I 1 + (K 2 - K I) cos VT I

{ )_2 - K 22 IsinCT[ }E = tan -1 (K2- K1 Z I
K 2 -

This relationship is presented in Fig. 14.

Equation (27) assumes that the maneuver may

be initiated at any time and considers only the

magnitude of the error in the central angle. If it
is desired to produce a specific node (on a rotat-

ing earth) at a specified time, the basic approach

must be altered. The new problem may be re-
stated as follows: Assume that it is desired to

move from a known position B (relative to the

ascending node) to a nodal position _2 on a rotat-

ing earth in the same time that it takes to move

from a position a to the node _1" This problem

is illustrated in the following sketch.

fl o nl f_2

1 VI,/ \'\
"//
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For the case of nearly circular orbits, this im-

plies that (tI = t2):

v [2Trn+a-n_] = r'
_-_ [2_n' +B - n'_']

(28)

ifn = n' and L',_&,

n' (2_ -L') +B

S -_
•: 1 +

n(2rt -_) +a "

Another relationship between r and r' can be

obtained by observing the nodal motion as a func-

tion of period change:

nAr_ =g_+fln
e

and

r-'r = 1 + n'-n-U T'
e

Equating

B -_ AF_ + nF_

n (2n - e) += nQ _'
e

(29)

The angle a is included [n the analysis for the

sole purpose of providing a means for including

errors in the time of passage through the node

_0" Therefore,

2 *rAt 0
= f (terror) = r

Substituting this relationship into Eq (29) yields

T Ai]+ --e "
(30)

Thus, the position of the point at which the first
corrective pulse is to be made is defined, but

the magnitude of the correction itself has not yet
been evaluated. This portion of the analysis can
be accomplished when it is noted that the orbits

of interest for this study are circular.

Thus,

(31)

If the period change is to result solely from a

velocity pulse (that is, no change in radius during

the application of the pulse), the period change is:

AT 3 T AV
z --V-"_ •

c

Again,

Ai2 + nf2
A T =

nfl
e

Therefore,

AV = #* [&f2 +n_ 1L °% (32)
This equation defines the first pulse, which alters

the period to produce the desired position change.
However, a second pulse approximately equal to,
but in the opposite direction from the first, is

required at the desired node to produce the cor-

rect orbit. Both of these pulses should be di-

rected along the velocity vector. The magnitude
of this second pulse is:

"_V 2 =AV 1 +.(V c - 5VI)

where the corrective term is included to com-

pensate for the small radius and velocity errors
which produced the initial displacement.

Case 2. r >r >r . For this case, the
a p n

determination of AV must be modified as fol-
¢

lows:

AV
E I i

+1 +1

P

AVe 2 _ I -I 2rVc I + __._n

r a

(33)

(34)

/-,,'77--

where Vca = _- . Tangential pulses (Av, 1 and

AVE 2 ) are applied at

and

tp+

3/2

312

tp + 2_ t___ ) , respectively•

The subsequent corrections for i, fl proceed

exactly as in the first case.

Case 3. r n >r a >rp. Proceeding in a

manner similar to Case 2,

&V 1 1 1

rn a

(35)

AVE 2 I

.W....._ = 1 2
c rn

--+I

rp

(36)

ir:
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.t---L==-.

where Vcp = _ and AV El and AV 2 are applied
J A-

tangentially at times

and

2_ [ra+ rp_

tp+ V-z- /

/r + r

tp F

3/2

3/2

The subsequent corrections for i, _2 proceed

exactly as in the first case.

2. Elliptical Orbits

The presentation here constders the orbit to

be defined in terms of the six usual elements a,

e, tp, [, _, 2 and discusses the adjustment of

e ac h.

a. Transition from incorrect orbit

The first step inthe final correction of an

elliptical orbit is a transition from the incorrect

orbit to an orbit of the desired size and shape in

the plane of the incorrect orbit, but rotated in the

plane through an angle _ - _', where _' is the

angle from perigee to node for the incorrect orbit

and _ the angle from per:gee _o node Ln the orbi_

ultimately desired.

rn

I rp, r a,Known or calculable quantities are r a"

rp, w and _', where primes denote quantities

in the incorrect orbit. The angle from perigee

to intersection in the original orbit (8) may be
determined as follows.

p' p
m

rn 1 +e' cos0 1 +ecos (8 -_+_')

Writing this expression in terms of the known

radii,

> r .- a = a +I

_-p cos8 + G +1 ra

+ a _ cos (e -_,

P

where

This expression can be easily solved for 8 by an

iteration technique. However, a direct solution
is also available

cos e =B (1 - A cos _)

I+A 2 - 2A cos 4_

± [B 2 (1 - A cos _)2 _ (1 +A 2
L

(B 2 A 2
1/2

- 2A cos _) - sin 2 _)_
.J

• (1 +A 2 - 2A cos 4D "I

where

1 [rp - 1 [ra e' PA -- =
l/r-- i/r' e p,

P a

r !

+ l/rp r' e' p'1/r a . p = I

B = i/r- - l/r" r' p -
P a a_ 1

r t
P

The change in flight path angle in the maneuver
is

I ra/r n
A_ = COS °1

r'/rpa - (rn/rp) + 1

-I ] ra/rn (38)
- cos __ra- --rn + 1

rp rp

The characteristic velocity necessary to effect

the maneuver may be determined from the law
of cosines.

2
_xV

E 1 1

Vcr_ - 2 - r, r' r r2 a+ p a+ p

r n r n r n r n

- 2 r' r a r -a +

rn rnJL

(39)

COS A _,

where AV is the characteristic velocity of the

correction and V is the circular velocity at r.cr

Thus, if rp, r a, r a, rp, _ and _' are known,

8 (and hence r n and the time for correction), AV

and A _ are determined.
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b. Correction of inclination

After the size and shape correction is com-

pleted, it is possible to correct inclination to

the desired value by a constant speed turn at the

node (_). The error in inclination (Ai) will be

determined as data. The characteristic velocity

of the inclination correction is then

• _t
AV i = 2V n sin -'2-- (40)

where the velocity at the node (V n) is determined

as

ra ql/2

= Vca + I + - cos _ - '

4+J
(Vca is circular velocity at r a. )

Then, the inclination correction may be expressed

in nondimensiona! form as

2a
__ A[ r a r r

AVi = 2 sin -2-- + 1 + - cos_- P
Vc a _,rp -- ra+ 1

rp

(41)

and the direction of thrust application is

_ti ="2 --+ 90° (42)

from the initial direction of motion because the

thrust possesses no component along the principal
normal to the orbit.

The thrust is applied at a time

T

t - tp =_ (E n- e sinE n)

where

1
c. Correction of nodal position

(43)

The next corrective maneuver is the correc-

tion of nodal position.

The inclination (t) is to be maintained and the
latitude of the satellite at transition is L. Con-

sider the spherical triangles formed by the pro-

jections of the original and corrected orbits on a
spherical earth.

A. vl r.

..---7 Jl

N 2

tan i =
tan L tan L

sin (v 2 + A9) =Sm V--_--_

sin (u 2 + &_) : sin v 2

Thus

v2 --90° - -2--

Let the angle from node to transition (x) at the

incorrect orbit be ¢_x"

Then,

it_x = tan-i an cos i "

The velocity at x should be changed to the velocity
,xf_

possessed [n the original orbit at 90 ° - -2-- longi-

tude from N 1. To obtain this condition, a con-

stant speed turn, the change in yaw angle at x in

the aetuai orbits (&T1), and a consequent rotation

of the orbit through an angle in its plane is nee-

essary.

Again considering spherical trigonometry,

the projected change in yaw angle is

an' = 180 - 2 cos -I in "2-- sin (44)

The actual change in yaw angle is given by

2 sin -1 c(_os "_x sin _-_-_ (45)A_ z

k

where ¥ is the flight path angle in both orbitsx

at the transition point.

The first pulse required in the nodal correc-
tion is then

_V' = 2V
n x sin -2- = 2Vx cos "_x sin -2--sin i.

However, r x V x cos _x = {_"

_/
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Then.

AVn " 2 (I + e cos 8x) sin ---2--sin i

(46)

where %x = Cx -_I and _,], is given by Eq (44).

The time for the correction is determined by 0 t.

Since the orbit is elliptic and since th[s orbit

rotates about the line through the point of thrust

application and the center of the earth, the line

of apsides is rotated in the orbit plane during this
maneuver. For some satellite applications, this

rotation is very objectionable and must be can-

celed. Therefore, a second pulse is required

(AV") to rotate the orbit a specified angle (a) in
n

its plane. If r' is the radius at transition, AV"
n

--2 V w sin Y'.

But, V' = = _-- 1 - e cos _r' cos 7' cos _'

and, therefore, since tan Nt =
1 - e cos _-

z

_-(- e sln_v, = " \sm-%-i-d-Vr--I

Then

hV" " 2V i sin _' - -2 sin _ (47)n

where p, e are parameters of the desired orbit,
and a is determined as

(,0V a = 180 ° - 2 tan -1 cos i (48)

The corrective pulse is applied at

T
t "-,/-_-(E' - e sin E,)

seconds after the time of perigee passage, where

= cot (49)

Note is made at this point that the analysis

of the second nodal pulse is identically that which

is required to change the argument of perigee an
amount -%_ for the case where this element alone

is to be changed.

d. Correction of position

The elliptical orbit is now correct with the

exception of the position correction or analogously

the correction to the time of perigee passage.
Since the orientation of the orbit is correct, this

final adjustment must be made either at apogee

or perigee.

If the observed time of perigee passage [s t'
P

and the time at which the satellite should cross

perigee is tp, the period of the transfer orbit

tangent at perigee is • +z_t, where At = t' - t .
P P

And, the corrective pulse to be applied at perigee

is

An equal and opposite pulse applied at t + n (r +
P

At) completes the maneuver and prevents further

drift.

Equations (10) to (50) comprise a method of

correction calculation which is theoretically suf-

ficient to achieve the desired properties in a given
orbit.

Repetitions of the various maneuvers may be

required to achieve desired accuracies. The

number of repetitions will depend on sensor and
control accuracies, and on the mission itself.

3. Sequence for Corrections for Maneuvers

Several requirements restrict the selection of

a routine to correct the positions of a satellite.
Since the mission of most satellites is intrinsically

one of long duration, and corrections to an ac-

curate orbit might be required daily, economy is

an important factor. Secondly, the transfer or-
bits involved in the correction should closely ap-

proximate the nominal orbit, so that the mission
(communication, surveillance, etc.) will not be

interrupted. Also, the correction routine should

be as simple as possible with the other imposed
conditions. The following correction calculation
routine has been selected on the basis of these

requirements.
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At anygivenreference time to, the data for

the correction calculation are a0, e0, i0, riO'

c00, e 0. These quantities are in error compared

to the corresponding parameters of the nominal

orbit at the same time, a n, e n, in, _0n' WOn'

0On.

Because of their frequent occurrence in the

correction equations chosen, it is convenient to

define six parameters, 11, _° g, a, ×, J/. These
parameters are defmed (for the case of the in-

correct orbit, denoted by subscript "0") as fol-
lows:

110 = cos _0 sin _0 + cos [0 cos _20 sin _0

_0 = - sin _0 sin _0 + cos [0 cos _0 cos _0

£'0 = cos _0 cos _20 - cos [0 sin_0 sin _0

a 0 = - sin _0 cos _0 - cos [0 sin n 0 cos _0

)<0 --sin i0 sin _0

J_0 = sin i0 cos _0 (51)

Then the incorrect orbit may be expressed in

spherical coordinates (r, A, L) by the three

equations :

a 0 (1 - e:)

r = I-+ e 0 cos 9

_0 COS e + _0 stn_A = tan -1 0 cos _ + _0 sin e2/

-I
L -- sin ( ×0 cos 0 + _0 sin O) (52)

Although all six orbital elements may require

correction, economy can be improved by correct-

ing more than one element with a single thrust.

The corrections of inclination and the node,

which are both nonplanar corrections, can be

simply combined, as can the planar corrections

(size, shape and position of the satellite within
the orbit). Although, for maximum economy,

the order in which the planar and nonplanar cor-
rections are made depends on the energies of the

incorrect and required orbits, the increased

economy derived from employing separate cor-
rective routines for each case is not sufficient to

justify the increased complexity of the routine

(for small changes in the orbital elements). For
example, in the case of circular orbits of radii

r n = 5. 488164 x 107 _+ 6000 ft (i. 672792 x I07

V/-I 2

-_ 1830 m) the velocity increments required to ro-

tate the orbit planes through 0.10 ° are 27. 961 fps
and 27.965 fps (8.5225 and 8.5237 raps), a differ-

ence in the fifth significant figure or third decimal

place. Even though the error in radius should

approach r n ± 25, 000 ft (7620 m)° the difference

in the increments is in the fourth place. Thus,
for orbital maintenance the order of correction

for the nodal and inclination changes has very
little effect on the resultant energy requirement.

Even though the errors to be corrected during
initial placement are much larger and the differ-

ences in the velocity increments more significant,

the order still produces only minor differences.

For this reason the position of the planar change
in the routine will be considered inmaterial for

simplicity.

The first thrust in the corrective sequence is
chosen as a thrust to eliminate error in inclina-

tion and node by a constant speed turn at the in-
tersection of the incorrect orbit and the nominal

orbit plane. If quantities associated with this in-

tersection point are denoted by the subscript 1,

this point may be determined by setting r = r 1,

0 = 61 in Eq (52) and simultaneously solving this

equation and Eq (53) of the nominal orbit plane

for 01 and r 1

cos L cos A sin in sin _'0n

- cos L sinA sin in cos D0n+ sin L cos in=0

which yields (53)

(gO cos eI + _0 sin 0 I) sin in sin "_n

- (_0 cos 81 + k0 sin 6 I) sin in cos f20n

+ (X 0 cos 81+ #0 sin 81 ) cos in = 0

Solvlng this equation for 81 gives

cos 01 = ± Q

where

(54)

Q = a0 sin in singon- k0 sin in cos _0n

+ * 0 cos in,

T = gO sin in sin nOn - _0 sin in cos nOn

+ X0 cos in,

and the sign chosen in Eq (54) is that which sat-
isfies

cos 81= -_ sln8 I.

In computing the velocity increment required

at the intersection point, latitude, flight path

angle, orbit velocity and change of flight path

azimuth during the maneuver are necessary.

LI = sin-I [sin in sin (81 +_,I)] (55)

!



where

Islni 0sin (01+ _0 )I_I = sin'1 sin in

VI =tan. ll e 0 sin e I ]I + e 0 cos 81

(56)

vl ={_(__ _ a01) (57)

(:°Sin'_ _ /c°si0_

(58)

z &BI_

1

X

=-y

The magnitude of the velocity increment re-

quired to correct the orbit incTination and node is

V l = 2V 1 sin g cos Vl (59)

The parameters in the corrected orbit corre-

sponding to Eq 51 are:

_I = cos _1 sin_in + cos in cos _In sinc_l

k I = -sin c_1 sinI_ln+ cos in cos Rln cos _1

1 = cos _ 1 cos _In - cos in sin _ln sin _,I

"i = -sin _ I cos _In - cos in sin _In cos w 1

X1 = sin in sin_l

dpI = sin in cos uJ1 (60)

The orientation of the corrective thrust can then

be obtained. Since the generM elllptlcal orbit in

three dimensions may be expressed as:

[_ cos e sin 0 ] i"_= P 1+ ecosB + eP l+ecosu

(contlnued)

cos e + sin e ]

[ cos 0 + ,_p sinE) ]+ XP 1+ e cos E) 1+ e cos E)

d_
the orbital velocity may be determined as _.

3

C: _-p [.(cosE)+e>-_ smE)] _"

+ _p_ [+(cosE)+ e)-x_in_]

Orbital velocity in spherical coordinates may

then be expressed as:

(_2)

V =

# -1
v = tart

_" . -I
o = £in

where

1

[k (COS 0+ e)- _ sin_](cos E)+ e) C sin

P (

X

(_3)

_-y

Corresponding to Eq (63), the orientation of the

velocltv increment _ V I is given by:

" II_v I =tan -I (k I - k 0) (cos 01 + • 0) - (_I

-n o ) sinE)I] [((_i- (_0) (cos E)I + e 0)

- (_1- _0) stnE)l]'ll

_i =sm _--_1 - _0) (cos E)I

+e0)- (X1-X0) sln81} ]

(64)

After addition of the velocity increment de-

fined by Eqs (59) and (64), the vehicle occupies

an orbit which lies in the correct plane, but which

has the original incorrect size and shape. The

next step in the selected correction routine is a

transfer from apogee of the incorrect orbit to a

point in the nominal orbit (for this case assumed
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circular). This approach is not always the most
efficient means of making a transfers however,
for the small period changes required (even for
the initialplacement problem)0 the energy dif-
ferences are extremely small. The equations
defining this correction are:

_ra (_ 2rn _IA V 2 = ra + rn

v2 = tan-1

A¢ 2 = sin-I (__bl)" (65)

where

ra = a 0 (i + e 0)

When the vehicle completes the transfer to
nominal orbit altitude, a tangential thrust could
be applied to cause the vehicle to enter a circular
orbit at this altitude. However, the vehicle would
stillnot be synchronized because the orbital cen-
tral angle would remain uncorrected. Correction
of this quantity, which is discussed earlier, in-
volves two thrusts applied tangentially at any
point in the circular orbit. Selecting the terminus
of the Hohmann transfer orbit, i.e. the point at
which the vehicle first reaches nominal altitude,
as the point for initiatingthe change of position
improves the economy of the correction routine
in certain cases. For example, ff the vehicle

reaches the nominal radius, rn, with a velocity

greater than circular velocity , and the vehicle
is ahead of the nominal position desired in the
orbit, part or all of the excess velocity can be
used as part or all of the first velocity increment
of the angular position correction.

The third corrective thrust, computed as the
combination of the tangential thrust to achieve
circularity and the first of two tangential thrusts
to change the orbital central angle, is

_.v 3 • tan -1 + 180 a

* -1
A_b3 =-sin (-_1) (66)

The direction of AV 3 is opposite to that of A 2"

In Eq (66)° the angle of required position change,
n80 is positive for the case in which the vehicle
lags its nominal position in the pattern orbit. The

first equation of (66) holds whether r a > r n or

r
n

> r . The final corrective thrust is
a

A v4 = tan-i

* -1
/_¢4 = sin (-d_l). (67)

As noted, economy can be improved by substitut-

integer)for &0 in the first equa-ing nkn = an

tion of (67) and increasing the transfer time by
a factor of n.

If the value of A8 in Eqs (66) and (67) is to be

computed from the initial data (e0, en, a0, an,

etc.)° the time interval from the time of data

sensing to the time of initiating the correction
of orbital central angle is

+e 0 _1-e: sin,0]

I + e0 cos u0 J

r)+ _ + VY'_k-T_-o + (68)

The location of the nominal position at the time
of initiationof the angular position correction is:

r3n ffi rn

L3n = sin'1 _sin L0n cos --At 2 _r
_'n

+ sin 2 in - sin 2 L0n sin _n 2

= F COS i n ]

L_.in L3 ) - 1J
n

+ A0n - sm / (69)

and the position of the vehicle at this time is
given by:

r 3 • r n

-1
L 3 = sin (×1)

A3 = tan-lC'_11)" (70)
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(

The required change in central angle is then

Z_e =cos -1 {cos L 3cos L3nCOS (A 3 - A3n)

+ sin L 3 sin L3n J

The four maneuvers given by Eqs (59), (65), (66)

and (67) comprise the complete correction routine.

Although the proximity of the correction trans-
fer orbits to the nominal orbit means that the

difference in perturbation of the transfer and

nominal (perturbed) orbits is negligible, the

perturbations affect the times of correction

initiation and must, therefore, be included in

the routine. This may be done by considering

the orbit parameters _ and _2 involved in the

equations as functions of time and adding a per-

turbation correction to the computed times.

A sample problem has been calculated using

this routine in order to provide an appreciation

of the magnitude of the propulsion requirement
for each correction. The data for the sample

problem are:

a0n = 5.488164 x 107 ft a 0 = 5.4889664 x 107 ft

(1.672792x107m) (1.673037x107m)

e0n --0 e 0 = 0.0001

ion = 54. 736 ° i 0 = 54. 741 °

_20n = 0 f20 = 0.005 °

_On = 0 w 0 = -60 °

SOn = 0 90 = 60. 005 °

The radius at this time is r n = 5. 488692 x 107 ft
_J

(1.672953 x 107 m) which is r plus 1 stat m[ or
n

1. 609 km.

Proceeding through the correction routine

yields the following correction magnitudes.

AV 1 = 1.804 fps (0.5499 m/s)

_V 2 = 0.185 fps (0.0564 m/s)

_V 3 = 1.899 fps (0.5788 m/s)

Z_V 4 = 0.914 fps (0.2786 m/s)

Total _V = 4.802 fps (1.463 m/s).

Thus if the satellite possesses propellants

capable of supplying a total of 5000 fps (1524
m/s) and 5 fps (1.524 m/s) is assumed to be

the average correction required twice per day,

the system can function for about 500 days.

Thus, the routine seems adequate to satisfy

the requirements of economy and proximity of

the transfer and nominal orbits with a reasonably

simple calculation routine.

D. SMALL MANEUVERS IN NEARLY

CIRCULAR ORBITS (REF. i)

I. Linearization of Maneuvers

The discussions of Section B have been

general and are not restricted to small eccen-

tricities. Generally, however, for the cases

in which the target orbit is circular and no

intermediate orbits are utilized, the actual orbit

obtainable will deviate slightly from circularity.

If this deviation is to be corrected, some of the

maneuvers of the previous discussions can be

simplified using first order differentials. This

approach has two major advantages:

(i) The functional form of the solution

can be simplified.

(2) The roundoff error arising from sub-

tracting to nearly equal quantities can
be reduced.

As before, the discussions will be divided into
three cases for investigation:

(1) Correction by means of two velocity

increments tangent to the flight path,

the first impulse (_V I) being applied

at apogee in the incorrect orbit and
the second at the altitude of the

nominal circular orbit.

(2) Correction by means of two tangential

impulses, the first (zXV 1) being applied

at perigee in the incorrect orbit.

(3) Correctto, by means of one impulse

(z_V) applied at the intersection of the
incorrect and correct orbits, if the

orbits intersect.
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It is notedthat while the circular orbit is shown

within the ellipse for Cases (I) and (2), the

cases for exterior circular orbits will also be

discussed.

Consider

2
e << I

for Case I

r I = a(l+e)=r0+Aa+e(r0+Aa)

r0+Aa+er 0

2

11 _01 e_ e <____i I

_ _ Aa (1- , 2

/Xa << 1

The latter approximation utilizes the following
expansions.

3
(I+_) -I = 1 _ _+_2_: _ +...

(1±_) 1/2 = 1 ± _ 2 ± e3
-8- I-6-"'"

Then

112
AV2 = [_'i[

L-Uj

2p(1+-_0)(1+e) _[2

r0 [(' ÷_'(l+e'+l]]

• _ - _Aa.

The procedure is similar in Case (2)° the re-

sults being summarized below. For Case (3),

_v 2 ro _ - 2 _0/
_- e2)l

J

av2-_o L -N k_0] J

AV 2 = r0 _[

The final results are as follows. For Case (I):

(71)_VI -= _ r_0 (e - Aa)To

_ Aa)

e 2 << 1,

P-a=a-r 0

Case (2):

AV I

AV 2

AVtotal = [AVI[

2
e << I

=:_ r_--_ (-e- -_)

+ AV21

(72)

(73)

(74)

Case (3):

AV = 1/2 £2 AaL
2 Aa

e << 1; --
r 0

2] 1/2"

<e

(75)

The symmetry is obvious in Cases (I) and (2),

and the total velocity requirement is the same
in these cases:

AVtotal ~ 1 Aa

-_0-- -_ eo - e < r0 <e

=_0 " >e

Since for intersection of the correct and incor-
rect orbits
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- ffi ._r 0 <r a =a(l+e)a (1 e) rp .

then

r 0+z_a - er 0 <r 0 <r 0 + Aa +er 0

or

and, from Eq (75), the impuises required /or

Case (3) have the range

However, if the orbits intersect (i.e., e > r-_

the total velocity required for correction by two

tangential impulses at extrema, Case (1) or
Case (2), is

&Vtota 1 = g •

which indicates the anticipated superiority of ef-
ficiency [n Cases (1) and (2). Equations (71)

through (74) are plotted in Fig. 15 for the error

ranges of interest. Equation (75) is plotted in

Fig. 16. As an example, consider the following
table.

B

Errors in Original Orbit

_-_a

(kin)

i0

9.3

0

Velocity Inc re me nt

Required for Cor-

rection AVtota I (mps)!

0.00167 6. 72

0. 001

0.001

5.44

3. 91 2 pulse
7.77 1 pulse

2. Error Analysis

Orbit correction sensitivities will also be

developed for the case of correction of a

slightly eccentric orbit to a circular orbit by

two impulses tangent to the flight path. The
following nomenclature will be involved:

V 1 = orbit speed at r I before the

first correction

!

V 1 = orbit speed at r I after the

first correction

AV 1

r 2

characteristic velocity of the

first corrective impulse

radius at extremum where

second impulse is applied

(nominally r O)

V 2 = orbit speed at r 2 before the

second correction

!

V 2 = orbit speed at r 2 after the

second correction

AV 2 =

-_ =

characteristic velocity of the

second corrective impulse

flight path angle with respect
to local horizontal

O T = thrust attitude angle

Primes ',,All denote corrected parameters.

The er_'ors in the final orbit parameters,
,_a' and e . ',rillbe funct_.ons of errors in th_

injection parameters (At 2, AV_ and "¢2), which,

in turn, will be functions of errors in the ma_m-
tude and orientation of the second corrective

thrust and errors in the conditions r2, V 2 and

_2 before thrust. The errors in r2, V 2 and 72

are functions of errors in magnitude and orienta-

tion of the first corrective impulse and errors

in the determined values of r I, V 1 and '{l"

Therefore, the error equation,s are convenieP._ly

developed Ln several steps.

a. Errors contributed by corrective tbrust_

The orbit errors contributed by errors in th=

corrective thrusts may be induced intuitively,

but a rigorous general analysis is not difficult.

The equations describing addition of a vector

impulse Z_V are

fl = - AV2 + V2 "+V' 2 _ 2 VV' cos ('{'- "_)= 0

(76)

f2 = - AV sin_T + V' sin (Y' - Y) = 0 (77)

Symbols are consistent with previous notation
and are further defined in the sketch.

Errors in V' and Y' are to be determined as

functions of errors in V, ¥, VT and AV. From

Eqs (76) and (77) the error relationships, to

the order of linear differentials, can be ex-

pressed as follows.

- ZXVd (ZxV) +V' dV' + vv'Fsin (_' -Y)

.(VdV +V dV}I+VdV =0
J
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and

- sin _bT d(AV) - AV cos _bTd_b T

+ sin (_' _) dV' + V'[c- os (_' - _')

• (d_' - d_]=0

L

Terms may be collected, and the resulting ex-

pressions solved by ap_)llcation of Cramer' s
rule for the errors dV and d V': In this solu-

tion the Jacobian

(fl' f2 )
=2

(V', V')

= 2V'

V' -Vcos(v' - y) VV' sin(v'- _)I

sin (_' - _) V' cos. (_' - y) i

iV' cos (Y'- V) -V]

is useful. The results are

]V cos (Y' - V) - _-_ sin 2 (V' - _)
V'd z

V' cos (_' - _) - V

+cos ('_ -V) dV - Vsin (¥' - _) d*T

dY' -

d (AV)

sin (_'-¥) _(V'- V cos(V'-_} _-AV]
V' V' cos (¥' - _) - V] d(AV)

sin(V,' -Y) _ V rlV' dV + -_-f cos (7' - , d_ T

+d_

In terms of (V' - V) or, in terms of_T,

G vdV' = &V +IZr cos ¢ d(_V)

(78)

+ cos _T + dV-V XTi sin@Td_ T

AVdV' ffi sin @T d (AV) - V--p2-sin @T dV

+_AV (AV +Vcos ¢_) d_bT +dv

(79)

For the case of interest, tangential corrective

impulses applied at orbit extrema, the follow-

ing nominal values are involved in evaluation

of the sensitivities.

@T ffi 0

V' ffi V + AV

V' - ¥ = 0

Then Eqs (78) and (79) become

dV' =d(AV) +dV (80)

dv' =_- d_b +dV (81)

(tangential impulses at extrema)

which agree with intuit/on for this simple case.

b. Errors prior to second impulse

Errors in the orbit conditions r2, V2, V 2

prior to the second impulse will be developed
from a general analysis gt_-Lr.g errors at ex-

trema in terms of errors in any injection con-

dillon r, V, V. Specification of the conditions

(r, V, V) at any time completely determines
the planar properties of the orbit. From the

energy equation and the geometry of an ellipse,

simple expressions can be developed relating

r a, rp, v a and Vp to a and e:

r =a (1 +e) (82)a

r = a (1 - e) (83)
P

'°"
= t" (l+e_Vp _- kT--7--_) (85)

Then

dr = (1 + e) da + ade (86)
a.

dr -- (1 - e) da - ade (87)
P

V V
= a p

dv a -_ da (I + e)2- de (88)

V V

=

dVp --2_- da + (1 -ae) -2- de (89)

In turn, from the energy equation,

-1

and Kepler's second law, which can be re-
stated in the form

e = _ 1 - (r2- - V_) (r2V: cos2¥ }

the differentials of a and e are

2a 2 2a2V

da ffi _ dr+-- dV
r P

de = 2-e _ 2_cos Ysinvdv+

(continued) kJ
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+--COS2_ Y (2rV 2 dr +2Vr 2 dV))

vI. r c°s2 Y dr - 2.V_V d

r

which, after simplification and substitution of

a (1 - e 2)
r -- I + e cos

give

da = 2 (I +e cos 0) 2 IC
(I - e2) 2 dr + 2a

I1 + 2e cos 0 +e 2 1
1 - e 2 dV

(90)

de = (e +cos O) (i +e cos O) dr

a (I - e 2)

I e 2 )a (1
+ 2 (e +cos O) I_

! U (1 + 2 e cos 0 +e 2)

dV

e 2) sin e+(i - 1 +e cos 0 d_ (91)

Substitution of Eqs (90) and (91) tn Eqs (86)

through (89) gives the required error relation-

ships:

dr .__1 +e (1 +e cos O) (2 +e - e 2 +e cos O
a (1 - e--'_) 2

+ cos e) dr

(i_+e)___ 1 +cos O
dV

_I + 2 e cos O +e 2

sin 8
+a(l - e 2) 1 +e cos O d -y (92)

l-e 2
= ( 1 +ecos O) (2 - e - e

drp (I -

- cos O) dr

e 2 I1 + 2 e cos 0 +e 2

e 2) sin 0 d y- a(l - 1 +e cos 8

(I +ecos O) Ira (I +ecos O)

dV a
1 - e z p 1 - e 2

(e + cos 8)]

(continued)

+ e cos 0

(93)

dV
P

j,+ oo.0+

0,]d÷2vp(,÷0)"_l÷;__o-;o:e2
2

1 - e sin 0

- Vp (I +e). 2 1 +ecos 0 dy

V

(I +e cos O)[_p (i +ecos O)
I - e 2 1 - e 2

Va (e +cos oq

a- (I - e) 2 J dr

-2V II "e2 (e + COS 9) "_ d V

a (1 -e--_ I1 +2ecos 8 +e ,j

(94)

1 + e sin 0
+Va_ 1 +e cos v dy (95)

These equations relate errors in conditions at
orbit extrema to errors in injection conditions

(r. V, y).

For e 2 << 1 Eqs (02) through (95) reduce to

dra,, [2 +cos O +2e (3 +cos O) cos2_]dr

dr

P

(i - e cos O) (i + 2 cos e) + e] dV

- _a_--sin O (i - e cos O - e) d V (98)

dVpJ, - _ (1 - cos 8) (1 + e cos 8) dr

- F(1 - ecos O) (1 - 2 co, 9) - e] dV

+ _'-sin O (I + e - cos O) d y (99)
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Fore2<<1 and impulses applied near apogee or

perigee (e = O* or 180"), the case of interest for

the two-impulse correction previously described,

Eqs (96) through (99) reduce still further to the

following results: perigee injeetion,e 2 << 1:

-, + 4 a a-_-(1 + e) dVp (I00)dr a (3 + 8 e) drp Ig

2 _'-(I + e) dr - (3 - 2 e) dVp (101)dV a _ - _ p

apogee injection, e 2 << I:

drp,_(3 - 8e) dra +4a _-(i -e) dV a (102)

dVp_ - _ (I - e) dr a - (3 + 2 e) dV a (103)

For e, _a < 0. 001 the errors are given to three
r.

significant figures by the following very simple
formulas.

dr 2 dr 1 dV 1
,,3 -- + 4

r0 r0 -_0
(104)

dV 2 dr 1 dV 1

. 2 ro ° (105)

The relation of errors in conditions before

the second impulse to errors just after the first

impulse must also consider errors in orbit

central angle, 8, and local flight path angle, "t.

Because the orbits of interest are nearly circu-

lar, a variational approach is necessary to
define errors in these angular quantities. There-

fore, a general analysis of errors in r, V, 8 and

-_ anywhere in a near-circular orbit as functions
of launch errors Will be performed, and the

results for r and V will be compared to Eqs (104)
and (105).

Series expansions for the variables of interest
are available in Chapter HI.

r
2

1 - e cos M - Y"2- (cos 2 M - 1)

3
- e

(3 cos 3 M - 3 cos M) -...

2

v-- = 1 +e cos 9 + (3 - cos 2 8)

6
3

(4 cos 8 -cos 3 8 - 7) ++

...

= M+2esinM+5-_ sin2M

3

+e_w_,_(13 sin 3M - 3 sinM) +.
@ @

2 3

= e sin8 -_ sin 2 8 +_ sin 3 8
A

_ D O OZ

M = mean anomaly =_a-_j- (t - tp) (106)

For e 2 << I. approximate relations can be written.

r _ a (I - e cos M) (I07)

V _C(1 + e cos M) (108)

0 _ M + 2 e sinM (I09)

_ e sin M (II0)

Deviations from the nominal circle r 0 and v 0

at launch are 6r I = r I - r 0, 6V 1 = V 1 -V o, 6y I

= Yl and 501 = 01 - 00. From Eq (47)

M = M0+&M =Ir03( +Aa_ 3 (t-tp°-ktp)l-_0]

or

3 Aa

_M =- _ _00 MO -'_--3 _tp"
|r 0

(111)

The errors at any later time 5r2, 5V2, y and

602 will be determined by varying one in-

jection parameter at a time and assuming a linear
combination of the individual errors.

Case (1) pr 1 =0, 5V 1 =0, 6Vl_,0]. If "¢1

is the only launch parameter which is in error,

6r 1 =0, 5V 1 =0, _1 = 5"_1' and from Eq (133),

e _ t 6"_11 ' where 6_1 is an error due to a velocity

component normal to the desired circular orbit
velocity at launch. For the circular orbit, M

and t are referenced to the perigee direction in
P

the tncorrect orbit. Since the semimajor axis

a is a function of r and Vbut not _, 6a = 0 for
this case. That is, if only the orientation of the

injection velocity is varied, there will be generated

a family of orbits in which the eccentricity varies,
but the semimajor axis remains constant. Then,

from Eqs (107) through (111),

5r(1 ) "- er0 cos M0 = - r0 [5_llCOS M 0

5V(1) .[6¥1 [ cosM 0

6e(i)--r_o _tp+216,11 sinM 0

'V(I) " ]6¥11 sinM 0

From the 6r I equation, 5r = 0 when cos Mr} = 0.

Therefore, for Case (1), M 0 = 90° (for Y1 positive)

or M 0 = 270 ° (for ¥I negative). The absolute

magnitudes in these equations may be removed by
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defining a mean anomaly }t{O, referenced to the

launch point. Then'_0 -M 0 - 90 e for positive

6yl, and _0 = M0 + 90" for negative 6y 1. Sub-

stitution [n the previous equations gives, for

either positive or negative 6y1,

6r(1) ,,,z_y1 sin _0 (112)

r 0

6v(1)
_0 " - &YI sin 72_0 (113)

58(1 ) . 2 A_I (cos 77_0 - I) (114)

6Y(1) " /_'_I cos 7_0 (115)

In derivation of Eq (114) use is made of the fact

that 5e(l ) = 0 at _'_0 = 0 since the correct and in-

correct orbits intersect at launch.

Case (2) _[6_1 = 0, _V 1 : 0. 6r 1# 0]. For

6y I -0, 6V I = 0, 5r I _ 0, Eqs (90) and (91)

give_ (2). 2
r 0

e(2 ) _,

• V 0

Ar 1

Then, from Eqs (48) through (52)

6r(3) " 2 6rl [6rl]

r 0 r--_ r----0"-cos M 0

6v(2) 6rl [6r11cos Mo
v° -- r° + r---V

68(2 ) .- 3 6rl M 0r--o - 6tp

+2 6rl--_ _ sinM 0
r 0

6y(2 ) .,!6r_! sin M 0

But M 0 • 0" for Ar I positive, and M = 180 ° for

6r I negative. Then, for ?//0 = 0° at launch,

6r(2___!)6rl
r0 " "_0 (2 - cosTt_ 0) (116)

6V(2) 5rl (cos _0 " I)
--V_0 " r--_ -

6r 1

5 {}(2) " r---_(2 sin 7?_0

6r 1

-- sin 7rt0
6"¢(2) _ r 0

Case (3) [6r I -- O, 5Y 1

- 3 "_, 0 )

: o, _v I _ o].

(117)

(118)

(119)

For

the remaining case, where 6r 1 = 0, 5 Y1

6V 1 # 0, Eqs (90) and (9t) give

5a(3) ,_ 6V1

r0 2 _0

e(3 ) _ 2 -_.
0

= 0 and

A procedure similar to that used in Cases (I) and

(2) gives •

sV 1
5r(3) ,_ 2 (i - cos 9910) (120)
r0

5V(3 ) 6v 1

-V_-0._ To (2cos_ 0. 1) (121)

6Vl 6V1 sin (!22)
_a(3) _ - 3 :'_,o_ + '_ _,"_- "_o

6V 1

6y(3 ) ,,,, 2 _ sin )710.
(123)

The total error solutions are obtained by adding

gqs (112), (116) and (120); Eqs (113), (117) and
(121); etc.

/Lr_ _ sin-if[0 $_I + (2 - cos ?_I0) 5rl
r 0 r 0

6V 1

+ 2 (1 -cos _o )
(124)

_V 6rl

,w - sin _0 $'Y1 + (cos _0 - I) r0

6V 1

+ (2cos _0 -1)To
(125)

6e . 6e 1 + 2 (cos hi0 - I) SYI

+ (2 sin _0 - 3 ?_0 ) 6rl
r 0

6V I

+ (4si_% - 3 %) To

6r 1

6"Y " cosg_ 0 6,/1 +sing_0 r0

$V 1

+ 2 sin_ o
for e 2 << 1

(126)

(127)
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Fortheproblemof relatingerrorsat oneorbit
extremumto thoseat thepreviousextremum,
"_zL0 = 180 ° in Eqs (124) through (127).

6r 2 6r I 6V 1
--_3--+4
r O r O

(128)

6V 2 6r I 6V 1

" 2 ro- 3 (129)

5r I 5V 1

6% ,, 601- 46Y1 - 37 r-_ - 3_-_0 (130)

6y 2 ._ - 6y 1 (131)

e2<<l, points 1 and 2 extrema

Eqs (128) and (129) agree exactly with Eqs (104)

and (I05), in which the errors were derived as

differentials.

c. Errors in final orbit elements

Errors in the final orbit elements 6a' and e'

may be determined as functions of errors in the

orbit conditions just after the second impulse,

r2' V'2' Y'2 by letting r = r 0 + 6r, V = V 0 + 5V

9 9
and cos-Y = 1 - "_ + . . . in

e2 = 1- _r2---___ (r2V2; °s2Y)

(neglecting terms of third and higher orders) and

in
-i

(neglecting terms of second and higher orders).
The results are

r 0

F a _26r + 2 _n 5V (132)
v

2( 26V 6r_2 Y2r(l, ]e _ _T0 + + (133)

d. Combination of the errors

The errors in the final orbit parameters can

now be written completely in terms of errors in

tracking and prediction of the original orbit and

errors in the corrective thrusts by adding the

individual errors derived previously. Let the

errors in tracking and prediction of the original

orbit at the time of the first corrective impulse

be 6rl, 6Vl, and 6_ 1, and let the errors in the

first corrective impulse magnitude and orienta-

tion be 6(AV 1) and 6_b 1. Then, from Eqs (80) and

(81), the errors just after the corrective maneu-
vers are

6r I' _ 6r I

6V I' _ $(_V I) + 6V 1

6e I, _ 60

_v I

6v, _-_0 6¢_TI + 6vl"

These errors are transformed to errors at the

next orbit ex_remum, where the second correc-

tive impulse is to be applied by Eqs (104)0 (105)

and (128) through {131).

w

6r 2 6r 1 ' 6V 1 5r 1 FS(_x V 1)

.3 -- +4 _3-- +41 0-V_--r 0 r 0 _ r0
t_

6V 2 5rl' 6VI' 6rl ' FS(_VI )

"- 2 %- - 3- 0 .- 2 r-T

602,_ 60 I' - 4 6y' - 31r-- -

6r 1w 6V 11
37

r0

. _ f _V1 [Srl

/_V 1

Equations (80) and (81) are then applied to these

equations to include the errors in the second im-

pulse magnitude and orientation, 6(&V 2) and 6¢T 2

6r 2' 6r 2

r 0 r 0

6r.._,1,1 (6(/" V 1} 6V1_

•.3 r0 +4\T +_0"

6V 2' 6(AV 2 ) 6V 2 5(z_V2") 6r1

-% "-vT+ T- 2 r0

/_V1 6y1)602w - 602. 6el - 4_'_0 6¢_I'1 +

" + O-V_ ÷_o V_o]
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/_V2 + AV2

£v 2' ,t, "_0 Z_eT2 5_2"_ -_0 6QT2

/_V 1

- ¢_TI6 - 6_ I

Finally, these errors are transformed to the
errors in final orbit elements by Eqs (132) and

(133).

6a'

r0

e m2

E6r I 5V 1 5(_V 1) 5(_tV2) _

- +-%-0+ -v oJ (,34)

6V1 V2 ]2_ T - • ]

+ ",5 - - (5"_

-_O o T2 -_0 &:'T1 (135)

Equation (134) is plotted in Fig. 17. For the

assumption that 6(&V 1) = 6(AV2).

E. GENERAL TWO-[SIPULSE MANEUVERS

For the case where it is desired to transfer

between orbits and where the maximum change

in the azimuth is not large, it is possible to ac-

compKsh the transfer efficiently with two impulses.

This may be visualized from the follo'.ving sketch.

Desired trajectory -_

Point of transfer __2

_iPn°itin:t[Cfn _

Line intersection --/'y trajectory
of two planes n

F.
The plane of the transfer is thus defined by r 1

5x = 0 where r is a general radius vector for

points on the transfer trajectory. However, this
expression will not serve the purposes we desire.

Thus, consider the unit vector _ along the inter-

section of the planes.

21. 
cos a I = ---rl = _I " _

cosa 2 •_2-_I

COS a 3 =_'1 " _2

sin a 2

sin _$I = sin n_* sm a_
o

where /_* is a known angle for the two orbits as

a function of the latitude at which the planes inter-

sect.

Now at this point, the plane of motion is de-

fined. The initial and final radii and the angle

between are known_ however, the transfer has

not been uniquely defined because many elliptical

trajectories could be constructed to satisfy these

conditions. To completely define the problem,

one additional parameter must thus be selected.

This parameter could be a geometrical element

such as a, p, or e, a time variant parameter at

r I or r 2 at the time of transfer. Since the latter

piece of data is more general than the others, it

is assumed to apply for this purpose.

Thus the problem evolves into :he solu:ion of
a set of simultaneous equations for the planar

elements of the orbit.

&t : tarrlva 1 - tlnjectio n

a 3 :O 2 - 01

-e'_-r
-!

= COS _r 9

- cos _r 1

- sin E 11

where

a - r 2
COS E 2 : e a

2-r l

cos E 1 -- ea

This solution is transcendental and thus requires

the simultaneous iteration of 4 equations unless

Lambert,s theorem (discussed in Chapter III) is

utilized in place of Kepler,s equation. (If Lambert,s
theorem is utilized, the semimajor axis is eval-

uated by an iteration which does not involve ec-

centricity, and the equation for a 3 can then be

utilized to define eccentricity. ) Two iterative

processes are valid for this solution and are suf-

ficiently simple that their use is justified in auto-

matic computation. The first such process is the

Newton-Raphson iteration. This procedure is ap-

plicable for functions

Yl = fl (El' E2" a, e) = fl (xi) =0

[ = 1, 2, 3, 4

Y2 = f2 (El' E2' a, e) = f2 (xi) -=0

Y3 = f3 (El" E2' a, e) = f3 (xi) -0

Y4 = f4 (El' E2" a, e) = f4 (xi) -=0
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Now assume

Xl = Xl, 0 + h

x2 =x2, 0 +k

x3 = x3• 0 + m

x 4 =x4, 0 +n

Thus

fi (Xl. 0 + h, x2, 0

x4, 0+n) =0

etc.

+k, x 3 0+m,

Expanding these fi in Taylor series and neglecting

higher order terms in h, k , m and n now yields

fl(Xl, 0 + h, • • • x4, 0 +n) =

fl (Xl, 0' x2, 0' x3, 0" x4, 0 )

m \a-_3 /

+k fCx_2)

xi = xi, 0 xi = xi, 0

+ f_fl_

=X. X. =X.
X[ t, 0 l t, 0

and similarly for f2' f3 and f4" Now treating the

coefficients h, k, m and n as the unknowns, the
solution is

fl 0fl/OX2 Ofl/Ox3 afl/_X 4

f2

f3

f4 8f4/Ox2 8f4/ax3 af4/ax4

h z |Ji i

all/OXl 8 fl'/ax41

af4/ax 1 8fl/ax4 I

and k, m and n are determined in a similar man-

ner (i.e., by replacing in turn the second, third

and fourth columns of the determinant by the

column fl' f2' f3" f4 and dividing the resultant

determinant by the same denominator as pre-

sented above). Once the process is completed"

numerically, it is repeated until the values of the
increments h, k, m and n are smaller than some

value which must be specified.

This solution has been tested and proven to

converge; however, it must be noted that the

functions which are being iterated are of a very

complex nature and have many relative minima

and maxima. Thus, unless the first guesses for

a and e are reasonably valid, the method will not

converge to the proper root. First estimates

may be obtained from series expansions or ap-

proximate forms discussed in Chapter HI.

The second iterative solution which has been

checked is a purely numerical evaluation and

proceeds as follows. First, the variable E is

eliminated by direct substitution into the equations

for _'t and &0. Then functions fl' f2 and f3 are

defined as follows

fl = (_tgiven - _tcomputed) 2_r/T

f2 = _0 . - _0given computed

As before, a value for each of the variables a and

e is guessed, but this time one value (say a) is
incremented positively and negatively and the

function f3 evaluated for each set of variables

(a +,_a, e); (a, e); and (a - _a, e). The value

of a which results in the smallest value of f3 is

then selected and the process is repeated after

incrementing e. A fairly coarse grid (i.e., large
/Xa and &e) can be utilized mttially, and this grid
is halved each time the previous root is selected

as the minimizing value. Once the grid is suf-

ficiently small or once the value of f3 (which is

the total error of the solution) is less than a

specified number the solution can be halted. In

all cases f3 should be checked because unless it

is nearly zero, the set of variables selected cor-

responds to a local minimum, not the true root.

In such cases, both a and e can be incremented

varying amounts to see if there is any set of roots

in the vicinity yielding a smaller f3" If so, the

procedure continues. This solution is illustrated

below for the case in which point A represents

the first repeated root

e 2-

e 1 - •

e 0 - •

e_ I- • •

A

e. 2-

e-3- • O•
e_ 4

a-2 "-if0 al _2 13 ;4

This solution was found ideally suited to auto-

rustic computation, since no functions other than

those required in the definition of the problem

ii
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need be programmed and since the logic involved

is very simple. In addition, it is possible to as-

certain whether convergence to the proper roots

has been obtained by checking the value of f3"

This method also proved to require less accurate

initial estimates of a and e and was never subject
to the problem of division by zero as is possible
in the definition of h, k, m and n of the New2on-

Raphson method.

Once the elements a and e are known to the

desired accuracy, the development of the maneu-

vers can continue. The term ,-_, was defined
previously; therefore, consider" the azimuths [n

the two orbits at the point of the second maneuver

cos i1
sm 51 = cos--6-f--L--

cos ,2

sin _2 =

cos [1

sin 31 = COS t'----_2sin 32

but

z_32 =32-_i

Thus

= . '_2 cot J

or

COS io

=COS _-k3 2 + sin &3 2 cot _I
cos [I

_'_2 can be evaluated directly from this equationl

however, unless A_ 2 is small a simple solution

would be to evaluate both 31 and $2 then subtract.

For the case where AS 2 is small (as is in general

true)

(cos i?cos
[',\cos tl]

But the velocity vector must be rotated through

another angle (A y) in order to change the direction
of the velocity in the plane to attain the correct

ellipse. This angle is obtained from

_1 =c°s-1 '/a2(1 - e2)
_rl(2a - r 1)

_ -i ,]a0 2{I - e0 2)

cos _rl(2a 0 _ rl )

t/af2(1 - ef 2) +

_72 =cos "1 _r2(2a f - r 2

(continued)

_ -I Ja(l - e 2)

cos _r2(2a _ r2 )

where: the absence of a subscript denotes the
transfer orbit

subscript 0 denotes the initial orbit

subscript f denotes the final orbit

Now the total turn angle for the velocity vector is

obtained from the following sketch to be

-I

_I = cos

-l

0 2 = cos

and the changes in

o VO 2.AV 1" = +

and

&V2 2

(cos "_I cos _I )

(cos ,x Y2 cos _ 3 9)

the required velocities are:

V12 - 2VoVlC°S _I

_ I _ I

a 0

=_ - _ - _ff

cos A vl

No provision has been made at any point in this

analysis for nonzero burning times. Actually,

however, these equations have been utilized in a

digital program to simulate powered maneuvers.

The process was as follows.

(I) The impulsive analysts was made.

(2) A finite burning simulat[on was attempted.

(3) The errQr in the position and velocity at

burnout was determined from the com-

puted position and velocity and the values

were predicted for the transfer orbit the

same number of seconds after the im-

pulse.

(4) The magnitude of the errors was utilized

to adjust the time for initiating the thrust

and the thrust program.

(5} The process was repeated until the de-
sired transfer orbit was obtained to a

specified accuracy. The allowable

errors for the initial computations were

(AX, _y, AZ)B0_< 1000 ft (or 300 m) and

(A_, A_, _)B0-<0"I fps {or 0.03 raps).
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The validity of the impulsive analysis was in this
manner proven for moderate to large accelerations.

The low acceleration runs, however, required

more computations in order to converge to a proper

thrust program. This fact should be expected,

since the accuracy of the impulsive analysis de-
teriorates as the tLme of thrusting increases. The

results of these runs indicated generally good

agreement for the computation of the actual pro-

pellant mass required but indicated that the ma-
neuver should be anticipated in order to find the

proper thrust program in a limited number of

trials. The physical significance of this statement
_s seen directly from the following sketch.

Desired Original track_

track

X-Thrusting trajectory

F. PROPULSION REQUIREMENTS FOR

CANCELLING THE EFFECTS OF

DRAG AND OBLATENESS

For most earth satellites only two relatively
large perturbing accelerations act on the vehicle,
the first due to earth' s oblateness and the

second due to atmospheric drag. Generally these

effects are sufficiently large that it is necessary
to accept them; however, for some orbits and for

some specific satellite applicatio.'ls it may be
desirable to cancel them. This section treats

these two problems.

I. Counteracting the Effects of the Earth's

Oblateness (Ref. 2)

The potential function of the earth in Jeffrey's
notation is:

JR 3U(r, L) = -_ +--_j (I - 3 sin 2L)

+ O(j2)_

whe re

J = 3 [2 J2

and where terms of the order j2 have been

neglected

while for a spherical earth it is

U s =-_ r

The gravitational force acting on the satellite

is given by the negative gradient of the potential
function. In polar coordinates

8U+ _ 1 _ 1 8Ugrad U =_ _ _ +_ _ _-_

therefore

Fob - grad U (r, L) =- _

+ L_ J sin2L

E
(136)

and

F s = - grad U s =-_
R 2 20

where

r

P = R (137)

The corrective force which must be exerted

on the satellite to remain in an unperturbed orbit

is the difference between these two forces repre-

sented by Eqs (136) and (137).

_req = - m (Fob - F s)

F" = m (grad U - grad U )
req s

so that the general force equation giving the cor -

rective force per unit mass is

(i - 3 sin 2

-L _ J sin2L

• (138)

Consider the following sketch which shows the pro-
jection of the actual orbit on a sphere of radius

equal to that value of r occurring at the highest
latitude of the orbit. The X-axis in this case is

90 ° out of phase with the ascending node.

By inspection, the relation between the latitude

L and the angle from perigee 8 is

sin L = sin i cos v (139)

where

v ffi 8 -

a = 90-_

From the standard form of the conic for the

orbit of a satellite about a spherical earth,

P (140)
r = l+ecose

J
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Polaraxis

f

/Tr

Perigee .C_ / "x_

s°fatellite/ _

orbit l "_
l Earth

X

bZ

%.

\
\

\

m _.,f

_Y

Substituting these expressions into the force

equation per unit mass (EQ (138)) yields

_req = _ 2-_ (1 +ecose)4 [J (1
P

- 3 sin 2 i cos 2 (E) - a))1

^ o )4L2Jgl_ (i + e cose sinicos (e
T

p

a) il - sin 2 [ cos 2 (0 - o_)

(141)

Now to relate the force to tim%rather than true

anomaly, replace 0 by E, using the geometric re-

lationship

cos E- e (142)
cos 8 = 1 - e cos E

and

H (143)
cos (8 - a) = 1 - e cos E

where

H = (cos E - e) cos a+ _- e 2 sinE sina

(144)

Substitution of Eqs (142) and (143) into Eq (88)

to get the corrective thrust requirements in terms

of obital elements gives

- (z
Fre q m _ + _ (145)

where

F
r

and

j_R2 (1 1 -e2 )= --:T-"- - e cos E
P

3 H 2 sin 2 i

(1 - e cos E) 2 J

4

F L =
J2uR 2 tt sin i

4
p (I - e cos E)

H 2 sin 2 i "_

(1 - e cos E) 2 J

( '-e2 ) [11 - e cos E

1

Now the mass of the satellite must be considered

a function of time. If the mass rate is small rela-

tive to the mass of [he satellite, this time varia-

tion can be written as

(I _nt +O(_a/m) 2)m -- mo - m-_

or as a function of _.he eccentric anomaly

dm dE
m = m ° -..--,-_---, t

dm _ -I= m ° _ t. (148)

But for a spherical earth,

T

t -- _ (E - e sin E)

so that

(147)

dt v
-_ = '2-W'- (1 - e cos E) (147a)

-and hence m (and therefore W in units of weight)

can be expressed as a function only of the eccen-

tric anomaly:

W = W 0 E - e sin E dW- I - e cos E [ . (148)

Substituting Eq (148) into the force equation

(145) gives

= 1 [W E - e sinE __[_Freq "_0 0 - 1 - e cos E

+ _ F.l (149)

L_j

Now expressing the thrust as a function of the

specific impulse

Fre q " Isp %_'

or as a function of eccentric anomaly and weight

F
r
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Therefore

(150)

dW ,Isp : = _ 0 (i - e cos E)

thus,

dW

- (E - e sin E) d_-_i IF 2 9r + FL"

(151)

I 2 FL 2W 0 (I - e cos E) F r +

2_ Isp go IFr 2 FL2+ (E - e sin E) +
T

(151a)

Integration of Eq (151a) over limits of one

revolution (0 to 2 _) gives the amount of propellant
used in that orbital pass

2-ff
/-%

W _- _ dW dE (152)
p dE

"_0

Also, by a slight rearrangement of terms, using
Eqs (147a) and {151), the integral equation for the
aorrective thrust is

Freql =

E

W0 _ IFr2 + FL 2 dE

+ T I}(E - e sinE) F + FL2
sp

(153)

Both of these equations are difficult if not impos-

sible to integrate analytically. However, a sim-
plification will result if the mass of the vehicle

is assumed constant for a complete revolution.

The magnitude of the error of this assumption is

small as will be apparent in subsequent discus-
sions.

Each component of the force can be related to

the propellant flow by Eq (151)

dW
r I, WT

Isp----d-i_- _ (1 - e cos E) F r (154)

dW L W_"

Isp _ = 2_g 0 (I -ecosE) F L (154a)

The actual propellant flow rate is

dW W-r

Isp--d- _- = _ (1 - e cos E) Fre q (155)

or upon substituting for Fre q in terms of its com-

ponents

dW W _- _JFr2
Isp-d_ ; _ (1 - e cos E) + FL2

(!55a)

so that

= + (156)

and hence, the weight of propellant consumption

per revotu_on is

({E ]Wp " WT _ fl 2 J 1

2" go a4 [sp (1 - e cos E) 5

• H 4 sin 4 t - 2H 2 (I e cos E) 2 sin 2 t + (I - e cos E) 0:_

(157)

Probably the most common ease for which
the oblateness correction will be made will be

for satellites in circular orbits. It would there-

fore be of interest at this time to determine the

thrust and propellant equations for circular or-
bits.

The simplifying conditions for circular orbits

are: (1) eccentricity is by definition zero. (2)

perigee is undefined and may be selected to make

the angle a zero, and (3) the eccentric anomaly

E and the true anomaly 0 are coincident. Then

__ pR 2
Fr ---4-- J (1 - 3 sin 2 L) (158)

a

FL pR2= - -""-6"--J sin2 L
a

(158a)

Fre q = m tFr 2 + FL 2 (158b)

2Tt

_ W1-p 5 cos 4 E sin 4 i

Wp 2 i, go a4 Isp 0

1_ 1/2
- 2cos 2 E sin 2 i+ dE

(159)

Also, for circular orbits, the true anomaly

is related to the time since perigee passage by
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T

Thus, the corrective thrust F can be rewritten
req

from Eqs (158) and (159) as

_R2j
F r = _ (I - 3 sin 2 cos 2 8) (160)

a

-2gR 2 J sin i cos O 11 - sin 2 i cos 2@
FL - 4

a

(160a)

_ FL2= " + (I60b)
Fre q M F r

The variation of the absolute values of these

functions as functions of the true anomaly 8, and
orbit inclination i are illustrated in Figs. 18 and

19. The parameter for these figures is a non-
dimensional acceleration x defined as follows:

X
r

a 4

a 4

a tl
Xre q - _ Freq

Estimated average values derived from these
curves are illustrated in Fig. 20 as a function of

the orbit inclination i. The curve for x
req

represents the averages derived from the

in Fig. 19, not from "Xr and XL, sincecurves

Xreq _ _Xr 2 + XL 2

but rather

Xreq ffi _Xr 2 + XL2

Evaluation of the propellant requirement is

now a simple matter, since

W T

%PIsp dWp = Fre q dt

hence,

= T

Wp _ Fre q

or

W = W_" _R 2 J

P go Isp a4 req

where x is as illustrated in Fig. 20.
req

Example 1. Consider a 10, 000-1b 044, 500
newton) satellite on a 300-naut mi or 556-km

equatorial circular orbit. The parameters for
this case would be as follows:

m = 311 slugs = 4530 kg

I = 500 sec (assumed)
sp

R = 20. 9264 x 106 ft = 6378.2 km

a = 22.72 x 106 [t = 6930 km

= 1.407645 x 1016 ft3/sec 2 =

398601.5 km3/sec 2

i = 0 deg

"r - 5740 sec

J = 1.637 x 10 -3

For this case

and

x = 1
req

F = 11.8 lb (average value) .= 52.5 newton
req

W = 136 lb/orbit = 605 newtons/orbit
P

Example 2. Consider the same 10,000-1b
(44,500 newton) vehicle on a 300-naut mi

(556-km) polar circular orbit. The param-
eters are the same as before, except that now,

t = 90 ° .

For this case

x = 1.31
req

Hence,

Freq

W
P

= 15.5 Ib (average value) = 69 newton

= 178 Ib/orbit = 794 newtons/orbit

Example 3. Consider the same 10,000-1b
(44,500 newton) vehicle on a 300-naut mi (556-

kin) circular orbit inclined 28 ° to the equator

(east-launching from the AMR). The param-
eters are the same as in Example 1, except

that now,

i = 28 °.
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For this case

req

Henc e,

F
req

W
P

= 0. 935

= 1 I. 05 ib (average value) = 49.2 newtons

= 127 Ib/orbit = 566 newtons/orbit

Example 4. Consider the same i0, 000-1b

(44, 500 newton) vehicle on a "24-hr" circular

equatorial orbit. The parameters are the same

as in Example i, except that now,

a = 1.4 x 108 ft = 0.42 x 108 m

_" = 86, 164 sec

For this case

x =I
req

Senc e,

F
req

W
P

Conclusions Some general observations may

be made from F[gs. 18, 19 and 20.

(i) In an equatorial orbit, the corrective force

required to maintain an unperturbed orbit

is constant and directed away from the

earth (Fig. 18). As the inclination of the
orbit is increased to about 30° the radial

component of the force decreases some-

what, indicating the diminishing effect of

the equatorial bulge as the vehicle gets

farther away from it. Beyond an inclina-

tion of 30 °, the vehicle begins to feel the

full effect of the oblate shape of the earth

and results in the high values of Fre q

(Fig. 19) for low values of 8.

(2) The correction required on a polar orbit

is greater than that required on an equa-
torial orbit. As an illustrative example,

consider a satellite on a polar orbit. Be-

ginning with its position at 0 = 0 (over
the earth's North Pole), the field is sym-

metric, and only a negative component of

radial force exists (i. e., thrust directed
toward center of earth). As the vehicle's

latitude decreases (increasing 0) the force

decreases and rotates away from the center
of the earth until at 0 = 55 °, it is tangent

to the orbit, and directed away from the

equator. Finally, as the vehicle passes

over the equator on its way toward the
South Pole, the only force is the radial

component acting away from the earth.

(3) Another result is that an orbit inclination

of about 30 ° requires the least amount of

energy expenditure to maintain the orbit

(Fig. 20).

= 0.00815 lb (average value) =0.0363 newtor_

= 1.4 lb/orbit = 6.24 newtons/orbit

2. Propulsion Requirements for Counteracting

Drag

Corrective propulsion needed for drag can-

cellation may be applied either by a continuous
thrust device or in discrete impulses. In the

first case, either thrust must be varied in such

a manner that the drag is balanced at every

instant or the time integral of the thrust dotted
into the velocity around the orbit must be equal

to the work done by the drag force. This drag
force is

D = 1 CD_____A (v (v
m _- m P + VAT)"

V + VaT
+

_T) V + VaT

where

VaT = the velocity of the atmosphere

V = the velocity due to elliptic motion

p = mass density as function of position

Thus

m m

Assuming that the orbit is specified (both planar
and orientation elements) and that a model of

atmospheric density is available which includes

as many of the effects due to solar radiation, atmos-

pheric oblateness, etc., as desirable, and that

the product CDA can be defined with some accu-

racy, the time history of thrust can be computed.

This procedure would best be handled numerically
though the possibility exists that series expansions

in the various terms might also prove useful.

The major drawbacks, however, that the method
is cumbersome and requires a variable thrust,
are sufficient to eliminate this method from con-

sideration tn a parametric study of this nature.

The time integral approach to drag cancella-

tion may be stated as

Wthrust = _ Wdrag

T T

F. (_+_aT) dt = _ D. (_+X_aT)dt

0 0

2

T

o Iv+ COaTI dt

where • is the orbital period
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But tf

F =F

where

F = scalar constant

The left-hand side of the previous integral re-
duces to:

T

which is by definition

T

Similarly the right-hand side of the equation is

T

CDA dtO

This solution, like the first, is such that a

numerical solution is quite attractive for the

general case. For special cases when the term

VaT can be neglected or considered to be colinear

with _(that is for very high satellites or nearly

circular equatorial orbits), The general order of

complexity can be reduced and analytic solutions

become attractive. Material pertinent to these
cases is covered in Chapter V. Because of the

restrictive nature of this material it is not pre-

sented here. Rather, it is noted that the pro-
cedure is simply the matching of the work done

by thrust and by drag. The matching procedure
is at times very tedious but may nonetheless be

accomplished. An approximation to this impulse

could be obtained by integrating the drag force

over a revolution and observing the change in the

orbital elements; then via the methods described in

previous sections the impulse required to correct

elements could be computed and the average thrust

obtained by dividing by the orbital period.

The final approach to this maintenance
maneuver is one in which the orbit is allowed to

decay until one of the elements has changed an

amount e_lal to or greater than a prescribed

tolerance for that element. At this time a two-

impulse maneuver is initiated which transfers the

vehicle back to the original orbit. Since atmos-

pheric velocity is small compared to the vehicle

velocity, the perturbing forces occur approximately

in the plane of motion and thus the transfer will

be approximately coplanar. Chapter V again pre-

sents all of the data pertinent to the decay of

satellites and the first section of this chapter ties

these changes into the propulsion requirements.

Thus, the procedure to be followed for an analysis
of this nature is:

(I) The specification of the geometrical
elements.

(2) The establishment of tolerances for the
elements.

(3) The evaluation of the rates of change
of the elements.

(4) The assessment of the times at which

corrective action is required, the same

maneuver being required each time.

(5) The calculation of the maneuver re-

quirements.

Since each of these discussions is presented

in detail in the respective sections of pertinent

chapters repetition of this material for the general

solution is superfluous. However. becaus_

circular orbits pose a unique problem the solution

of which can be obtained, the following paragraphs

are presented for this restricted problem. The

discussions follow those of Ref. (3).

The total required velocity, AV, is the sum

of the separate velocity additions AV 1 and &V 2,

where &V 1 refers to the velocity addition necessary
to obtain ff Hohmann transfer back to the desired

altitude, and where AV 2 is the velocity addition

necessary to circularize the orbit having once

reached the desired altitude. The total required

velocity for a single two-impulse correction

maneuver is /,uat AV. The following sketch de-

scribes the geometry of these maneuvers.

2nd velocity addition

/ / _; /\ _Initial

/// / /_?h0 / _orbit

Hohmann/ I ,/ / Y k

t:}bn t fer _ A ( _ 1 t

t k "k_'_ I .]Decayed

\_/;rbit

The separate velocity additions, Ag 1 and

AV2, may be determined from the energy equation

to be

{ ( ' ' )AV1 = _ R +h 0 - &h - R +h 0 - Z_h/2

I I (161)
- _ R +ho - _t_
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AV 2

_ 1R + h 0 - _h/2

(162)

The velocity addition available from a given

engine is related to the propellant mass fraction,

Wp/W 0, by the familiar rocket equation

1

&V i = Ispg01n _ (163)

or

Wpi = 1 - e - AVi/IsPg0 (164)

where _hV i is the ith total velocity addition and

W . is the amount of propellant required for that
pl

particular velocity addition.

Since all the AV requirements are the same for

each maneuver, it follows that

Wpl = W 2 Wp3

--%- %1 - %2

= 1 - e -AV/IsPg0 (165)

where the subscripts 1, 2, 3, etc., denote successive

corrective maneuvers. The total amount of pro-
pellant used after n maneuvers is then,

n

Wp i- 1 pi

where,

(166)

- AV/Ispg0) (167)Wpl = W 0 - e

(I -AV/Ispg0)Wp2 = (W 0 - Wpl) - e

(168)

Wpn = I(W0-Wpl-Wp2 .... -Wpn__

• [1- exp(AV/Isp g0)_} (169)

The total time elapsed after n maneuvers is
the summation of the increments of time between

successive maneuvers, where it is recalled that

the amount z_ has been lost in altitude from one

maneuver to the next. This time may be found as
follows:

dE T = _m dh (170)
2 (R + h) 2

(where E T is the total energy of a satellite of mass

m in a circular orbit at an altitude h. )

From the drag force D acting on the satellite.

= DVdt =½p V3CDA dtdE T (171)

(if the atmospheric velocity is neglected).

_'{ow combining Equations (170) and (171) with the

expression for circular velocity, and approximating

the atmospheric density, to make integration

possible, by

p = po e-_h
(172)

yields

h 0 - A h AT

(W/CDA) fh e_hdh=- S dt
g0p 0 _uR 0 0

(L <<R) (173)

which after integrating and rearranging is the

time interval between maneuvers

(W/CDA ) ,3h 0
AT = e (1 - e-SAh)

SgOPO

+, _ (R+ h)- Ah]3 (174)

where the corrective term is I/2 of the period
of the transfer orbit.

An appreciation of the validity of the density
approximation may be seen in Chapter Y. It is

noted, however, that generally good agreement

between the true density and that predicted can

be obtained for an altitude range from 185 km to
370 kra and from 370 kra to 750 km using

P0 = I. 60 x 10 -10 slugs/ft 3 or 0. 824 x 10 -7

kg/m 3

= 7.21 x 10 -6 ft -1 or 23.7 x 10 -6 m "1

and

P0 = 1.92 x 10 -12 slugs/ft 3 or .988 x 10 -9

kg/m 3

= 3.58 x 10 -6 ft -1 or 11.74 x 10 -6 m -1

respectively.

Now, denoting successive maneuvers by the sub-
scripts l, 2, 3, n, it follows that

_T n ={W 0 - Wpl - Wp2 - . o . - Wpn_l)

(continued)
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Thus the total time elapsed after n maneuvers is

n

= i_ I AT.
Ts l (176)

-=

Now if the corrective term for transfer time is

neglected as being small compared to the total time,

and the equation for T s divided by the total amount

of propellant used after n maneuvers, the series

common to bothequations (involving the weights)
may be eliminated to arrive at the desired ex-

pression

IS e_hO e-_h) ]

W 0 Wp ( I -

(177)

This relationship between the propellant mass

fraction required to sustain a satellite a specified
lifetime is explicitly independent of the number of

impulse corrections, and like the continuous thrust

method, shows a linear dependence of the pro-

pellant mass fraction, Wp/W 0, upon the sustained

lifetime, T s, [or a giver, set of initial conditions.

Figures 21 through 24 show the linear relation-

ship as predicted by Eq (177) as a function of the

ballistic coefficient for various &h/h 0, and

initial altitudes for a specific impulse of 300 sec.

One of the values on these curves is for the
case where £kh = 0. This curve was obtained as

follows.

CDA p v2 'F = = WIsp

1 CDAP V2
=

Wp _r I Ts
sp

T 2W I 2W I (R + h)
s = p sp = p sp

W0/CDA W 0 P V _ _ P_

Although it will not be shown here, this is the
same limit that would be obtained if _h and the

various maneuver increments (AV i) were allowed

to approach zero simultaneously in Eq 177 with
the corrective term for time being neglected,

( the corrective term must be neglected because

the vehicle is never coasting back to the initial
orbit; i. e., there is no Hohmann transfer).

These figures show that the longest sustained life-

time per unit weight of propellant is obtained from
the continuous thrust sustaining method. In the

case of satellites utilizing the discrete velocity-

addition sustaining method, longer lifetimes are

realized (for a given propellant mass fraction)
as the increment is decreased in altitude, Z_h,

the point below the desired altitude at which the
first and successive corrective maneuvers are

initiated.

Another interesting fact which may be ob-

served by comparing the sustained and un-

sustained lifetimes is that the advantages of a
sustained satellite over an unsustained satellite

are greatest at the lower altitudes, where they
are needed most.

G. DIFFERENTIAL CORRECTIONS

IN ORBIT TRANSFER

The fundamental goal of space vehicle guid-

ance is placing the vehicle at a certain point in

space at a certain time, perhaps with a partic-
ular velocity. An approximate method of com-

puting guidance commands to accomplish this

objective is by differential corrections based
on the ideal transfer profile. The sensed data,
in the form of deviations from the ideal transfer

orbit, are transformed into the desired vehicle

velocity component corrections by a matrix of

precomputed error sensitivities stored in the
vehicle-borne computer.

The primary advantage of the differential

correction technique is a simplification of guid-

ance system input calculations performed aboard

the vehicle. These calculations involve only

matrix multiplication, which can be mechanized

in a simple, lightweight vehicle-borne computer.

The technique is feasible wherever deviations

from the desired transfer orbit and perturbations

to Keplerian :notion are reasonably small. Orbit
deviations must he small to admit the use of a

linear differential approximation. Also, if the

deviations are small, the effect of small pertur-

bations on both nominal and incorrect orbits is

essentially the same, i. e., the deviation is inde-

pendent of small perturbations. The orbit cor-

rection, being dependent only on the deviation,

is thus independent of small perturbations.

The problem may be formulated in several

ways (Refs. 4 and 5), depending on choice of co-

ordinates and orbital elements. The formulation

considered is that of Uawden (Ref. 4), the solu-

tion being obtained by a somewhat different

mathematical approach. Let the center of co-

ordinates be located at the center of the force

field, the X-axis be the line of intersection of

the ideal vehicle transfer orbit and the orbit

plane of the target point, the Z-axis be normal

to the target point orbit plane, and the Y-axis

complete a right-hand system, as shown in the

sketch.

Z

X

F Incorrect

vehicle

//'/-%/%blthtc le at

/ /A correction

olnl
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The following nomenclature will be used

x 0 SemimaJor axis of the preselected transfer
orbit

x 1 Eccentricity of the preselected transfer
orbit

x 2 "Curly pi" or sum of the longitude of as-

cendlng node and argument of perigee of

the transfer orbit

x 3 Eccentric anomaly of the vehicle position
at the time of correction

x 4 Eccentric anomaly of the vehlcle position
in the transfer orbit at the tLme of ren-

dezvous with the target point

x 5 Inclination of the preselected transfer
orbit to the target point orbit plane

x 6 Sum of x 2 and the true anomaly of the

vehicle at the time of correction

x 7 180" + longitude of the ascending node of
the transfer orbit

x 8 Radius at the rendezvous point

x 9 Eccentric anomaly of the target point L_
its orbit at the time of rendezvous

Yl Radius tO the vehicle at the time of cor-
rection

Y2 Angle in the X-Y-plane from the X-axls to

the pro_ection on the XY-plane of the ve-

hicle radius at the time of correction

Y3 Angle measured in a plane normal to the

X-Y-plane from the XY-plane to the vehicle
at the time of correction

Y4 Time between correction and rendezvous

u I Radial velocity component of the vehicle
at the time of correction

u 2 Vehicle velocity component normal to u 1

and parallel to the XT-plane (at the time
of correction)

u 3 Velocity component which completes a

right-hand system with u 1 and u 2

v i Velocity components of the vehicle in the
transfer orbit at rendezvous (directions

analogous to u i)

w i Target point velocity components at ren-
dezvous

a 0 SemimaJor axis of the target point orbit

e 0 Eccentricity of the target point orbit

E 0 Eccentric anomaly of the target point at
the time of correction

0 Angle in the X'Y-plane from the X-axls to
perigee of the target point orbit.

The problem may be stated as follows. At a

certain preselected time, at which errors are to

be determined and corrections executed, the ve-

hicle position (YI' Y2' Y3 ) is found to be in error

relative to the preselected transfer by amounts

dy 1, dy 2, dy 3. The velocity components at this

point are in error by _ Ul, Au2, Au 3. Lfthede-

sired velocity at the incorrect point (the velocit7

to rendezvous Y4 + dYu later) is u i + du i, the cor-

rection to be applied is du i -±u i, where the cor-

rectlon relative to the progrmmmed velocity (du I,

du2, du 3) is to be determined as a function of the

dy, s. I£ the velocity, as well as the position,

the vehicle is to be matched to that of the target

point, a second velocity correction, to be added

to the progrs.mmed thrust at rendezvous, must

be computed.

The required transformation matrix may be

obtained by differentiation of the following func-

tions, which describe the Keplerian motion of
the vehicle and the target point.

_0 = x4" x3

Y4

-Xo

- x I (sinx 4- sin x 3)

x6-x2 _ l+xl tan_
_I = tan_ 1 - x I

x7-x 2 _I+ x 1 x 4

_2 = tan,.-.--_-- --'_ I_._1 tan--_-

_3 " x8- x0 (I- x I cos x 4)

@4 = Yl - x0 (i - x I cos x 3)

_5 " x9" E0" eo (sinx9-sinE0)-_0Va _

x7 "_0 ,t/"_+ eo x9

_6 ffi tan-------_-_-T __-:_ 0 tan--_-

_7 = x8" ao (1 - • 0 cos x 9)

_8 = tan (x 7- y2 )- tan (x 7- x 6) cos x 5

_9 : sinY3- sin (x 7- x 6) sinx 5

U 1 ffi u I

U 2 ffi u 2

x

- x I sin (x 6- 2YXo (l-x12)

cos x5Q _x 0 (I- Xl 2)

cos Y3 Yl

tan Y3 V _Xo (I - Xl 2)

U 3 ffi u3- tan (x6-x7) Yl

(178)
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The desired velocity components are u k +du k

where u k are the programmed velocity components

at correction and (in Einstetntazz summation nota-
tion)

_u k

dUk=B_._-- dYm, k = 1,2,3;m = 1,2,3,4.

" m (179)

The solution of the problem is then complete upon

evaluation of the partial derivatives of this ex-

pression. These partials are obtained immediately
from the Jacobian

f _ ! ol

,A = - 12 - - Iuel i -
l

,#here

8@.
- 1

aij %xj i, j = 0,
1, ..., 9

8UI
.- I= 1,2,3

u l j _xj

19
O = [0] 3

3
I = [1] 3

%%
The partial _ of Eq (179) is obtained by dividing

the negative of the determinant A into the same

determinant with the (10 + k) th column replaced

by the column vector

8_ i %U L }%y-q

For exam _le,

But_ I

_Yl &

I 8_ °

o o

I- l 0 0
I

aij I .........

I 8@9

.... o o
1%U 1
I -- 0 0

I BYl

I %U 2ut J -_i 1 0

1%U 3

I- i o 1
I

This completes the solution for the components
of the midcourse differential correction. The

thirteenth order determinants (A and substituted

,s) may be evaluated for a particular mission

by a computer program and the resulting matrix

stored in the vehicle-borne computer memory.

However, for hand computations, the solution

can be expressed in a more convenient form.

This is possible because of the large number of

zeros in the determinant /x. Specifically,

ao0 aOl 0 a03 a04 0 0 0 0 0

0 all a12 a13 0 0 alG 0 0 0

0 a21 a22 0 a24 0 0 a27 0 0

a30 a31 0 0 a34 0 0 0 a38 0

a40 a41 0 a43 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 a59

0 0 0 0 0 0 0 a87 0 a3 9

0 0 0 0 0 0 0 0 a78 a79

0 0 0 0 0 a85 a86 a87 0 0

0 0 0 0 0 a95 a96 a97 0 0

(18o)

which, by Laplace's development of the first five
columns, reduces to

jai_ a59 aBT(a85a96

- a86a95)

a00 a01 0 a03 a04

0 all a12 a13 0

0 a21 a22 0 a24

a30 a31 0 0 a34

a40 a41 0 a43 0

-5/2
Y4

aO1 = sinx 3 - sinx 4

Yl

a03 = " X--o"

x 8

a04 - Xo

__ _.I - Xl I

a11 = - tan ]_I'TI (1-T_I)'2
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a12 -_s ec2 xS'x 2• ---T--

x 4 4/"f - x 1

a21 = _ tan--_--T+_-_I

x 6°x 2 . I+/_'_I

I

(I- Xl)_

1 2 x2

a22 = --_ csc

a24
1_ + x I x4

= ._TI_--_-I sec 2

a31 • x0 - x 8

a34• - x0 x I sinx 4

Yl

a40 = ° x-_

a41 = x0 - Yl

a43 = - x0 x I sinx 3

I 2 x6" x2
s16 = -_ sec

i x2
a27 = _ csc2

a38 = 1

x 8

&59 = a'_"

2 _ 0a67 = csc T

1_ I+/T_'0 2 x9

a69 =-__sec

a78 = 1

a79 = _ a0 e 0 slnx 9

a85 = _tanxssinx 5

a86 = sec 2 x6 eosx 5

2
a87 = sec Y2- sec2x6c°sx5

a95 = - sinx 6 cos x 5

a96 = - cos x6 sinx 5

a97 = . a96

Also

where

ul0

I Ulo ull u12 0 0 0

u20 u21 0 0 O u25

u30 u31 0 0 0 0

u16 0 0 0 "1

0 0 o 0

u36 u37 0 0

(181)

u2

u20 = -

u 2 x 1
u21 •

I - x I

u3x I
u31 " _

1 - x I

u12 • - u I cot (x 6- x 2)

u25 • u 2 tan x 5

u16 " u12

u36 = u 3 sec x 6 csc x 6

u37 = - u36

Lnd

• l o.o.o,o,1,o.o.o.o,o,o.

"2 "s}
Yl' Yl

8_i %UI I 2.
o.o,o.o)

8_i 8u. )
"_3' Y_'_'31 {°'°'°'°'°'°'°'°'°'c°sY3'

O, -u 2 tanY3, "u3 sec y3cscY3}
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-_ _ = -_o_--° ,o,o,o,o,

"_ "_/'_o"°'°'°'°'°'°'° l
a 0

The determinant ]alj 1is interesting In itself

since the differentials in the transfer orbit geom-
etry

8x.

dxj = _ dy_ (182)
oYi •

are given by .,laij[ in the same manner that the

corrections in vehicle velocity are given directly

by A From .]aijI , after simplification and fac-

toring, the following error sensitivities are ob-
tained.

x 8

do4 = Xo

1
dll ,. _- sin (x 8 -x 2)

1 -x 1

dl_- -\,_ ¢_-'_I2 cos"

1
d21 = --2 sinx 2

1 -x I

-_ 2xz 2 x2 )
d24 T_-_I + sin

Vt - x I

j=0 ..... 4 J=5 ..... 9

M.. Ox.

axj = (_l)J+I i_ J

_xj =(-1_ +1 c_ -_ a_5

_3axJ= (-i_+iC5 _ _3ax5

3
ax Mkj ax5

k=0

=0, j=5 ..... 9

8x 6 0x.

--k l, _ =k 2,_ =0, j=_, 8,9

k 2 k 3 ax 6 ax.

= --'k-'7 , yE_3 = klk3 k4, x_3 =0, .J=7, 8. 9

ax 6 ax 7 ax 8 8x 9 _8_a 0= k 1 k5, _ = k 5 (1 - k2), _ = k 5, _ = C 3, _4 =

(125)

where Mij are the 4 x 4 minors of the determinant

d00 d01 0 d03 d04

0 dll -I d13 0

D = 0 d21 -1 0 d24

d30 d31 0 0 d34

d40 d41 0 d43 0

and

3Y4 _-

d01 • Xl x0 Tx 0

Yl

do3 = - X-o

d30. = - d04

d31 • x0 - x8

d34 = -x 0x I sinx 4

d40 • d03

d41 = x0 " Yl

d43 =-x 0x I sinx 3

co . r;o_-__

C 1 = K 5 (I - cosx 5)

C 2 = . K 5
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@ a 0 e 0 sin x 9
c 3 - x8

c 4 ,, cos x 5

c 5 = klk3k4

k 2 = cos x 5

c°s2 Y2 cos Y3

k3 = 2

cos x 6

k 4 = sin x 6

. , c.F.o .oo 5]:':5 X 8 t_ +_o + -- sln2

_- e02

The orbit to be achieved by the velocity correc-
tion is thus determined in terms of the data.

Special note is made at this point that further
development of these determinants is possible

resulting in a set of analytic expressions for the

corrections. Some of these expressions, how-

ever, are very complex in form. For this

reason, it is felt that the present form of the

solution is most useful.

As an alternative to evaluation of the velocity

corrections (du k) from the I3 x 13 A determi-

nants as previously outlined, the corrections

may be determined as functions of the orbit
element corrections since

8u k 8x

dUk = _-_ _yi dY i

8x

where _ are given by Eq (183) and

(184)

from Eq (181).

If the velocity, as well as the position, of the

vehicle is to be matched with that of the target

point, the required correction to the programmed

velocity increment at rendezvous may be deter-
mined as follows. The velocity components of

the vehicle Just before rendezvous are

Vl =V _ x I sin (x 7- x 2)
x 0 (I - x12)

v2 = V_t x 0 (I - x12)
x8 cos x 5

= _._x 0 (I - Xl 2)

v 3 x8 sin x 5 (185)

The deviations of these components from those of

the preselected transfer are given by

dv. =

i

where the

8v i 8x k

Bx k

are given by Eq (183) and the

8v i

-_k are, from Eq (185)

8v I v 1

8x 0 _ ;

8v I v 1

-_I = x I (I - Xl 2)

8v I 8v 1

-_2 = v I cot x2 ; -_7 = - v 1 cot x 2

8v 2 v 2 8v 2 v 2 x 1

8x0 = 2x0 ; _ = I - x 1

8v 2 8v 2 v 2

-_5 = - v2 tan x 5 ; _8 = "-_8

8v 3 v 3 8v 3 v 3 x 1

= rgo; -aT = iT

8v 3 8v 3 _ v3

"_5 = v3 cot x 5 ; "_8 x8

Similarly, from the velocity components of the

target point at rendezvous,

w I _ e 0 sin (x7 - c00)

a 0 (I - e02)

w 2

= _ a 0 (I - eo 2)

x 8

w 3 = 0, (187)

the change in the desired rendezvous velocity

from the programmed value is given by

.. .. 8x 7

dw I = w I cot (x7 - ¢_0) dx 7 = - w I cot ¢_0 y_ 4 dy 4
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. w__2 . w__2ax8
dw2 = x8 dx8 = x8 -_4 dY4

(188)

The partials are given by Eq (183).

Then the required velocity correction to the

stored velocity increment at rendezvous is

v i = dv i - dw i

In the previous analyses dy 4 has been con-

sidered as an arbitrary increment in the time
between correction and rendezvous. If the time

of rendezvous is to be maintained at the pro-

graznmed value, dy 4 = 0 and the computations

and storage requirements are simplified. On

the other hand, if some flexibility is acceptable,

then the increment in time may be selected so

as to minimize the energy, requirement of the

correction. Lawden (R_f. 4) gives rile value of

dy 4 which minimizes the propellant expenditure

as

dY4=- o - (189)

where

" \a-G4/ + \% ÷

3 _u i ( 8u i _u i 8u:

i=1

- ixui)

3 ( _u i _)ui 8u i

J=1

dY 3

- ixull 2

8v

63 = _4

dy I, dY2, dy 3 = position component errors at
correction

Z_u I = velocity component errors at correction

v = velocity increment at rendezvous

Many formulations of the differential correc-

tion techrdque are possible. Reference 5 pre-

sents rectangular coordinate routine. However,

regardless of the form of the data, the approech

presented is applicable. By modification of the

i functions, transformation matrices for any

adequate data system may be obtained.

This formulation has been checked for efficacy

in several specific examples, one of which is
transferred to a 24-hr orbit. The results of

these checks indicated a very high degree of

approximation in the commanded velocity cor-

rections. In no case were the resultant position

and velocity errors greater than 10% of the un-

corrected value for errors in position less than
I00,000 ft (or 30 krn) or more than 3% for errors

in initial velocity as large as 20 fps (or 6 raps).

In fact the general order of the resultant errors
was approximately 3% for errors in initial position

in this range and 0.5 to 1% for errors in initial

velocity less than 20 fps. The method is thus
seen to be ideally suited to midcourse guidance

problems and to the problem of small maneuvers.

H. THE STATISTICAL DISTRIBUTION

OF THE ELEMENTS OF

THE c'I,,._L_" ' OilGIT (REF. 6)

Preceding discussions (for example Eqa 134
and 135) related the errors in the resultant orbit

elements due to a combination of tracking and
control errors. However, these relationships

provide no insight as to the probability of occur-

Pence of a _ven error. This additional infor-

mation is obtained by relating the probabilit_
distributions of the total errors &a' and &e" to

the distributions of the individual tracMng and

control errors. The development of these dis-

tributions will be based on the customary as:_ump-

lion that the individual errors (At 1, &V I, etc.)

are independently and normally distributed.

Since the forms of Eqs 134 and 135 are different,

i.e., Aa' is the sum of linear differentials and

_e' is the square root of the sum of the squares

of differential terms. The distribution of both

forms will be derived. Consider

u = _ a i x i,

I

i:l, 2 ..... k

where the a. are constants and the x. are inde-
t

pendently and normally distributed with means

_i and v,_riance ai 2. Then the moment generating

function m (t) for the distribution of the variate

u is given as follows:

re(t) <_-_ _" ('[--['_) . . . exp
i=I -_ -_ "_

t aixi- j dxi
i i i=l

where , is the base of natural logarithms (utilized

to differentiate from eccentricity).

Transformation to the standard form is convenient.

VI-39



Now letting , be the base of natural logarithms
(to differentiate from eccentricity) and

xi - _i

Yi = " _i

then

m., 7r
i=l "_

1 2

- gYi
E dY i

--_-_'_" _'_k K _tai_i ½t2ai2_i_E

i=l

i2 -2tai Yi ai + t2 ai20.i_

, d

tai_i +-2- . ai2 _i

= E (190)

However, the moment generating function for

the normal distribution is

m n (t) = tt_ +@t2a 2

Therefore, Eq (190) is the moment generating

function for a normal distribution with mean and

variance given by

= _ ai_i

1

(191)

2 ,.2a = ai ai (192)

i

In particular, application of this result to Eq (134)

provides the distribution of the error Aa'. The

error in semimajor axis of the corrected orbit
is normally distributed with zero mean and
variance

2 2 +4 r02 _2 + 02
a_a' = 4 _rl _ 6V 1 6(AVI)

2

+ a6iz_V2))

That is, the distribution of z_a' is

3

f(Aa') = 8, #2rl +_r0 #26VI + U6(AVl )

Aa 2 a 2

-I rl

+ as(_V E 8

Aa2r03 2 + a6(AVI) + 0.6(AV2-_--_-- 6vI
E

The distribution of the eccentricity error is

more dif$icult to obtain because Eq (135) is not

linear. Equation (135) is of the form

u = _x12 + x2 2

where x I and x 2 are assumed normally and

independently distributed, i.e.,

2

, E-+
n(x l, x 2) = 2_0.xI ax2

The distribution of u may be obtained by elimina-

ting either x I or x 2 in terms of u to obtain a

density

where each term in the summation represents one

branch of a possibly nonmonotone function U(Xl).

The desired distribution, g(u), may then be ob-

tained by integrating over the x 2 in g (u, x2).

g(u) = I" g(u, x2) dx 2

In particular, for

u = IXl 2 + x22

x I = ± _u 2 - x22

[axl I u

lu 2 _ x22

Since the function g(u) is not single valued,
it must be evaluated on each branch

But

f(xl +) = f (Xl °)
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Thus

g(u, x 2)

g (u, x2)

--2 f (xI) -_-

E 1
= 2 2= _Xl ax2

2

1 x2

_ --2-
O'x 2

u 2 _ x22
1

2
-5 cr

e :': 1

u ]lu _ x22

2
lu

- _----,/

g(u) - u, _Xl [i t._.___!._

xl_x 2 J}{a . -_ u2 . x22

E 1}}x2 (o:2-2ow)dx2

After the transformation

2
t =x 2

this expression may be integrated to yield the

required distribution

g(u)

- _ (193),oE4q o,])
(< x/.u9

2>u2
= 0, x 2

This g(u) (and, in particular, the distribution of
corrected orbit eccentricity error) is a skewed,

single-sided distribution w_th positive mean and

and a shape similar to that of the gamma distribu-
tion.

I

In manipulation of the distribution g(u) the

following definitions are convenient.

1

K1 - cx a

x I x 2

K 2 --- _[ +

The distribution is then
o

g(u) =- K 1 u e - K2u" I 0 (N3 u2)

This final form has been checked both analytically
and numerically utilizing randomly selected var-
iates from normal distributions. The results show

excellent correlation.

Ouantities of some significance in describing

the properties of the distribution (e.g., central

value, spread, skewness, etc.) are the moments
of the distribution. The rth moment of g(u) is

_r = ; urg(u) du
0

= K l

0

r + 1 - K2u2
u , I 0 (K3u2) du

(194)

After the transformation t = u 2, the integral can

be evaluated in various forms.

fit n - K2tE I v (K 3 t) dt =

0

1 (n + l)
-'Z

F(n + . + 1) (K2 2 - K3 2)

p-V/ K Z Iq
n _K2Z- K3Z)J K2 >
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where the generalized Legendre function is given

by

m

Pmn (z) = F (I - m) - 2 i n, n+l;

and the hypergeometric series is given by

m_n (al ..... am; YI ..... Yn; z) =

_o

_" (al) i. • .(am) i z i

/_ (Yl)i • •. (Yn)i
t=0

The second moment is of interest in determina-

tion of the variance of g(u).

+ _.,"2'_"'Z + "'"
(197)

The. ') .+4"T r "K3" 
"2" +1

K 2

KI r + I) _-" k._; I; " 1; i)

=-2- _'---'_ +1 /. i! (1; 1; i)

LK2 _ i = 0

(195)

In particular, the mean of the distribution g(u)

is given by

Pl

2 K 3

4 K2 _

35 3759 4

+_t'l \'_2 / (2t) 2 \]_2

3 7 11 5 9 13 fK_N 6 ]
3;'T'-4-'_'T'-4" (_.__] + 1(3:)2

(196)

Then the variance is

2 )2_u =F2 -(El (198)

Another factor of interest is the probability of

occurrence of extreme values of u. Direc_ compu-

tation of areas under the d[s[r[bution of EQ (193)

is rather tedious. However, for large values of

the variate u, the modified Bessel function of the

first kind of order zero may be approximated by

-the following series.

X

' _ + 2 : (Sx)"2

12 32 . 52

+ ' +..,_
3! (8x) 3

(x large)

If only the fundamental term of this series is

retained, the distribution of Eq (193) becomes

2
u I

g(u) E l - -2" --'-'-2-

l 2 . 2 _ GXl
Crxi ax 2

(u largQ (199)

Thus, available tabulations of the normal density

area

. 2

= 21_ , dy

can be used to evaluate probability of occurrence

of extreme values of u with good accuracy.
J
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I. TRANSFER TRAJECTORY OPTIMIZATION

1. Variational Approach

The problem of trajectory optimization has

received attention in much of the literature ref-

erenced. However, the work of D. F. Lawden

(Refs. 7, 8, 9) is felt to be particularly meritor-

ious. For this reason, his work has been fol-

lowed quite closely in this material which is in-

cluded to provide insight into the general maneuver

problem and the basis for the formulation of the

differential correction routine discussed later.

The general problem of optimizin_ a maneuver

trajectory with respect to the energy requirement

may be expressed as: it is required that two

points in space be connected by a curve along

which the vehicle can be maneuvered with a min-

imum energy expenditure. Because aerodynamic,

electromagnetic and other forces are extremely

complex in nature, only thrust and gravity forces

will be considerpd.

Consider the reference frame in the following

sketch:

x 3

x 3

x 2

We have

m _ ="_ +m_ = "T -_ _ (200)
r

where the symbol ^ denotes a unit vector.

If f. (i = i, 2, 3) denote the gravitation components
t

along the three axes at the point (x 1, x2, x 3) and

the time is t we can assume the fi are known func-

tions oft, t o , tl, Ak_ x i(Where t O is the time of

departure, t 1 is the time of arrival and the A k

are parameters whose values change for different

problems). Now we can form the following func-
tions:

¢_i = %ri -_T .ti - fi = 0 (201)

_i + 3 = xi " Vi = 0 (202)

where again

tl "fl(t, t0. t 1. ^k' xi) (203)

tI = the direction cosines of the thrust vector

i = Io 2, 3.

Now noting that T ='c/] (where _ is the mass rate

of change) and utilizing the cosine identlty)we can
form the following functions:

C

:Vl-m ,_ti- fl =° (204)

doi+ 3 = _i - Vi = 0 (205)

_b7 = z:n + B = 0 (206)

3

I I = 0 (207)
2

_b8 = t i -

i=1

But _ Is positive and bounded (21 < _? < 52 ) to over-

come problems arising from the fact that the l.

are undefined when 2 = 0. However, we shall let

B 1 _40 to allow for unpowered flight, fl is assu._.ed

to be a monotonically increasing function of some

parameter of no physical significance [a = a (t)]

such that as a changes from -,o to =, _ changes
dB

from _1 to _2" Thus, _ = 0 for some large value

of I al • Conversely, the vanishing of dd-_a implies

either maximum or minimum thrust (Ref. 10).

These eleven functions oft (x I, V i, ti, sand

m) must be chosen in such a manner that the energy

(or characteristic velocity of the maneuver) is

minimized, subject to a particular set of boundary

oondltlons.

Now the bou.ndary cgndltlons for the problem

are xl0, xif° Xl0 and xlf. These conditions can

be stated as

gl = Xl0- d I • 0 (208)

gl+3 = xif-a I = 0 (209)

_+s " rio-dl = 0 (210)

_l+9 = Vlf-al = 0 (211)

where the subscripts 0 and f indicate the initial

and final values of x I and _ti, respectively, and

the d and a denote the points of departure and

arrival, respectively. If, in addition, the times
of departure and the time of transfer are speci-

fied, two additional boundary conditions are

_13 _ to - TO = 0 (212)
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614 = tf - Tf = 0 (213)

Now we introduce 8 Lagrangian multipliers

(k i) and form the fundamental function

8

F =7 kj cbj (214)

j=l

Using two sets of running indices (the summation
convention) the Euler-Lagrange equations can now

be written as:

_i+ ki+ 3 = 0 (i, k= l, 2, 3)

af k

_ +3+ kk _h-- =0
1

c_

(215)

(216)

(217)

c_ (218)
)'7 : 2--_ h it i

d_ c
(k 7 -_ kit i ) = 0 (219)

It follows

satisfy

_fk

and

from these equations that the _ must

(220)

2m

k i = c---_rksl I (221)

This latter equation states that the vector composed

of the three components h i (mutually orthogonal

and referred to by Lawden as the primer) is always

parallel to the thrust direction except in those

cases when B " 0 (i. e._ no thrust).

It further follows from Eq (219) that

d_BB . 0 (222)
da

or

c
k7 = _ ki I i (223)

The first alternative implies that _ _,0 or B = _u

or again that the thrust level is either zero or
maximum. If _ = 0 the vehicle coast in an orbit

under the influence of gravity alone and k 7 = con-

stant• k 8 -0andthe_lare not defined, lib "Bu,

the thrust is parallel to the primer as mentioned

previously and

i-1

m l-I

4
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The second alternative in conjunction with Eq (218)

yie ids

k7 = "_m )'7 (226)

which upon integration gives

constant

)'7 = m (227)

However

k I
t =

/_ki2

i=l

(228)

therefore

3

Z 2 =k i
C

i=l

(229)

This equation states that the primer vector has a
constant magnitude which is a contradiction to

earlier proofs of Lawden (Ref 8), Therefore• this

alternative is not possible, leaving the first alter-

native (Eq 222) as the only possibility.

Now since the %rf, t i and _ need only be piece-

wise continuous in the interval to < t < if• the

extre'mal arc may have corners. If such corners
exist, the Weierstrass-Erdman corner conditions
must be satisfied for the instants at which thrust

is applied or terminated. This implies that the

kj (j = i• 2• 3• 4, 5• 6•.7) must be continuous at

these times. But since)'[ =-)'i+3 (i = I• 2• 3)

the primer and its first derivative must be con-

tinuous. Now the corner condition must be

satisfied:

This equation requires that the following function
be continuous

which in turn requires that

C__m )'i II - )'7 _

be continuous since fl and V i are by definition con-

tinuous, and since the )'i were shown to be con-

tinuous for this class of problems (Eq 91). This

function is shown to be continuous in Ref 7.

Further it is shown that

kifi-ilVl+_] (Cki'l-)`7/ =constant

where the constant takes on the same value for

the entire minimum energy trajectory.

We now form another function, H, from the

constraints (Eqs 208 thrQugh 213) and the expression

for the characteristic velocity of the maneuver.



M 0

H = c log_i + n i (Xl0 - d i) +hi+ 3 (Xil - a i)

+ nl+ 6 (Vi0 - dl) + hi+ 9 (Vil- ai )

+_13 (t.0 - TO) +_14 (tl -TI) (231)

At this point it is noted that if the time of transfer
and the time of initiation constraints are removed.

'_13 and _14 are zero.

Now, from the generalized problem of Mayer,

the necessary conditions for the minimization of
H can be evaluated

Hi - hi+3, 0 =0 (232)

qi+6 - ki, 0 =0 (233)

_i+3 +ki+3, f = 0 (234)

qi+9 +kt, f =0 (235)

c = 0 (236)
_0 - k7, 0

- _ + X = 0 (237)

Mf 7, f

tf _f.

_ dt = 0 (238)
O ki OAk

"q13
• C

• +-- MO
+ _i xI0 + _i+6 Vi0 M 0

ffl e _fi- ki-_0 dt=O
O

(239)

C

St 8fl
- m

tf ki "_f dt 0 (240)
0

where the subscripts 0 and f refer to the initial

and final times for the orbital transfer. If the

time restraints are removed (to find the minimum

trajectory), _13 and _14 are zero and 'henergy

and _i+6 can be eliminated from Eq (239) and

_i+3 and _i+9 can be eliminated from Eq (111)

yielding

c SI 8flkl _ri - ii Vi - M___I _ tf ki t_o dt (241)

0

St tf af ik I _r I- i i V i - _flVlf" k I -_f dt (242)
0

The conditions of Eq 232 to Eq 242 must nec-
essarily be satisfied if the external arc is to be

optimum with respect to the energy requirement.
As is evident from the complexity of these ex-

presslons, exact solutions are not easily come

by, and general solutions to the optimum transfer
problem appear doomed. In fact, numerical

evaluation is generally necessary. This con-

clusion is strengthened when it is noted that the

absolute minimum energy maneuver is not the

only solution satisfying these conditions. Thus,

it is generally,, necessary to investigate each of
the resulting optimum solutions. However,

several conclus}ons can be drawn from this

work and that reported in Hcf. II.

(I) The optimum trajectory is composed of

maximum thrust arcs and coasting arcs.

(2) There are in general only 3 sub arcs in

the trajectory, 2 of which are thrust
arcs.

(3) The thrust arcs generally occur at the
two terminals.

To aid in the visualization of the transfer

problem and provide information which is of

value in the analysis of trajectory problems, the
general problem wG1 be reduced to one of pulse

transfer. This assumption is valid for most ma-

neuvers since the magnitude of the correction

(_ V) and the time of burning (t b) are generally

small compared to V 0 or V I and the time of ".rans-

fer, respectively. Under this assumption the

optimum trajectory connects the two specified

radii with impulses at either end.

Variations in all of the parameters during

thrust periods are assumed small. This infers

that since the primer vector and its derivatives
are continuous during initiation and termination

of a thrust phase, they are continuous across any

dull thrust arc. Thus, Eq 225 reduces to

A k 7 = 2, (243)

1

By considering the equations for _7 it can be
shown that Eq 223 implies that

_ _ ki 2 = I (244)
i= 1

at the beginning of the maneuver.

Now, since the k i are the direction ratios for the

thrust vector, this equation states that,for the
pulse case, they are equal to the direction cosines

of the impulse. The other constraints are

ki# i " -_ S + Xi fi (245)

t_
8f iC.

kif i -klV i= ---_ k i_ dt (246)

t o
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tf
• 8fi

ifi -  tvt = -
t o

dt (247)

A ifi-AiV i = constant (248)

where to and tf are not specified, and the con-

stant of Eq 248 is zero if the f. components are
l

time invariant and independent of t O and t 1.

Investigations of these equations are reported

in Ref. 7 for motion in Keplerian orbits. There-

fore, it is not deemed necessary to repeat this

material. Rather, conclusions pertaining to
these investigations will be presented for the

case of transfer between elliptic orbits.

(i)

(2)

If the orbits intersect, a single im-

pulse can be used to effect the maneu-

ver, and the conditions for optimum
transfer are satisfied. However, in

some cases this type of transfer is

not the absolute minimum energy
maneuver (i. e., minimum of the

minimum energy maneuvers}. For
this reason it is necessary to check

the energy requirements of each
solution satisfying the conditions for

minimum energy maneuvers.

If the orbits do not intersect, two im-

pulses are generally required (one at
each terminal) to effect the maneuver.

This conclusion must be modified in
certain classes of transfers as is

indicated in the analysis of 3 impulse
transfers.

(3) If the eccentricities of the two orbits

go to zero, the optimum mode of
transfer is via the well known Hohmann

ellipse which is tangent at perigee to

one circular orbit and tangent at apogee
to the other. This conclusion is also

modified for certain orbits for 3

impulse -transfer s.

(4)

(5)

If the eccentricities of the two orbits

are small, the line of apsides of the

minimum energy transfer ellipse

aligns itself in the approximate direction
of the line of apsides of the terminal

ellipse (initial or final) having the

greater eccentricity.

If the two terminal ellipses are not

coplanar, little in the way of a general
conclusion can be made. If, however,
the eccentricities of both the initial

and final orbits are small, the optimum
maneuver occurs when the transfer

orbit is tangent to the respective orbits

at the points of departure and arrival
and when the line of apsides of the
transfer orbit is the line of intersection

of the two orbital planes•

Utilizing the second of these ,.general rules',
numerical data may be generated relating the

parameters of the ,' optimum., transfer orbit•

However, because of the number of variables

involved, parametric studies generally prove

extremely lengthy in all but the most simple

cases. Among these simple cases is the analysis
of transfer between circular orbits. For this

reason and for the reason that many satellite
applications require circular orbits, certain of

the parameters will be discussed in the following

paragraphs.

Consider the following sketches depicting

coplanar and noncoplanar transfer.

A8

r 0

/ t

_0

The first of these sketches (showing transfer

between circular coplanar orbits} points up the

fact that the maneuver required must change

both the magnitude and the direction of the

velocity in the plane of transfer (both of the

effects have been discussed earlier}. Thus. it

is desired to show what types of orbits will be

required to minimize A Vtota 1 for various types

of transfer. The equation for this maneuver are:

A V T V 0
= + 0

I 2 V_cl cosy

+ r_ Ii+_2)2-2 Vf cos_rc2 _2
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=
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(I- r - r 2_-E ) _-0 "22- - _-E cos
A@

sin

V
V-

C I

r

Thus, if rf, r0, rf and -%0 are specified, the

quantity" a which will require the smallest value

of A V T can be determined. This was done

numerically in Ref 12. The results of these

computations are presented in Figs. 25, 26

and 27.

The second sketch shows the nonplanar

transfer between circular orbits. The equations

for this maneuver can be obtained in a simple

form if the second impulse alone is responsible

for altering the plane of motion. This assump-

tion will not always yield a true minimum energy

transfer; however, more rigorous attention to

detail leads to a very complex form of solution,

thus making such an approach less suited to pa-

rametric analyses of this nature.

A0

V0 _ "2 sin -Z--
-- cos (AO - yf) cos yfcl r

r 0 cos yf

I rv° 
vI _ - \v_J

= 2 - r

r0

f

V 2 =I[ s VDin _ 0 - 2 (v_:i)cosyf
L-

(sin 2 A O - sin 2 ( )1/2

2

+ (V_i_i ) sin,,0 _0 )

__i/_-

-sin&O] 1_

AV T AV I ÷ AV 2

_cl Vcl

These equations have also been solved numerically

to yield the smallest values of ix VT. The re-

sults of these studies are shown in Figs. 28,

29 and 30.

As was noted in the discussion of the optimum

trajectories, and again in the previous paragraph,

these solutions may not in general be the mini-

mum energy transfers. However, in all cases,

this solution will belong to the set of relative

minima.

2. Minimum Ener_ Transfers

The preceding discussions present the
variational formulation of the general maneuver

optimization procedure along with several con-
clusions derivable therefrom. The solution,

while rigorous, does not provide data which

would be of general interest due to tile fact that

a lengthy numerical evaluation is necessary to
evaluate each optimum solution. This being the

case, numerical data for the special case of

transfer between circular orbits was also

presented. However, two questions arise in

regard to the application of the ',rules" for ap-

proximate maneuver optimization. These

questions are:

(1) Under what condition is the two-pulse
transfer between circular orbits mini-

mum _nergy ?

(2) What is the minimum energy two-

impulse transfer between circular and

elliptic orbits ?

To answer the first of these questions con-

sider the three-impulse maneuver.

a. Three-pulse transfers between circular

orbits

Some of the orbits which have been proposed

for various satellite missions require large

amounts of energy for the ascent and injection
maneuvers because of their extreme altitudes,

Thus the three-impulse maneuver philosophy
can be divided into three classes:

r 2 >_ r 3 > r 1

r 3 >_ r 2 >_ r 1

r 3 > r I >_ r 2

where

r I = radius of the initial circular orbit

r 2 -- apogee radius of the first transfer
orbit (the intermediate radius)

r 3 = radius of the final circular orbit.

The transfers have all been assumed to be of

the 180 ° type since any other transfer would re-
quire more energy, and since the primary pur-

pose of this material is to show the existence of

three impulse optimum solutions.
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Case No. 1 (r 2> r 3 > r 1)

The velocity increment required for this case

is defined by the difference in the circular veloc-

ity and the perigee velocity for the first transfer

orbit, plus the difference in the apogee velocity
in the first and second transfer orbits, plus the

difference in the perigee velocity in the second

transfer orbit and the circular velocity in the

desired orbit; i.e.,

nv t --InVlF +l.',v21+F_v3P

= (Vpl - Vcl) + (Va2 - Val)

+ (Vp2 - Vc3)

r 2 + r I Vcl r 2 + r 3

This equation is presented graphically in Fig. 31.
The dashed curve denotes the Hohmann transfer.

Curves for all r3/r 1 originate at this single curve

since it is, in essence, the limit of the family

(i. e., r I = r3). The investigation must now be

turned to the problem of determining whether or

not any of the curves of this family eventually

diminish by an amount sufficient to result in a

AV t

value of_, less than that of the Hohmann
cl

transfer; (data for this type of transfer are

presented as Fig. 32).

This has been accomplished in Ref. 13, where,

AV t

the equation for _ is differentiated with re-

spect to r2/r 1 and the resultant equated to zero.

The complete solution thus found is:

r 1
3+--

r 3r__2__

rl r I _ 2r 1

3(1+_-_3)-2 J3

r 2 r 3

Now by using the constraint _'1 > _-1 > I, which

is a restatement of the condition assumed in form-

r 3
ulating this case, the value o_ -- i.e., r3*

rl , _ for

which the three-pulse approach is more efficient

is obtained as 15. 582 approximately.

r 3 r3*

For all _ _> rl--, the curves possess no re-

lattve maxima or minima and the curves con-

tinually decrease. Therefore, the three-pulse

method is always more efficient than the

r 3 r3*
Hohmann transfer. If II. 939 <-- < -- , the

r I r I

r3 A V t

solution for those values of rl for which

is less than that for the Hohmann transfer can

r 3
also be found. However, this value of -- is a

r 1

function of the altitude of the intermediate point

which must be placed above a critical altitude

greater than the altitude of either of the circular

r 3

orbits and approaching infinity as U approaches
r 3

11. 939. If-- < 11. 939, the Hohmann two-pulse
r 1

transfer is always the more economical approach.

Case No. 2 (r3 >_ r 2 >_ r I)

The velocity increment required for this

case is defined by the difference in circular

velocity at the first altitude and the perigee

velocity of the first transfer orbit, plus the

difference in the apogee velocity of the first

transfer orbit and the perigee velocity of the

second, plus the difference in the apogee velocity
of the second transfer orbit and the circular

velocity of the second circular orbit.

_ _rl 2r2 t

rl + r 2

Vcl II 2r3_c2 r2 + r3

When this equation is differentiated with re-

r 2
spect to the radius ratio --, it can once again

r 1

AV t

be shown that the quantity _ ks a single zero

derivative which for this case corresponds to a
maximum. Further it can be shown that the end

points of the curve correspond to the energy re-
quirement for the Hohmann transfer; therefore,

this mode of transfer is always less economical
than the Hohmann transfer.

Case No. 3 (r3 > r I >__r 2)

The velocity increment required for this

case is defined by the difference in the circular

velocity of the first orbit and the apogee velocity

of the first transfer orbit, plus the difference in
the perigee velocity in the second and first trans-

fer orbits, plus the difference in the circular

velocity in the final orbit and the apogee velocity
of the second transfer orbit; i.e.,
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: 7.Vrl r2_l _ 3 r2

__ Vr3+r2J

The curves obtained from this equation in-

crease for all r 2 < r I and have no maximum

value. Thus, this approach can never be as

efficient as the Hohmann transfer.

b. The two-pulse transfer between coplanar,

circular and elliptic orbits

This problem has been formulated in Refs.

14, 15 and 16 and, therefore, will only be sum-

marized in this presentation. Detailed proofs

of each step in the formulation are left to the

reader.

The problem is that of tra,nsferrin_ from one

terminal (defined by a scalar distance and a

velocity vector) to"another. If Vnl and Vrl are

the normal and radial components of velocity at

the first position and Vn2 and Vr2 the components

at the second point, the total velocity pulse re-

quired for the transfer (assuming two pulses) is

i .)V = (Vno - Vnl)" + (Vro - Vrl )2

where

+ I (Vnx - Vn2)2 + (Vrx - Vr2)2

Vro, Vno denote velocity components

following first pulse (that is,

at burnout)

denote velocity components just
Vrx' Vnx prior to second pulse.

Now assuming a conservative field, this equation

can be reduced to nondimensional form by using

the conservation of angular momentum

V n[(,V Vnl_ 2 {Vro Vrl_A

+i_rlVno Vn2_2 r_c1 Vr2_2

where

Vcl = circular speed at the distance r I

r I, r 2 = radial distances for the two term-
inals.

The problem is now to minimize this quantity
under the constraint that the radial velocities

are always real, i.e.,

2 2 2

)+ - 20

(This is a restatement of the conservation of

total energy)

where

r 1
0< --<I.

r 2

This minimization is accomplished as follows

since in the region of interest the function is

differ entiable.

-- =

_v-j'd,,, _.,.--o\._cl/

Justification for this step is shown in Ref. 15

when the function AV is shown to have a relative

Vcl V

minimum interior to the limits which _ can
v .cl

assume, i.e., 0 < V-_-cl < _ Performing

this differentiation and simplifying the resultant

must be compatible with one of the foD.owing

equations

rl Vn° Vn2 Vrx + (vrx 1_ r_r-3 v_i_ : v-_o_ _ \vT_ -

After combining terms and using the equations

for the partial derivatives obtained previously,

four pairs of expressions are obtained

Vrx - Vr2 _ Vr_

V - Vn2 _u_ 2r2

nx Vn 2 ± _-_)

Vro - Vrl Vrl

Vno - Vnl r I II_l ) 2r2Vnl ± _22 _ rl + r2
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When these four equations are divided into

two sets both with positive (or negative) radicals

Vno Vro

and solved for the values of _ and _cl' four

independent solutions are obtained (two for each

quadratic equation). The smallest of the four

solutions is then the minimum energy (two-pulse)
maneuver between the two terminals. This is the

basic approach and the solution to the problem

first formulated in Ref. 14. In general, it is not

possible to select the correct solution analytical-

ly; however, in particular cases this selection

is possible.

Investigation of these equations is now directed

toward the definition of the type of transfer which
is most efficient. First, it is obvious that un-

less the relative radial velocity approaches zero

at a given terminal, the condition defined is not
one of tangential transfer from the circular orbit

or arrival at apogee or perigee in the elliptic

orbit. Additional investigations reveal that for

nonintersecting circular and elliptic orbits, the

optimum path is tangent to the circular orbit but

is. not, in general, tangent to the elliptic orbit.
This fact is illustrated in the following sketch.

Numerical studies of the parameters of the
optimum path must, of course, be deferred until

such time as the orbits in question are completely

specified.

Tangential departure

J. THE EFFECTS OF FINITE BURNING TIME

The simplest means of evaluating the effects

of burning time on a maneuver in space is to
study the numerical simulation of a maneuver,

that is, to program a set of equations which

describes a maneuver and compare the results

to those predicted by an impulsive analysis.

This approach, however, is somewhat restrictive
because:

(i) The results of the analysis are valid

only in the neighborhood of the
maneuvers which were simulated.

(2) The results are strongly dependent

upon the manner in which the thrust

vector is controlled to yield the
desired maneuver.

(3) Unless large numbers of simulations

are made it is quite possible to over-

look the effects of particular variables
and trends in the results.

For these reasons, the approach taken here will
be to present an analytic approximation to the

equations of powered motion which will yield the
desired information in a form which exhibits

the necessary functional relationships. Consider

the following sketch.

Z

R

0

..y

R = r I - r 0

•_: _ ".1 ..

R = aT+r I _ r 0

where-aT = the thrust acceleration and where

the acceleration due to the mutual attraction of

the vehicles and the differences in the pertur-

bation accelerations have been neglected. But
the radial acceleration vector r can be de-

l

veloped in terms of r 0 to be

:l "./ ""

r I = r 0 + (R'V) r 0 + . . .

where

r 0 = acceleration due to the central force

"_ = aT+(R" V)_"0

But

"-" _ __p_ r0
r 0 = r3

Thus

R = aT r? _0 r0 3

Thus. for motion in a nearly circular orbit the

small displacements from the unperturbed
position are:

"x" = 3_2x+2_ _+a x (along radius)

"_ = -_ ;_+a (along velocity

Y of origin)

z = _ _ 2 z + a z (normal to plane)
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where _ is the angular rate of the origin about

the earth = r_. Now, following the method of

Darby (Ref 17), assume that the thrust is applied

as a series of small impulses of magnitude

AV = aAT

Thus each of the equations listed above can be

considered to be unperturbed for a time (i. e..
the thrust acceleration is zero) then at a small

time later the velociCy is changed and the process

repeated. Consider the equation for Z.

z'+ .2z =0

z = A sin_ (t - T) t 1< t < t 2

z = _A cos _ (t - T)

= B cos =j (t - T)

_" 1 = (B + a z T) cos _ (t - T) t 2 < t < t 3

dz = lim (_. I - _) = az cos _ (t- T) dT

&t 0 --0

Thus

z = a cos _ (t - T) dT 0
0 z

z ffi - a z sin_ (t - T) dT
_D

and similarly

Y = 0 Y

-- ax I - cos _ (t- T dT
0

ay 4 cos_ (t - T) - dT

.t _ax _ )3- 2 _J in (t - T dT
0

x = -- a x sin_(t - T) dT

- a i - cos_ (t - T
Y

t

= _ a cos _ (t - T) dT
J 0 x

dT

t

+ 2j0_ aysinw (t - T) dT

At this point the solution is no further progressed

than would have resulted if the functions x, y, z,

and _ had been expressed as inverse Laplace

transforms since the time history of a x, ay and a z

has not been specified. However, if it is assumed

that once firing is initiated the direction of the

thrust vector is unaltered, then, the acceleration

will vary with time according to

a (0)

a (t) - i - _n T

1 dm

where: r_n is the % change in mass, i.e., _-_0__ __

At this point the terms cos _(t - T) and sin _(t - T)

can be expanded tn a power series to yield

2 4 (t - T) 4cos _(t - T) = 1 - _ (t - T) 2 + ....

3 (t - T) 3 + ___
sin .(t - T) = _(t - T) - _ ----_--

Thus, since _ is a constant, the solution evolves

into the evaluation of integrals of the form

_t dT n = I, 9 3, 4, ---
T) n(t

l-rnT -"
0

If only two terms of each expansion are retained
(i. e. , n < 4) the results of Darby can be obtained

_tS :

tf (t - T) dT =___ E_t _ (1 _ r_t) [n
0 I rnT r:n

A
= .:-'T

m

t (t- T) 2 dT = 1 I( 11-m_ _ i-_o 2in
0

1

dT =_--_ 1-rnt)Sln 1-m-----_

3_ C-r_t + _ (r__t) 2- _ (rht) ffi

T)4 [dT = (I - rot)4 In I - fiat
m

and

4_ D-rnt +_- (l:nt) 2 -_ (l_t) 3 + -_ (l:nt) =_-_
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Z ----_

m

ax0 (n 1 2. B)= _-- 1-_t 2 m_

2ay0W(A w2 C)
+ m'Y- -6_--_

= ay0 _ 1 2 2 B_T n 1 -r_t "_-'2- _/

2axo_ (A_ w2 C)• r-- _m

As is done in Chapter VII (Rendezvous), the
set of definitions for A, B, C and D can be

simplified for the case where rhtma x (or n_t b)

is small compared to 1, for then

1

In_ = - In (I - rht)

ffi _t + (m._ + (m_ + ---

Thus

B =T + _,+ + --

Now since the motion of the origin of the

relative coordinates is known to move in a circle,

the position and velocity of the vehicle are known

as a function of time. In particular, they are

known at the end of burning. Thus, the effects

of the burning can be computed by comparing the

position and velocity vectors at thLs time with

those that would have resulted at the same time

if the maneuver had been impulsive. It is further

possible to determine the effect on the six orbital

elements since the position and velocity at the

end of burning determine these constants uniquely

via the equations of Chapter Ill.

The accuracy of this solution is limited or

restricted by four assumptions.

(1) The locus of the origin of coordinates

was assumed circular. This assumption

can of course be violated if the interval

of burning ts known by using the average

velocity corresponding to that interval

and correcting for the radial motion of

the origin. The resultant accuracy will
of course deteriorate.

(2) The vehicle is assumed to be at the

origin with zero velocity at time = 0.
Should these conditions not be satisf[ed,

however, suitable constants can be in-

troduced via the medium of the Laplace

transform. A similar solution employing

nonzero initial boundary conditions is

illustrated in Chapter VII (Rendezvous}.

(3) Only first-order terms were carried in

the expans[onof__r 1 - r 0. This assump-

tion effectively limits the allowable

deviation of the vehicle from the origin

of coordinates. Although no analysis of

this restriction will be made here, it is

noted that for single thrust periods

of no more than approximately 2 to 4% of

the orbital period and accelerations no

larger than 1 g, the total displacements

will be no more than 106 ft or 0.3 x 106 m.

For such displacements the accuracy of

the method is still adequate for hand

computations of first-order effects.

(4) Higher order terms in rnt were neglected

in the series for A, B, C and D. This

assumption is generally not serious due

to the rapid convergence of the series

for most values of this parameter. How-
ever, should this convergence problem
be such that additional terms would not

resolve the difficulty, the original
definition of these constants could be

utilized at the expense of simplicity in

the form.

Because of the manner in which the variables

are related and the large number of ways which

can be used to assess the effects of finite burning

times, parametric data based on these solutions

will not be provided. Rather it is suggested that

the computations be made as outlined and that the
results be compared to the unperturbed solution

utilizing the equations of Chapter HI or the dif-

ferential expression relating elemental errors
to position and velocity errors of Chapter VII.

Reference 17 does, however, present a set of

figures which relate to the time interval necessary

to "anticipate" a maneuver (or lead time) and the

difference in the magnitude of the ideal and actual

velocity increments as functions of specific im-

pulse, acceleration level, azimuth and flight path

angle. Because of the interest in these results

they are included.

Figures 33 and 34 show the approximately

linear manner in which the lead time varies with

both acceleration level and specific impulse. In
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both cases the curvature is the result of mass

changes and is less noticeable for the small
maneuvers.

Figures 35 and 36 show the effects of finite
burning time on the magnitude of the velocity
increment. These figures show the importance
of consideration of these effects in any com-
putations beyond those of a preliminary nature.

Though not shown in figures, several trends
can also be noted.

(I)

(2)

(3)

Finite burning times tend to result in
a smaller value of eccentricity for a

given mass fraction due largely to the
fact that work is generally done against

gravity forces.

These times tend to produce perigee
radii which are greater than their
impulse counterparts.

The change in inclination of the plane
will tend to be larger for the finite
burning time case than for the im-
pulse case.

K. IN-ORBIT PROPULSION SYSTEM

1. Propulsion System Requirements

Each of the maneuvers to be performed in
orbit (including injection into the various transfer
orbits) requires the application of corrective
impulses. The control of these impulses is the
determining factor in the evaluation of the utility
of the satellite in performing the particular func-
tion. In the navigation problem, the control
tolerances are specified (based upon some maxi-
mum allowable drift rate for the satellites with

respect to each other) and the subsystem require-
ments remain to be evaluated. In order to pro-

vide insight into these problems, the following
analysis of two different types of propulsion
control techniques has been made. These
techniques are:

(1) Monitored propulsive inputs.

(2) Monitored velocity increment.

The first of these techniques attempts to
control or at least compensate for variations in
each of the parameters contributing to the velocity
increment. Therefore, errors in each of the

parameters will be reflected directly in an error
in the velocity pulse. These effects may be
evaluated from the following equation (where the
loss due to finiteburning time is neglected):

AV = "go Isp In (I - _) (249)

= a (AV) At b + a (AV) A_,0--7-- P
P

a (Av) a (hV) z_w0
+ _ _Isp +

. _[ Atb +A_Vp

p

AW0 ]

- $ (1 - _) in (1 - _) --W_O_ ]

g0_ a,(T/W 0) goAtb + P
1 -_ 7

w
p

AI _ _ W 0
+ _2 &V_ go Isp

sp - --r-=-v-

This equation may be reduced to a more simple
form by employing data which is representative of
current technology for each of the control param-
eters. These data are:

&t b = 0. 030 sec

A_ = 0.005 'V
P P

sp
"T-'--- = 1/260

sp

Thus, for a specific impulse of 300 sec"

0. 966 T/W 0 0. 161 Isp ¢ _2 ,x V
6(/xV) = 1 - _ + I - _ +_

_(2 tbi &_Pi +_Pi ' +
+ &tbt AWo_

- Wo. -%--o/
i=l t

(251)

where AW 0 is the initialerror in the weight of the

vehicle. The last group of terms in this equation
(the summation) "issmall compared to the other

three for small or even moderately large incre-
ments; therefore, it may be neglected. The maxi-
mum magnitude of the remaining terms is pre-
sented in Fig. 37 as a function of the initial thrust-
to-weight ratio. As may be noted from this figure,
a system of this type would have difficulty in satis-
fying extreme accuracy requirements since to
limit a maximum error in the velocity increment

to less than 0.5 fps appears difficult:

If the velocity increment itself is monitored by
integrating the acceleration due to thrust, the
maximum error in the increment is a function only
of the error in the time of burning and that in the
integration itself. Assuming that the integrated

accelerometers are accurate to 1 part in 105 g

(which is the expected accuracy of future integrat-
ing accelerometers), the error in the integrated
acceleration should be accurate to approximately

1 part in 104 . Thus, the maximum error is

AV 0. 966 T/W 0
6 (Av) =----_ + (252)1lO" ¢..,

This equation has also been plotted and appears
as Fig. 38a. This figure shows that with control
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parameters as quoted the error in the velocity

pulse can be controlled to well within 0.5 fps for

thrust-weight ratios as high as 0.4 (Av < 100 fps).
Thus, the precision required for small corrections

can be obtained with this system. Since the error
plotted in this figure is the maximum expected,

this figure implies that the error will generally
be negligible. Figure 38b shows the effect of re-

ducing the error in the shutdown time on the

resultant velocity error. The parameter in this
T

figure (At b W0 ) is immediately recognizable

as the error in the total impulse.

2. Selection of Thrust Level and Propellants

While the detailed design of a propulsion sys-
tem is obviously beyond the scope of an effort of

this type, the general sizing and capabilities of

such a system can be established.

As shown in Eq (252), if the velocity increment

is to be controlled within 0.1 fps for increments

of less than 500 fps, the ratio of the error in the

impulse to the initial weight must be

TAtb _ AVII-_< 6(_v>-_ go

0.05 (1 - _) = 0.05<
- g go

< 0.0015 (for I = 300 sec)
- sp

From this it may be seen that (for reasonable

errors inthe shutdown time, say 0.05 sec) the

thrust-to-initial-weight ratio should be < 0.03.
It should be noted, however, that the thFust

levels should not be extremely low because of

the assumption made in the formulation of the

corrective maneuvers. For these reasons, an

initial thrust-to-weight ratio of say 0.01 should
be selected. If this ratio were maintained con-

stant, the thrust for successive corrections would

have to decrease according to the following equa-
tion.

T =0.01

m

i=l

However, since the vehicles in orbit will possess
fuel fractions of less than 2/3 in order to assure

reasonable payload capabilities, the thrust-to-

initial-weight ratio for each correction will always

be >0.03 which is the allowable upper limit. Thus,

no provision for thrust variation is necessary.

With thrust level thus established, the remain-

ing propulsion parameters can be evaluated once

the propellant characteristics are known. This

requires the selection of a propellant or propellant

combination capable of performing as required.

These considerations are beyond the scope of the
present effort and will not be discussed.

3. Nozzle Sizing

The second step in the analysis of the propul-

sion system is the sizing of the rocket motor al%d

nozzle. This will be accomplished through the

utilization of the theoretical relationships develop-
ed in gas dynamics and the experimental propulsion

systems data available.

The first assumption concerning the motor
which must be made pertains to the expansion

ratio which is feasible for the nozzle of a motor

operating in a vacuum. From this ratio and the

average value of the ratio of specific heats for the

products of combustion, it is possible to determine
the pressure ratio across the nozzle.

Pe Pe 'l

Pc
(253)

where y is the average value of the ratio of
specific heats of the products of combustion.

This equation is of the form

(Pe_ 2 (_ 3y- 1
Pe

\peg -C =0

The simplest solution to this equation is by
iteration. Newton's method will be utilized

because of convergence

f (x n)

Xn + 1 =Xn - _j_-

where, for this solution, X is the nth estimate
n

of Pe/Pc" This solution results in the following

equation

X =X
n+l n

3_'-1

X 2-X _ -C
n n

2y- 1
3_2X - -.__I X Y

n y n

If pc/Pc is assumed to be << I, the first trial of

Pe/Pc should be approximately the square root

of C.

From this point, it is possible to establish

the theoretical thrust coefficient of a gas with

the given value of the ratio of specific heats.

y+ 1 _-1

C F

+Pc Ae

Pc _ (254)
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Nowfrom the definition of the thrust coefficient

CF_ • T/AtP c

it is possible to size the nozzle for any selected

chamber pressure. First, however, it should
be noted tl_at the theoretical thrust coefficients

are approximately 5% higher than indicated from

experimental data, thus a better estimate of
these areas should account for this discrepancy.

The length of the nozzle may be obtained once

the equivalent value of the half angle of divergence
has been selected. Care must be exez'cised in
this selection to assure that the flow doesn't

separate from the nozzle, and that the nozzle is

not excessively long. The length is then obtained
as follows:

,)

A A, 2 rt t

but

r e = r t + L tan a

thus

L tan a)2 i_A e - A t = A t 1 + r-_

L -- (255)

-tan ff

These data define the general size of the

nozzle_ however, due to the fact that the optimum

nozzle is not conical but rather more nearly a

segment of a paraboloLd of revolution, they do not

define the optimum geometry. This refinement,
however, is not deemed necessary due to the fact

that the thrust levels are small.

4. Combustion Chamber Sizing

The combustion chamber to be fitted to the

nozzle, which has been described in terms of the

design parameters utilized, must now be investi-

gated. This may be clone through the investigation
of an additional parameter, the characteristic

chamber length (L*). This parameter, which

affects the cycle efficiency, is defined as the ratio
of the chamber volume to the nozzle throat area

and is a function of the oxidizer-to-fuel weight

ratio of the propellants utilized. Experimental
data must be utilized for this determination. One

such curve is presented in Fig. 39. The curve

presented here is an average value curve since
the data available were for slightly different pro-

pellant combinations operating in different test
facilities under different pressures. Nonetheless,
these data are sufficient to indicate a characteristic

chamber length of approximately 100 in. or greater

is recommendable. Similar data for any other

propellant combination thus yield the chamber
volumes:

V c _ L* A t

Before the motor can be sized, however, the

geometry of the combustion chamber must be

specified as either cylindrical or spherical.

I I
I

m

I

The former is particularly well suited for small

motors since production is greatly simplified;

the latter is a better design for larger motors

due principally to the fact that the surface area

exposed for heat transfer within the chamber is

minimized for a given volume. Both of these

chambers may be defined when a restriction is

placed on the ratio of the chamber-to-throat area

ratio of the cylindrical motor. This may in turn

be accomplished by investigating the pressure

drop t,hrough the chamber.

2
P.. I+YM

1tnj _

"tYl 1 +YM..2
in]

(256)

where the point I is a section passing through

the nozzle throat.

Y

m-s (257)

Thus

PT inj = F 1 + YM12 7 lf'l + ¥-2--- 1 M 2injj ]

L1+ Y M2inj] L,+ MI2J
If now Mini 2 is small compared to M12.

Y
T:'2-

2

PT inj = 1 +¥MI

This is also the ratio of the total pressure at the
throat of an ideal motor to that of a tubular motor.

This ratio may be related directly to the chamber-
to-throat area ratio from the continuity equation
as
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A1 = 1
Y+I

(258)

The graphical relationship between the total
pressures at the throat for tubular and ideal
motors and the chamber-to-throat area ratio

can thus be plotted in a figure similar to Fig. 40,
A

c

and the minimum ratio _ assessed. Once this

is done, the geometry of the chamber is:

* 4 3
V c =L A t =_r (spherical chamber)

/AA
-- _,,A-_t / AtL (cy!indrmal chamber)

Thus

, A t

L=L _--
c

Note is made that since, as is shown in Fig. 40,
A

c
should be equal to or greater than 3.0 and

since this ratio corresponds to an awkward

length-to-diameter ratio for the chamber (approxi-

mately 30), the length may be selected based on
other criteria.

5. Propellant Flow Rates

The propellant flow rates for the range of
chamber pressures can be obtained once the

variation in specific impulse for a given oxidizer-
to-fuel weight ratio is established. A review of

the abundance of data available will generally
reveal no well defined curve for this variation

due to differences in assumptions, fuel properties,

etc. ; therefore, an average curve such as

Fig. 41 must be utilized.

Now

Wp = T/Isp

and

1 Wp = +_r T/IspvVf --T-T_

_Vo = +'1--i"_ pr_v = _r T lisp

The propellants may be fed to the motor by any

of a number of types of pumps. However, two

schemes appear particularly attractive for small
thrusts. The first utilizes positive displacement

pump (which can be electrically driven), a hydrau-

lic accumulator and a pressure regulator to sup-
ply the propellants to the nozzle under a constant

pressure. This system can have one significant

advantage due to the fact that the utilization of

the accumulator makes it possible to employ a
very small pump which operates between the

corrections to keep the system charged. This

possibility results in a reduced peak power re-

quirement and a reduced pump-drive unit weight
without increasing the size of the accumulator

beyond allowable bounds. However, due to the

fact that the unit will be constantly pressurized,

the seal between the diaphragm and the propellant
will require special attention. The second tech-

nique utilizes a small vane-type pump of such

size as to make an accumulator unnecessary. The

accumulator could be used in this application as

it was in the other; however, the positive displace-

ment pump is more efficient for this type of opera-

tion. Note should be made at this point that a

positive propellant feed system is required to

assure flow to the pump in either case.

Pumps of both these types exist in the sizes
required though it is probable that special ma-

terials would be required because of the corro-
sive nature of the fluids.

The piston pumps are available in a variety

of sizes capable of providing exit pressures up

to approximately 3000 psia (20.7 x 106 newtons/
2

m at overall efficiencies varying from 85 to
92% (see sketch) for 500< p < 3000 (3.5 to

20.7 x 106 newtons/m2).

A 93 -

_- 89
C/

_ 87
al

85
I I 1 I i I

500 1000 1500 2000 2500 3000

| I I I
5 i0 15

Exit Pressure

psi

2O
newtons/m 2

The required power input for these pumps is

obtained from the following equations.

hp = 0. 000583 (psi) (gal/min) =

0. 00419 (psi) (lb/sec)

(de ns ity) (ore rall e ffic ie ncy)

Torque - (in. 3/rev) (psi)
2

rpm = (ib/min) ] (in. 3/rev) (ib/in. 3)

(volumetric efficiency)

L. MICRO-THRUST STUDY

The purpose of this study is to evaluate the

performance and applicability of micro-thrust
devices for small corrections in various orbital

parameters. For each specific correction ma-
neuver, a definite thrust orientation law (con-

sidering thrust magnitude, direction and duration)

exists. The analytical expressions derived from
the basic laws of celestial mechanics are obtained

and their applicability in case of micro-thrust

maneuvers investigated. Solutions in closed form

are obtained in several cases. Low thrust systems
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capable of producing these thrusts are discussed

conceptually as well as in detail in the literature.

For this reason, such data will not be presented

here.

1. Planar Study of Radial Circumferential and

Tangential Thrusts

Consider a set of equations of planar motion in

polar coordinates. If R is used as the sum of
radial accelerations and T as the sum of circum-

ferential accelerations, then

"O

- re" +-_ = Rr

r

(259)

ld (r2_FaY =T

It is noticed from Eqs (259) that angular momen-

tum is conserved only if there is no component of

the tangential thrust applied to the satellite.

Several special cases for thrusting in the two-

dimensional micro-thrust problem are discussed
in the literature. The most important results of

these solutions are summarized below and will
serve as an introduction to further discussions.

a. Radial thrust

This problem is treated in Refs. 18 through

20. The outline presented here follows basically

Ref. 20.

Equations (259) for the given case become

r -r;2+-% --R
r

(260)

2
: constantr =

where p is the semiparameter at the instant.

Now introducing nondimensional variables
defined in terms of the instantaneous orbital

elements.

R (acceleration compared to gravity at a)
R* = _a

r •

t*

r (distance in number of semimajor axes)=_

= t/a/_g a (time compared to the orbital
period)

By these substitutions, the Eqs (260) become

(neglecting e 2 terms)

"" 1 = R*
r*- r*()2 +r,- _

r'28 = 1

where differentiation is with respect to t*.

Now eliminating e in Eq (261) yields

(261)

"" 1 1

r*- _ + _ = R* (262)

Eq (262) can now be integrated assuming an

initially circular orbit at re- = I to yield

r,2 2 i
= r-T " _ + 2R* (r*- 1)- 1 (263)

From Eq (263), it is apparent that the radial veloc-
ity is zero at the radial distances where

- 92R* r* 3 (2R* + 1)r*" + 2r* - 1 = 0 (264)

or

r*= 1

and

I

r* - I ± |t - 8R='-" (265)
4R :_

From Eq (265), the fact is seen that the orbit
l

remains bounded for radial accelerations R* < _.
1

In the opposite case, R* >_, no real roots exist

in Eq (265), which indicates that large changes in

the planar elements are possible or that escape

from the earth' s gravitational field may occur if
a constant radial acceleration is applied for a

sufficiently long time period.

The condition for critical acceleration R* =

implies

1

2

i 1 _ i (r_R = R*g a : _r ga = g -2" = _ _, g
a

R 0 = radius of

go = surface gravity.

Sh, ce the micro-thrust devices have, in general,

a thrust level of I0 -4 to 10 -5 go" they are obviously

not adequate for large orbital changes employing

radial thrust applications. Nevertheless, as

shown in Ref. 19, such radial micro-thrust can be

used effectively to change the eccentricity of an

orbit.

If x I > x 2 > x 3 are the roots of Eq (264), the

solutions for a central angle and flight time as

functions of the radial distance are:

11} Radial inward thrust r R* < 0

e (I_) = _. (@,_-, k) + cF (@, k + const.

(266)
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r

t* (r*) = 2-A6Ix
"¢ L3

F(_, k)+ (xI - x3) E (_b,k)+

(xI -x 2)sin2_]

2%fl_k 2 sin2@J+ const

where

a = - x3k2

= x 2

_ k 2
5 = (x 2 x3)

• 2

r*= asm _ +8
2

csin #+I

- k 2 _2 R* -
7 : (x 2 x 3) (x 1 x 3)

.k 2 Xl - x 2

x I - x 3

F (¢, k), E (9, k) and _ (¢, _ , k) are elliptic

integrals of the first, second and third kind•

1
(2) Radial outward thrust, 0 < R* <

8 (r*) - 282
ya_ • (_b, _, k) + const.

t* (r*) -- 2____6 iXy 1 F (_o k)

- (x 1 - x 3) E (¢0 k)] + const.

whe re

= x 2 - x 3

= x3

r =a sin 2 (4_ +_)

6 = x2 " x 3

¥ = (x2 - x 3) _2R*(x 1

k 2 = x2 - x 3

x I - x 3

r* = asin 2 _b+

c sin z _ + I

- x 3)

667)

b. Circumferential thrust

This problem is also solved in Ref. 18, using

a series expansion method for large thrust ratios

and a simple first order approximation for the

very small thrust ratios. For circumferential

thrust, the equations of motion corresponding to

Eq (261) are

• 2 i
r* - r* e + --

r, 2

d (r,2 _ ) = r'T*
dt'*

= 0

(268)

where

T* = T/ga (269)

Eliminating 0 from Eqs (268),

d (r *3-r'* + r*) 1/2
dt--_ = r* T* (270)

for very small accelerations, r* 3 iz * << r'and

the approximate differential equation is

d I/2
-- r ':¢ = r* T* (271)
dr*

and

I
r* =

(1 - T* t*) 2 (272)

which is a good approximation.

e. Tangential thrust

The problem of tangential micro-thrust appli-

cation is treated in Refs. 21 through 23. It is

shown that the mass ratio is slightly smaller for
tangential than for circumferential micro-thrust

for all but circular orbits. The approximate

solution for radius is basically the same as Eq

(270), if the first order approximation in Tt* is

considered (T t = tangential acceleration):

r* _ 1
*

i-2Tt
(273)

where s = distance traversed by the rocket.

In Ref. 16 the altitude change per revolution

is given for the tangential micro-thrust as:

Ar = 4_r T * r (274)
rev t o

VI-58



and the number of revolutions to reach a certain

altitude is

I + rll
I ro Ar (275)

n = 8_ Tt* r_

If r I tends to infinity, this last equation tends
to

I

This equation states that the number of revolu-
tions to escape is inversely proportional to T _'.

The following sketches obtained from numerical

integration exhibit this behavior. Also shown is

the fact that the orbit grows in such a manner
that most of the revolutions approximate concen-

tric circular orbits. Thus a tangential thrust is a

very simple and accurate means of changing the
radius of a circular orbit.

Radii

I0 15

= 6.30 days

= 4.10 days

= 2.97 days

2O

Escape

T = 8.70 days

,%,,__ Escape

/ i \ Radii \
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2. The Equations of Motion

The preceding discussion (Eqs (259) through

(275)) showed the motion of the vehicle in polar
coordinates under the influence of a micro-thrust.

Unfortunately, this formulation is not always

satisfactory for presenting the most readily com-

prehended information pertaining to the micro-

thrust problem. For this reason, the equations

have been written in terms of osculating orbital

elements (i. e., the elements of the instantaneous

elliptic orbit resulting from thrust termination

at that time). This derivation is presented in

Cha _ter IV.

da 2
_ (e sin _ • R + Z T)

r

n

d-t- na tn 0 • R + (cos O + cos E) T

dt r cos (_* S )
-- = W
d t

d_p__, = r sin (9 + 0 )sin i wdt 2
na _i - •2

_- 2 sin s 2 dt

d* 2r e 2 d5
R+

dt na2 1+ _ dt

+ 2 I_- • 2 sin 2 i d[t

where: _ = _ +

1

i

1276)

and where R, T and _ are the components of ac-
celeration along the radius, the normal to the

radius in the plane in the general direction of

motion, and normal to the plane in the general

direction of north, respectively (see sketch).

Z

T

R

Y

t_j

X

Equations (276) are the basic Lagrange planetary

equations, from which special cases for a single

component of disturbing acceleration can be de-

rived. The resulting set of differential equations

for the orbital parameters can be programmed

for a digital computer, and the variations in the

orbit computed as a function of time.

The equations can, however, be integrated un-

der several conditions. The resulting equations

are presented in following paragraphs. It should

be noted, however, that, in certain cases, angular

momentum is not conserved for long periods of

time (tangential thrust) and that the integration

formulas give a good approximation for only a few
orbital revolutions.

a. Acceleration perpendicular to orbital plane

In %hls case both the radial and circumferential

components of the acceleration are zero (i. e.,

R = 0 and T ,,0), and the planetary equations for

the disturbing acceleration fbllow from EQS 276
simply as

= 2 sin 2
i

2

da _ de

dt dt = 0

di r cos (,_ +9)
- _ W

dt 2 2
na _i - e

dfl r sin (co + 0)

dt 2 -_-_e sna in i

d_._ dfl
dt dt W [ (277)

)

Define a nondimensional acceleration

W
W* : -- (278)

ga

where ga is the gravitations/ acceleration at a

distance corresponding to the semimaJor axis.

2 3
Since _ = n a , this acceleration is equal to

ga __ : 2: 2 n a
a

and (279 }

W = n2aW*

From the conservation of angular momentum,

dt 2
r

it follows, by using p = a(1 - e2), that

2
dt r

do na2

(28o)

Substituting Eqs (279) and (280) into Eqs (277):
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di

I d_.____.=
d_

i d_____-

]do

t d..L
" do

3
r cos(_ +e)

3
a (I - e 2)-

(i - e2) 2 cos (_+ e)

(i + e cos 9 )3

W* =

(i - e2) 2 sin (_ +_)

sin i (I + e cos _)3

2 [ d_
2 sin

2 d_

d_
do

W _k

(281)

Assuming the variation in i during a revolution

to be extremely small, such tha: sin i can be

considered essentially constant, these expressions

can be integrated with respect to the central angle
8.

First, expand the sines and cosines:

\

cos _ + cos0j sin 9 t

cos :? - sin_ sin

Substituting this into Eq (281),

Ai,,
Idi = W* (I - )

OS

90

(i + e cos @ eO

0

m I- dflA n
_2

8
0

2 2
(1 -e )

= W*
sini Is _ cos _ d_

in oJ

(1 + e cos 0)3

(282)

coso d@
(i ÷ecoso )3

(283)

' sin _ d_ _Iiio

+ cos w l(;y e :yS 0)3 JJ (284)

e o

Both equations can be integrated by the use of the
following integration formulas:

(l+e cos 0 )3 2e (l+ecoso e 0

S
)2 e2)3_ 2 1 + e cos 0(i +e cos e (i -

&+ ,anWrrr

I" _ , F-CTs n0
)2 " 2 3/2 L _'Te _ o

(i + e cos 8 (I -e )

- 2e tan- "l_e e tan _)I; 0

' cos 8 d0 = 1
(1 _- ecosa )3 sin 0

2(I -e 2) (I + e cos 6 )2

q

12c t cos_ _ _1 1 s_n
+ d _j = )2(l+ecos _ )2 2(i - e 2) (I ÷ e cos

(1 + 2 e 2) sin

2(I -e2) 2 (i + e cos _ )

/ r-

3e -i I./I- e

,_ 5 ," o tan- "_" e

(: -eD
0

(285)

After some simplification, the change in orbital

inclination caused by a constant micro-thrust

perpendicularly oriented to the orbital plane is

given by

Ai : I -2) [
_ )2 sin 0 cos2(I+e cos

II--_) sin _I + (i + 2e 2) sin 0 cos

3e cos _ -i
- tan

2 1/'2
(I -e )

2(1 + e cos O )

(_11_e k (rad/ rev)

0 o

(286)

and the change in the longitude of the ascending

node is given in the form

W'sin i _I (i - e2) )2 IsinO sin_A n

# 2(l+e cos e
k
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The integrals for the longitude of perigee (_)

and the mean longitude of epoch (_) are both equal
i

and are simply Eq (287) multiplied by 2 sin 2 _.

Of course, if i should be varying very rapidly,

then sin i could not be taken outside the integral

sign in Eq 1172), and a closed form solutlon would

be extremely difficult, if not Imposslble, to obtain.

b. Radial acceleration

Setting T : 0 and W = 0 in Lagrange, s plane-

tary equations, the following results are obtained:

da 2 e sin

--=
dt R

d._ee= I_ . e 2 sin 9

dt na

dt dq
- = 0

dt dt

d_ - e

dt nae

d_L = I

dt nn

R

cos e R

a 1+%'1 -e

(2a8)

At thls point it should be noted that for radial

acceleration there is no change in the orbital

inclination and in the longitude of the ascending

node. The orbital plane remains essentially fixed

in the inertial space, and only the shape and size

of the ellipse are altered.

Now introduce a nondimensional acceleration,

R
R* = -- . Thus as before

ga

R = n 2 a R* (289)

For the case of a radial acceleration, the

angular momentum is conserved. Thus

2
dt r

2 2do a n -e

and Eqs (288) become

dade

= 2ae (1 - e 2) sine

(1 +e cos e)2

(i - e2_stn 8
= R*

(I +e cos e)2

t 2 (I -2e22)5/2

d_ = - (i - e ) cos e R*
/6

e (i + e cos 8 )2

[(1 + e cos e )3

+ e (i- e2) 2 COS p 1)2 R=:(I + -e 2) (l+e cose 290)

. }

As for micro-thrust applications, the changes

in orbital parameters during one revolution are

extremely small; thus it is possible to assume

e = e0, a = a0, etc., and consider these variables

as "almost constants" in integrating Eqs 1290).

This assumption can he proven analytically for

certain eases, and it is a close first approximation

for all cases.

The change in semimajor axis during one
revolution in the orbit is found as

Aa _ _ da =
J

2 aeR * (I - e 2) _sine d_ = 2aR _ (i -e 2)

)2 (l + e cos _ )_(I + e cos 9

(291)

Similarly, the change in eccentricity for intervals

up to i revis

221 t_(1 -e )

= ; [fTeT_o,?) 0°

(292)

22 1Ae - de = R* (i - e ) " sin O de

(l+e cos 9 )2

If e = 0, the equation simplifies to

8

8
0

The variation in the longitude of the perigee

•-gain for intervals up to 1 rev is

I S---A_ m d_ = (I - e 2) R* cos e de

e (i + e cos e

or

R* F - sine
. 1 + cos e

- 2etan -I I -e tan
(l_e 8 I293)

t_

FinaLly, the change in the mean longitude _f epoch
for this same interval is

A,-, d, = - 2 (1 - e ) 131+ e cos e
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/
e (I - e2) 2 cos e d e

1+ - e (1+ e cos 0

Integrating and collecting terms,

&E = - R* .........
(I + e cos _ )2

• L-eF - e sin _ 1 - e
e cos _ + 2 tan -I tan

0

(294)

Equations (291), (292), (293) and (294) define

all the changes in orbital parameters for a con-

stant radial micro-thrust applied during a known

change in the central angle during 1 orbit.

c. Circumferential acceleration

Last, the case is considered for radial and

the normal components of the micro-thrust ac-

celeration equal to zero; i.e., only the component

in the orbital plane perpendicular to the radius

vector exists. Then, Eqs (276) reduce to

dt i 2n - e

de _ - e 2

d-_- = na (cos O + cos E) T

di di2
-- = -- = 0
dt dt

d"t'-- = nae sin e + T

dE e _
T

(295)

Once more, using a nondinaensional acceleration

T* = T substituting T n 2 T* into Eq (295)
g-_, ffi a

and remembering from the definition of semipa-
rameter that

E = (1 - e 2) a
r r

the following set of differential equations is ob-
tained :

do

d_9_
do

= 2r T* ffi 2p T*
i + e cos 0

e2)2 (cos e + cos E)(1 2
(I + e cos e )

= -- + T*
e

-- -- ! 2

d__ I+ _l÷e

t_ 1(296)

Here, also, the assumption is made that the

changes in orbital parameters during one revolution

are extremely small. Thus, Eqs (296) can be

integrated as follows, giving the change in semi-
maJ or axis

SAa _= da = 2 pT* 1 4- e cos 0

(297)
tan \ 1 +e cos _] 0

0
NOV,'

e + cos 9cos E -
1 * e cos

Therefore, the change in eccentricity becomes

Ae.f de = (1 _ e2)2 T, {f cos 9 da
(i + e cos e )2

(1 + e cos e (1 + e cos e

&e = (l-e2) 2 T* {(1 1 e2) 3/2

- 2 e tan" l_ee tan _)]

2

_I- e sin 9

1 I-e i -e2 sin 0

e2)3/2 )22 (I - (i + e cos e

(continued)
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- _" _ L (1+ e cos8)2\Vl + e 2 (1- e2)5t

 )lll

(298)

The change in the longitude of perigee is

(1 + • cose)2

and, thus,

T*(l_e ) I i e" " " (l+e _os _) + a(1 +e co8 e)_
e 80

(299)

"J(i+ e cose) ,j

The change in the mean longitude of epoch is

A( - f dE - T*e (1 - e ) d9
2 )21 + - e (I + e cos 8

(i + e cos 0 )3

and, finally,

At
I-e_-e 2 sin 02 e cos 8

+ 2 tan tan

e - sin 8 + 2 I + e cos 8
(1 + e cos e )2 1 - e

-4- . (continued)

+ 2 tan-I Ill_el- e tan _2/

- 2 tan \_ tan e0

(300)

d. Conclusions

The equations of the preceding discussions
are in the strictest sense only approximate, since
the coupling of the equations has been neglected.
However, if the interval of time is sufficiently
small, the results will be quite accurate. The
implication of this is that these expressions could
he used to evaluate secular changes and a program
written for an electronic computer to sum the
various contributions. This is indeed true. The

procedure has much to recommend it since the
time of computation will be much reduced and the
problems of numerical roundoff almost eliminated.
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SYMBOLS

Symbols used frequently in this chapter are
listed here.

a

A

semimajor axis (ft or m)

right ascension relative to vernal

equinox; homing vehicle_ ya_

relative to target orbit

b braking distance

eccentricity

eccentric anomaly (deg or rad)

thrust (lb or Newton's)

g gravitational acceleration :

GM_/r 2 (fps 2 or mps 2)

G Newton's Universal Constant of

Gravitation

h angular momentum (ft2/sec or

2
m /sec)

i

I
sp

J2

inclination to the equatorial plane

(deg or rad)

specific impulse (ib-sec/Ib)

coefficient of the potential func-

tion = I. 0823 x 10 -3

L latitude (deg or rad)

m

M

mass (slugs or kg)

mean anomaly (deg or rad)

M_

n

P

r, r, {"

mass of earth (slugs or kg)

number of revolutions; mean

motion I-_--_)

semilatus rectum (ft or m)

radial component of position,

velocity and acceleration

r a •

R e

R

R

S

r

P
apogee and perigee radii

equatorial radius of earth

radius of equivalent sphere for

earth; relative range

relative range rate (R " V)/R

relative position vector

t time

t b

t G

burning time; braking duration

rectilinear time to go (R/I_)
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T

u 0

V

V C, V R, V N

W 0

X, y, Z

Y

9

X

A

V

0

g

T

_o0

fl

5

ae

Subscripts

a

normalized position variable for

relative motion study = _0 t

deviation in radial velocity for

closure = -V R

velocity

velocity components in the
circumferential direction, radial

direction, and normal to the plane,

respectively

initial weight; deviation of velocity

from circularity in discussion of

relative motion = -V C

Cartesian components of position

nondimensional position parameter

for relative motion study (y/r)

azimuth relative to local north

flight path angle relative to local

horizontal

central angle from perigee to

instantaneous radius

nondimensional position parameter

for relative motion study (z/r)

longitude relative to prime meridian

earth's gravitation constant = GM

longitude of the satellite relative

to the ascending node

nondimensional position parameter
for relative motion study (x/r)

ratio of propellant mass to initial
vehicle mass

standard deviation

orbital period

argument of perigee; angular rate

angular rate in a circular orbit

change in argument of perigee per
revolution due to oblateness

right ascension of the ascending
node

change in flper revolution due to

oblateness

rotational rate of the earth 1 rev

each 86164.091 mean solar sec

apogee
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b

BO

f

h

L

n

P

bias

burnout

parameter in final orbit; final

homing

launch

low altitude orbit

node; nominal; running integer

perigee, proportional

1%

S

t

T

Y

0

<

along range vector

smoothing

value in transfer orbit; total; target

transverse

rotation about local vertical

initial, at time = 0

earth

moon
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A. INTRODUCTION

With the advent of large instrumented and

manned satellites, a requirement has been gen-

erated for bringing two or more vehicles together

in space. This maneuver is referred to as ren-

dezvous and is differentiated from intercept by
the fact that at the time of closure the velocity

vectors of the two vehicles must match. The

procedure for matching these position and veloc-

ity vectors is the subject of this chapter, and the
various phases of the maneuver will be studied in
detail.

Rendezvous can be broken into a series of

problems for the purposes of discussion, these

problems being:

(I} The gross maneuver.

(2) The terminal maneuver.

The gross maneuver refers to the powered and
coasting periods necessary to place the shuttle or

homing vehicle in the vicinity of the target satel-
lite. This maneuver can be performed in a num-

ber of ways, among them being:

(1) Rendezvous utilizing an intermediate
orbit.

(2) Direct ascent.

(a) Rendezvous compatible orbits.

(b) Direct ascent coupled with plane

change maneuvers.

The first of these techniques concerns itself with

the reduction of a three-dimensional problem to

one of two dimensions by the simple expedient of

launching into the plane of motion at the time the

launch site is in the plane. Time then passes un-

til the desired relative positions of the two vehi-

cles are obtained; then a planar transfer is initi-
ated.

A second approach (Rendezvous Compatible

Orbits) is an attempt to once again reduce the

problem to two dimensions but without utilizing
the intermediate or parking orbit. This is pos-

sible if the orbital elements of the target satel-

lite are judicially selected. Thus, the whole

philosophy is predicated on the premise that

rendezvous will be required at some future date

and the orbit of the target selected accordingly.

The third approach treats the problem as one of
three dimensions and allows for the expenditure of

propellant to turn the velocity vector at the time
the vehicle enters the desired plane. Each of

these approaches is investigated.

The terminal maneuver refers to the analysis

of the procedures necessary to reduce the rela-

tive position and velocity of the shuttle vehicle

with respect to the target to zero. Because the

distances involved are small, this portion of the

analysis is conducted utilizing the equations of
relative motion which are derived and discussed

in the text. The discussions pertain to the vari-

ous guidance schemes which can be employed
utilizing these equations and the behavior of the

vehicle under the influence of such a law. Materi-

al is also presented which relates the energy and

time of closure requirements for such motion,
and schemes for data smoothing during closure.

The chapter ends with a discussion of long time

closure trajectories, and an analysis of homing

phase errors.

B. THE GROSS MANEUVER

The analysis of closing with another vehicle

requires that the v_locity and radius vectors of

the target vehicle be matched. In the process,

however, it is generally required that as little

propellant as possible be expended for maneu-

vering (i. e., changing the 'orbital inclination or

nodal position}. Thus, while not always practical,
it is desirable that the analysis be reduced to the

problem of nearly noplanar orbital transfer. Two

schemes for defining the launch timing .:or nearly

cuplanar transfers and the general case of non-

coplanar transfers are presented in the following

paragraphs. These are:

(1) Launch utilizing parking orbits.

(2} Direct ascent to a rendezvous compat-

ible orbit.

(3) Direct ascent to orbit considering

planar adjustment.

The method of approach neglects the pertur-

bative accelerations due to the sun and moon and
assumes that the orbits are Keplerian ellipses

(making adjustments for the secular perturbations
due to the earth's oblateness}. Similarly, the

orbital decay rates in all orbits are assumed

negligible (thus the analysis is restricted to or-

bits of greater than 200-mi (320-kin) altitude or
to short times at lower altitudes). And finally,

the burning time of the rocket stages is assumed
to be short (making it possible to treat the velocity

increments obtainable from rocket stages as pul-

ses). Justification for the final assumption is

shown in Chapter VI.

1. Development of Equations To Be Utilized

The studies of orbital injection are directed to-

ward the evaluation of the parameters affecting or-

bital injection and the establishment of the sensor

accuracies and computer requirements necessary

to produce a desired orbit. For this analysis the
transfer orbit is assumed to be an ellipse, and the

final orbit either circular or elliptical. To assure

the maximum degree of flexibility, injection (i. e.,

the point at which the final trajectory is obtained}
is assumed to occur at a point corresponding to

the intersection of the transfer orbit and the de-

sired orbit rather than at apogee of the transfer

orbit or at the point of tangency of the two orbits.

However, it must be pointed out that both of these
methods of injection can also be obtained from the

generalized approach as outlined. All of the equa-
tions derived are reduced to the fewest variables

possible, thus maintaining simplicity both in the

analysis and in the application of the equations to
a vehicle-borne computer. While not absolutely

necessary, the equations are reduced to a non-
dimensional form, thus assuring that the analysis
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is capable of handling transfer between any two
elliptical orbits around any central body. The
following sketch defines a typical transfer and
points out the parameters which must be deter-
mined to define the maneuver.

V t -/

= 8t - ef (i)

_v 2 -vf 2 +vt 2 - 2vfv t cos a_ (3)

5V=g01spln _-_--_g ) glsp _ sinY
FIW 0

e = cos - 1

-1
= COS

Ira ]
-VT-+

-I

= ra/r
c°s-I / r r /r

a p

(41

(5)

(6)

l,.rr's
_ -1 L\rpr _ ra'r J (7)

The determination of the radius of intercept is
in reality a fairly complex solution since the exact
size, shape and orientation of the transfer orbit
are not known until the vehicle has been tracked for
some interval of time. However, since the actual

orbit differs but little from the predicted orbit
and since there is an interval of time during coast
when tracking data may be processed, it seems

reasonable to assume that the actual transfer or-
bit is defined. Now, since the required informa-
tion is available, the radius of interception may be
evaluated as follows.

Pt

r • 1 + e t cos 8t

Pf Pf

-I +el cos ef = i +ef cos (o t - _) (8)

Therefore:

r-o-_ + + - cos (et-,_) •

rat L\rpt \rpt

and:

r _ + + kpl_-t - cos 8t (10)

The solution for e t from Eq (9) is somewhat

involved, and the type of solution may well de-
pend upon the material available for the solution
and the number of times that the equation must
be solved. If a small digital computer in the
vehicle is programmed to handle the solution,
an iterative solution would probably be the sim-
plest. A direct solution may also be obtained for

et after manipulation of the terms in Eq (9);this

direct solution is to be preferred for accuracy for

manual evaluations of 8t even though the form of

the equation is complex.

cos Ot = - A ± _B+A

A= CI+--_C

B= I'D2

C= ,x-yz cos
yz sin,

D = (x.+2)- z (7+2)
yz sin _

x = --ra---_"- 1
r

pt

r_
y=-- -1

z ,= ra__!

ra_ ._

(11)

(12)

(13)
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Timing for the injection pulse can be obtained

by matching tracking data for the radius to the sat-

elllte with the value of the intercept radius as

calculated, or the pulse may be initiated at some

specified time corresponding to the time of flight

from cutoff to the intercept radius. This time of

flight may be computed by subtracting the time of

flight from perigee to the cutoff radius from that

corresponding to travel from perigee to the inter-

cept radius. The time of flight from perigee may
be determined as follows.

This approach is entirely general so that the

case of tangency of the two orbits can also be
evaluated. That case, however, provides another

restraint (the flight path angle identity).

cos ¥ r-- r_/r .
aI pi

= r /r
at pt

at + -

CTat + I) -rat +raf

rta n ffi ra f rat

rpt rpf

(14)

The equations of this section have been plotted

in nomographtc form and are presented in Chap-
ter III. The accuracy afforded by these figures is

inadequate for most detailed analyses: however,

preliminary calculations are greatly simplified

by their use.

2. Launch Utilizin_ the Intermediate Orbit

a. Formulation

Since the majority of the missions envisioned

for satellites suggest orbits inclined at greater

than 30* to the equator and since In-orblt maneu-

vers are not necessary for these orbits, the first

approach to be analyzed is that which requires

accurate control of the time and azimuth of launch

and which utilizes the intermediate orbit.

Kepler's equation defines the time the vehicle
coasts in the transfer orbit. This time plus the
total time in the intermediate orbit, the time of

ascent to the intermediate orbit, and the time from

perigee to the point of rendezvous in the target
orbit, defines the time (in the target orbit) from

perigee to the position of the target vehicle at the
time of launch. This time in turn defines the

position of the vehicle in its orbit. However, this

reverse solution of Kepler's equation is trans-

cendental and requires an independent investigation.

The time from perigee in the final orbit at the

time of launch can be computed as

tlf = t2f -t t - nvi-tascent (15)

where

t2f "2_ [E2f - ef sin E2f ]

E2f = 2tan -1 I r_ tan _1

e2f - e t - t

Now t If (2 _)

Elf - ef sin E 1 = 7f _Mlf (lS)

This equation can be solveo using any of a num-

ber of iterative processes; however, Newton's

method appears to possess best convergence

properties.

f (Z k)

Ek. I • E k -

f (Ek) • E k - e sin E k - M 1

f (E k) • I - e cos E k

and

e [sinEk- EkCOS Ek] +M

Ek+l = I - e cos E k
(17)

Th/s series has been shown to converge for all

E k and to converge very rapidly if a reasonable es-

timate of E k is utilized. Pursuing this thought fur-

ther, it may be seen that Kepler _s equation can be

divided into two terms, each of which defines a line.

y =slnE

1

Y= -'6- (E -M)

The intersection of these lines is the required

solution. Tkts graphical solution, presented in

Fig. 1, would be employed as the first estimate

of E. (The nomogram of Kepler's equation,
Chapter HI, may also be utilized. ) Once this solu-

tion converges for E l, the initial position of the

target vehicle may be evaluated.

81f • 2 tan -1 r]C--_- _ " tan -_J (18)
uV p*
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To illustrate the power of this method, consider

the following sample problem:

Sample problem

M=I.0

e -0.8

Ek" 1.29

0.3 [0.980823 - 1.29 (0.277174)]+ 1.0
Ek+l " "- 1.0 - 0.3 (0.277174)

" 1.288087

. 0.3 [0.980294 - 1.288087 (0.2789915]+ 1.0
Ek+2 -- 1.0 - 0.3 (0.278991)

= I. 288088

These equations only partially define the ren-

dezvous problem since only the position of the

target vehicle and the corresponding time of launch

are evaluated. Consideration must now be given

to the position of the launch site. This can be

accomplished with spherical trigonometry; how-

ever, several quantities, shown in the following

sketch must be defined before proceeding.

Reference d

Projection
of the perigee
radius in the
equatorial plane

reference

The angle from the ascending node to the ra-
dius at which transfer into the final orbit occurs

(projected along the equator of a nonrotating
earth) is

As -, =tan-I [cos i tan (cot+ Of)] (19)

where A s is the right ascension of the satellite at

the point of injection into the final orbit, and the

latitude of the point of injection is

Ls-sin-I [sin it sin (cot + StS] (20)

Similarly, the angle from the node to the peri-

gee of the transfer orbit and the latitude of peri-

gee may be computed as

Ap -, -tan -I [cos it tan _t] (21)

Lp -sin -I [sin it sin _t] (22)

Continuing, the position of the required point

for injection into the intermediate orbit is

ABO-f -tan -I [cos it tan (cot- ¢)] (23)

LBO-sin -I [sin it sin (cot - ¢)] (245

The last remaining step is to define the posi-
tion of the launch site and the azimuth of burnout.

This problem requires the value of the ground

range attained in ascent to the low altitude orbit

over a nonrotattng earth (x).

LL'Sin -I [sin it sin _t -C-R-)] (285
e

roosit]
_]L " sin-i L (27)

If the assumption is made that the distance and

time spent during ascent to the point of burnout
are small, the azimuth in which the vehicle must

be fired can be computed. This solution follows

from the laws of sines and cosines and Eq (27).

7
90 - 8'

i2 R cos L
e

VBO 2 " VBO2+ (£Ie R e cos LL)2

-2 VBOI2e R cos L sin

= VBO 2 + (t_e R e cos LL)2 - 2 VBOfe R cos i

cos _' = VBO cos _ [VBo 2+ (fie Re cos LL )2

i

i] -1/2- 2 VBO Qe Re cos (28)

The uncorrected launch azimuth (i.e., Eq (27)

is presenteu in Fig. 2. The value of azimuth ob-

tained in this manner is quite close to the corrected

value since the velocity component produced by

the earth's rotation is only 1524 cos Lfps or 465

cos L raps. The magnitude of this vector is, thus,

approximately one-tenth of the magnitude of the

burnout velocity for most orbital shots with a re-

sultant effect on the cosine of the azimuth between

0.5% and 10% depending on the orbital inclination.
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Equations (25) through (28) define the position

of the required launch slte and the azimuth of

launch both in space and relative to the launch

site. However, if a particular launch site is to

be utilized, consideration must he given to the

problem of matching the desired time of launch

with the time at which the launch slte crosses the

desired orbital plane.

tL =t I

where

tL = the time of launch relative to the refer-
ence direction in the plane of the equator.

t I = the time from perigee in the final orbit
to the vehicle at the launch of the shuttle.

Now

tL -

where

t* =

t2f +t*-tt-tascent-nr L _ +_-]

(20)

time required by the satellite to travel

from the projection of the perigee radius

in the equatorial plane to the reference
direction (all times are thus related to

a common base).

number of revolutions in intermediate

orbit.

oblateness correction to orbital period.

Numerical data can be generated for the time
of ascent once it is known what the intermediate

orbit will be and to what extent the trajectory

from Launch to burnout is shaped by the guidance
law. It should be noted that since the selection

of an intermediate orbit wiU depend on the dura-

tion of tascent, iteration for this quantity will be

necessary.

This tlme must be matched with the following#

ff no error in the orbital plane is permissible.

(_2_,n {_£)-A L ± sin -I ¢_+ 6_r

tL " n (30)
e

where 5 = 1 for southerly launches, 0 otherwise.

_£ = secular regression rate in the intermediate

-3_ J2 cos i
orbit = • 0 < i < 180 °2

(l-e2) 2

and where the plus value of sin-I If
is used

for northerly launches and the minus for southerly
launches.

It should be noted at this point that range

safety restrictions at both AMR and PMR current-
ly restrict all launches to those in a southerly

direction. For this reason only southerly launches

are given attention, and therefore, only the nega-

tive sign is utilized. For convenience, the term

will also be combined with the angle G.

Since the solution of Eqs (29) and (30) mayre-
quire that the satellite remain in the low altitude

orbit for a long period, tt may be possible (if small
errors in the nodal position are acceptable) to
Launch at a time when the desired launch site is

arbitrarily close to the desired plane. This is
done in the following manner.

t L -

<

/tan LL_

+.a)-., ,- sln-Ikrirr
fl

e

allowable nodal error

e

(31)

Since rendezvous cannot occur until this error has

been removed, maneuvering is implied. Equation

(31) thus introduces the concept of launch %[me

tolerance (or launch windows as the subject is

sometimes called) since

&t L = _ •
e

It should be noted that the perturbing influence

of the earth' s oblateness has been included only

in those terms involving the low attitude circular

orbit. This assumption is reasonable, though not
precise, ff the final and in_trial orbits differ mark-

edly in size. However, if more accuracy is de-

sired, or if the various orbits are essentially the

same size, the following equations should be em-

ployed.

O(_) C_ )t L * t2f +t*+ A_-f - t t + A_-t

-n.L [i +_--]-tascent (32)

- AL-sin-1 Lt_va-_--/t _ (33)

Because of the large number of variables, it

is impossible to obtain an intuitive feel for the
manner in which the time in the intermediate or-

bit varies. However, if certain restrictions are

made, a feel can be obtained for certain classes
of orbits. If it is assumed that the orbits of

interest are both circular and that the transfer

is via the Hohmann ellipse, and if it is further
assumed that perturbations are neglected be-

cause of plotting accuracy, then

t2f + t* _'t tascent
n =

"rL 2_L eL

{tan LL_
(f_- AL) - sln -I \t-ra-r-/

n
e XL (continued)
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,,t2f + t* i a_t- tascent

f_e "_ L

(34)

Since the equation generally results in a nega-

tive value of tL, the significance of such values

must be discussed. Negative times simply imply

that the shuttle vehicle is launched at a time prior

to the beginning of the time record_ negative times

can be avoided by increasing t2f by some integer

of the orbital period (1, 2, 3, ---).

b. Sample problem

The rendezvous problem, exclusive of the

final closure discussion, has been presented in

the preceding sections. A numerical check of

the flexibility, accuracy and utilization of the

approach is in order. For the purposes of il-

lustration, a target orbit of a 24-hr period is se-

lected. In addition it is assumed that the latitude

of the point of injection into the transfer orbit is

the latitude of the launch site. The numerical

analysis follows.

raf = 42,400 stat mira 68,300 km

rpf = I0,000 stat mi-_ 27,900 krn

ef = 0.61832

L 1 = 28.5oN

L 2 = 28.5 ° N

if " t t = 70 °

_f = -77.46 °

rpt = 4500 stat mi= 7250 km

Elitptlcal orbits are tangent'at potnt of rendez-

vous. In addition it is assumed that the type of
transfer is specLfted and the time of ascent ts
known.

tascent - 1000 sec

sin L 2

sin (_ + 6) "s--_

(_ + e2)24 = 30,52"

(02_ 4 - 107.98"

= + + - C'OS

rtan 24

rta n = 20,000 stat mi_32,200 tan

rat =

rtan

(ra)24

rtan

r

pt

_ _,'pl24

(r 24
1

+--

rpt

= 23,623 stat mi = 38,000 km

rat
= 5. 24956

r
pt

rat

e t = _r_Pt

rat
--+1

rpt

= 0. 67998

2rat _rat 1/? +
\rpt

cos et = =-0, S1474
rat

rpt

_t = 156. 17 °

@ = @t - _24 = 48. 19"

_t = _24 -4 = - 125.65"

rat+rpt ,, 7. 42447x 107 ft = 22,600 km
at =-- 2

', ,, 5391.75 sec/rad
t

Et=2tan- 1 [_r_ tan %] " 2. 24059 rad
LV rat

• [- ]tt = _ t + et sin E t = 9206.6 sec

E24=2tan'l[CrrPa tan _] -87.60"

= 1. 17978 rad

v24

(t2)24 =

= 8339.5 sec

T I • 2_ ¢_--

E24 - e24 sin E24 ]

t L =(t2)24 -t t -tascent - n v!

Since L L = L2, tL may be written as

t L = - 1867.1 - 6133.2 n t

(neglecting perturbations)
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Thislaunchtime must be made to correspond

with that of the launch point as it crosses the or-

bltal plane. This equation, which has all times

referenced to the projection of the perigee radius

on the equatorial plane, is as follows.

tL = f_
e

(,q - AL ) - 0.19897
m

0.729214 x 10 -4

• (_2- AL) =-n' (0.44724)+0.08282

This equation is immediately recognizable as

that of a straight line with a slope of -0. 44724

and an ordinate intercept of 0.06-°82 radian. This

equation can be solved for integral values of n'

to determine if the desired trajectory can be ob-

tained with the given bits of data. It is obvious

that only a few launch sites provide the required
timing considerations t'or thls problem. How-

ever, if the time in the low altitude or0it is al-

lowed to change by varying the period of this or-

bit, different results are obtained. This proce-

dure was repeated and the altitude of the circular

orbit allowed to vary. The results of these cal-

culations are presented in Fig. 3. This figure
shows the limitations on the altitude of the low-

altitude orbit. It must be noted that these curves

are not, in reality, continuous and that only the

points of intersection of vertical lines for integral

numbers of revolutions, and the horizontal lines

for constant launch site latitude provide the re-

quired solution.

i = 70 °

L L = 28.5 °

L 2 = 28.5 °

(ra) = 42,400 star mi = 68,300 km
24

(rp)24 = 10,00O star mi = 27,900 km

tascent = 1000 sec

No perturbations

The effects of perturbation were not included

in this analysis primarily because the magnitude

is such that they are rounded off in plotting.
However, for comparison purposes these calcu-
lations were made for the assumption that all of

the influences are encountered in the low-altitude

orbit. This assumption is believed to be reason-
able because the time in the low-altitude orbit

will probably be large compared to that in the
transfer orbit, and the effects of the earth's

oblateness fall off as the square of the semi-
latus rectum. However, by using Chapter IV, it

is possible to account for the cyclic perturbations
occurring within fractions of revolutions, thus

making it possible to account for the perturbing
influence of the earth' s oblateness for the entire

time of flight.

The result of these computations is a slightly

different slope for the lines of Fig. 3. The mag-
nitude of this difference is approximately 0. 0027

rad/rev and the maximum error produced is 0. 046

rad (or 2.6 deg). Although this error is small

it should not be neglected since it is capable of

producing a linear displacement of approximately

900 stat mi or 1450 km at a radius of 20,000 star

mi or 32,200 kin.

3. Compatible Orbits

If rendezvous is seen as a requirement prior

to the time the target vehicle is launched, its or-

bit can be selected in such a manner that the cor-

rect relative position between the launch site and

the satellite exists at a prescribed time. The se-

lection of such an orbit enables the launch vehicle

to utilize a direct ascent trajectory requiring a

minimum amount of fuei and guidance. The orbits

which satisfy these conditions are referred to as

compatible orbits and the periods of such orbits

are defined as follows.

&tI. = Atascent + n": + _

tan L L l_

(_0 + nf2)- A L1 ± sin -1 ktan-_ ] +2m_

AtL = _e

_l0 AL2 sln- i Ctan LL21_ + \_/
_e

(36)

where

the subscripts i and 2 refer to the station

from which the first and second satellites were

launched in a southerly direction.

The term&v is an approximate correction to

the orbital period over a spherical earth to account

for the earth's equatorial bulge.

Equations (35) and {36) can be solved for ti_e or-

bital period required to produce rendezvous from
a given pair of launch sites after a given interval
of time• The result is

2m-+(AL2 -A L1 ) :t: sin-i \t--'ta-'a-n--l---/(tanLL1 _)

i + &,r 1nile '1"

tan LL2 _ At + n_ (37)
+;sm-l\_/ - % aso

no°[,+v]
To this point no constraints are placed on the

values which n can assume. This is accomplished

by referring to the spherical triangle shown below.

2_ - kR- _
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s_-i/s_ u_

For northerly launches from the northern hemis-

phere, n must be of the form

n =p- (¢I " CR )

and for southerly launches, n must be of the form

n= p+(_i- _R)

where p is an arbitrary integer and the sub-

scripts i and R refer to the points of injection

and rendezvous, respectively. As may be noted,

the solution for 5 is ambiguous unless an additional

parameter is specified. The most readily avail-

able bit of information is the quadrant (relative to

some point in the orbit) of ¢ or of the related

angle k. This information is known for any de-
sired case.

Now, tf one simplifying assumption is made,
Eq (37) can be reduced to a form which is appli-

cable for the case of a single launch site (i. e.,

LLI = LL2; ALl - AL2 )

2mn - fl At + n_

e asc (38)

n n e + %.._V

Becau3e of the interdependenue ot _ ands', an

iterative solution to this problem is generally
required. However, because $%is very small,

it is generally sufficient to use the value of %
obtained, neglecting perturbations,to estimate the

value of _ and then to correct the orbital period.

Figures 4 and 5 show the variation in the

required semimajor axis for different values of

him,neglecting perturbations and variations in

the ascent trajectories. The auxiliary scale

adjacent to the scale for semimaJor axis presents
the altitude of a circular orbit of the same period.

Table I (obtained from Ref. 1) presents the
set of orbits obtainable from a launch site at

28. S ° (AMR) which makes 15 revolutions per
effective earth t s rotation as a function of the

time interval between easterly launches. The
effective rotation of the earth is defined as the

time or angular interval between successive

passes of a point on earth through a given point

In the regressing orbital pinkie (t. e., t = _.
e

Fifteen orbital periods per effective earth I s rota-

tion are selected for this presentation because
for smaller integers (i.e., 14, 13, etc. ), most

of the orbits lie In the Van Allen radiation belts,

thus making them unsuitable for many satellite

missions, and because the only lower orbit suit-
able (i. e., 16 periods per effective rotation) pre-

sents problems due to the extremely short life-
time. Reference 1 also has this to say about the
interval between the launches: "The selection of

the value of N (the number of revolutions between

launches) depends on the specific purpose of the
space station. If the orbital inclination of the

satellite must be large, a value of N approaching
7 is required. Orbits of this type have the ad-

ditional advantage that the two possible launch

times during each effective earth's revolution are

more nearly equispaced; but as N approaches l,

the time spacing between the two possible launches

becomes very unequal. "

Swanson and Petersen have extended the work

published in Ref. 1. This work is presented be-

low as it appeared in Refs 2 and 3.

For an orbital period corresponding to N revo-
lutions every m earth revolutions to make a south-

going pass over the launch base n revolutions after

the north-going pass, the following relation must
be satisfied.

Ion = + M+ F -_-

(33)

where M = integer number of earth revolutions

completed between the north-going and south-

going pass. For every value of n there is only

one value of orbit inclination, i, that will satisfy

the equation. No correction for finite burning
time is included.

-i
v = tan [tan _ oos i]

= sin -1 [sin L/sin i]

L = latitude of launch base

i = inclination of orbit plane

North'going-_,,.,,.-----r_ _- South-going pass

-,+.......A__ending",-n°de-__1_ _-__- _- l%tit_%%-- -
base

Earth equator

The relationship between n and N/m is presented

in Figs. 6a, b, c, d and e.

The preceding figures neglect the effect of
finite burning time on the problem. These effects

can be observed from the following sketch and

Figs. 7a and b.

These figures which present data for Canaveral

launches show the effect of both burning time and
the number n on the selection of orbital inclination.
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L =latitudeof launchbase i : orbit inclination
o#*=burningtimemeasuredin degreesoftravel

of the target satellite. This angle is assumed

to be a reasonably small quantity

_--Ascent

Launch site _ \trajectory

atlaunch ._.)_______

if I---- \ l' ---'--J, \ ,i \ /,,

at launch site parallel

4. Direct Launch

This technique can be analyzed by referring to
the development for the intermediate orbit case

= t* + _,,'{t2f_ - tBO - tascent (40)t L

l_ - A ± sin-1 (.tan L._

tL L \t--_'_Y-] + 'A _.: .q -fl---- (41)
e e

The significance of all terms in these equations

with the exception of the AP. term has been dis-

cussed in previous paragraphs. The significance

of the final term and the energy requirements can
be obtained from the following discussion.

(A L - _) : v

, (_tan / tan, 
An = tan-1 ksl--f-K--_] - tan-1 _sin (v + Aa)]

(42)

ff _ _"_ L_X

Reference
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This angle (At I ) is the projection of the actual

change in yaw on the earth. The actual change may

be seen from the following sketch to be

A,] = 2 sin -I (cos '¢sin_)t (43)

/', )b..

/ Z i/

Now the velocity increment to produce this change
is

AV
n

An
: 2 V t sin

: 2 V t coS Yt sin

: 2 V t cos _'t sin ½ [tan-I \sln_t--an-L_v/

- tan-I (_ tan L )] (44)ksin (v + A f2)

If the change in yaw is small, and if the correction

is made near apogee where the velocity V t is mini-

mum (just prior to injection into the final orbit),

the relationship between the velocity increment and

the change in node is

AV

n (_tan L._
V - tan- 1 \sl--]-ff_] - tan- 1

a
( tan L A fl))
_sin (v

(45)

AV

The significance of negative values of -_ is
a

simply that the sign of At2 is negative or that the
inclination of the transfer orbit is less than that

of the desired orbit. A graphical solution to this

equation is presented as Fig. 8

This nodal and inclination correction results

in a tolerance in the time of launch assuming that

some specified amount of propellant is available

for making such a correction.

A_

at L : _ (46)
e

tan L
sin (v + Af2) :

(47)

J



sin (v + A_) = sin v cos &_+sin A_COS V

sin v + At2 COS v

COS v tan

tan L

[tan-I {tan U._ _ _I

- tan v;

{48)

and

tan L - sin v tan [tan-I k/tanslnLh - _v-aVlp]

&t L =

C4u)
As an example, consider the case

L = 30 °

v = (A L -f2*) = 30 °

AV = ±1000 fps = 305 raps
max

V = 10,000 fps = 3050 raps
a

ext = =1300 sea

Should L have been negative in this example,

v would have remained unchanged because of the

definition of _2, which is measured from the reier-

ence direction to the last nodal crossing, thus

restricting the value of v to less than 1800. Mathe-

matically this says

I2. = _ 0<L<90

_* = i2- 180 0 >L>-90

With these restrictions, the launch tolerance

remains unchanged.

The resultant change in inclination can also

be obtained, but it is of lesser significance since

its effect on the energy requirements is already
included.

From the sketch with Eq (42) and spherical trig-

onometry

tan L = tan i sin v (50)

or

tan if sin v = tan (if+ At)sin [v + &_2]

but

sin (v + A_) = COS Al2+ cot v sin Al2
sin v

tan Ai

tan (i + Ai) - l +

tan i l - tan i tan Ai

l

= [-=-_

(51)

This final approximation is valid under the assump-

tion that the orbital inclination is greater than 30 °

and that the change in inclination is small.

Thus

I - &i tan i= cos &_2+ cot v sin exp.

1 - cos ex _ - cotv sin exp.

Ai _ tan i (52)

it" the nocial ctlange is also small, this equation
reduces to

exi~ -ZXeeosv i _ 0 (53)
tan i sm v v _ 0

C. THE TERMINAL MANEUVER

The precuding d'__c_lssions have been d:,r_.,A_,'d

towa:'d the p!acemen: of _he shutUe or homing

vehicle in the vicinity of the target. The following
material is intended to provide an insight into the

subsequent motion leading to docking or closure.
The discussion proceeds as follows.

(I) Relative motion.

(2) Terminal guidance schemes.

(3) Closure times and energy requirements.

(4) Terminal guidance smoothing techniques.

(5) Long time closures

(6) Homing phase errors

1. Relative Motion (Ref. 5)

In this section, the general relative equations

of motion for the rendezvous maneuve'r are de-

veloped and explained. The purpose of this section

is to show how the rendezvous dynamics are af-

fected by orbital aspects as well as by vehicle-
induced accelerations. The effects of initial

conditions on the rendezvous problem will be

discussed with respect to velocity and time re-

quirements in sample problems.

a. Motion relative to target

Consider the earth-centered inertial frame

shown in the following sketch. The target vehicle
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is located by the position vector _*t' and the

homing vehicle by _h" The relative range vector

is defined from target vehicle to homing vehicle.

Earth' s

X"

Z
Homing

vehicle_arget

Y

Let:

_(-_) = gravitational acceleration for a

spherical earth.

a t, a h = thrust acceleration of target and
homing vehicles.

P(P-, r) : perturbative acceleration due to earth

oblateness, moon, sun, atmosphere,

and nearby planets combined.

/vIotion relative to the target, neglecting mutual

attraction of the vehicles, is thus governed by

d2y
: +

(54)

+ h)]

Simplification of Eq (54) results if the following

assumptions apply:

(I)

(2)

(3)

s<<r t.

r t and r h sufficiently large such that

drag effects are small.

Total rendezvous time sufficiently

small so that the perturbative accelera-
tions have only first order effects on the
motion of each vehicle.

Then, the difference of perturbative accelerations

appearing in Eq (54) may be neglected as second
order in the perturbation. This follows since the

proximity of the two vehicles in space and time

yields

r t )

Inasmuch as _P is itself of first order, d_ is of
second order.

Similarly, if _('rh ) is developed in a Taylor

series about P-t'

g(_h) = g(_t)+ (_ •V)g(7t)+ ½ (_•V)a gC_t)+ ...

where

V = gradient operator.

Neglecting second and higher order terms

_(Fh) - _(Ft)= (_ • _)_(Ft).

Substituting

GM_(F) -- - --T
r

where

GM = Universal gravitational constant times
mass of the earth.

= _.

l
g(p-h)- g(p-t) = _ rt J

Thus Eq (54) becomes, valid to first order,

(55)

d2s I _t  t)l= [ah-a't] - --2-GM s _3p-t r__r3__, j
rt t

(56)

This is the equation derived and discussed by
Hord in Ref. 4.

The exact solution of Eq (56) for the general

case is a difficult analytical task. Aside from the

thrust accelerations which are general functionals
of _ and d_/dt, the orbital nature of the problem,

reflected through the gravity terms, complicates
the analysis. This complexity, however, under-

scores the fact that the orbital aspects of the

problem should never be overlooked in the general
case. To cite an example, consider a coplanar

rendezvous in which homing starts when the target

is at the apogee of its assumed eccentric orbit.

Assume the homing vehicle to be slightly behind

the target, at the same altitude, and at sufficient

overspeed to be closing on the target. On the
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basisof rectilinearconsiderationsonemay com-

pute a total closing time by dividing the initial

relative range by the closing rate. This time,

however, may be completely erroneous and more-

over the vehicles may never close to a sufficiently
small range for rendezvous purposes. The reason

for this is seen by noting the orbital aspects of the

situation. The target, initLaUy at apogee, begins

to speed up as it travels toward perigee; the

homing vehicle, depending on the overspeed, may
be at apogee of an elliptic orbit, in a circular or-

bit, or at perigee of an elliptic orbit. Clearly,

the latter two conditions cause an expansion of

the homing time, since the homing vehicle either

remains at the same speed or slows down as it

travels toward apogee. Hence, rendezvous may
never occur, or, if it occurs, may undergo ex-

treme time expansion.

Conditions permitting neglect of orbital aspects.

If Eq (56) is integrated once with respect to time,

t t

= +S
0 0

where

Aa = a h - at

r t

then the condition allowing neglect of the orbital

aspects of the problem is obvious, since orbit

parameters such as GM and r t are vested solely

in A_(_, r--t)" Hence, ff

T o

or
0

AK dt (58)

Eq (57) becomes

t

0

(59)

and permits rectilinear analysis. Note that Eq

(58) is a condition on the integrated effect of the

gravity differential rather than on the magnitude

of _ itself.

b. Analysis of relative motion

Certain important special cases of Eq (56) can

be analyzed by the method of Gilbert (Eel. 5). One
such case is that of thrust-free motion. The

method presented below is valid for thrust-free

motion, but is easily extended to motion in the

presence of impulsive thrusts.

The form of Eq (16) to be analyzed is

::t-':
r t r t J

(60)

The analysia for a target in circular motion is

studied first and later extended to targets in or-
bits of small eccentricities.

I1) Target in circular orbit. Let there be a

rotating, relative coordinate frame centered at
the target, whose axes as shown in the following

sketch are defined by

_x = unit vector along target's radius vector, _'t

Fy completes the right-handed set

_z = unit vector normal to target' s orbit plane.

Normal to

orbit plane

Z

X _ Target orbit

plane

X

The vector _ may be resolved into the three

orthogonal directions and three coupled second
order differential equations obtained.

Since

 0x 0x

where

5__ = rate of change of _ relative to observer

6t in rotating frame

a2_
= acceleration of s- relative to observer

in rotating frame

_0 = angular velocity vector of target in cir-
cular motion

Equation (60) becomes

5_ -- [:7

-3 t =o.
r t J

(6_)
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Whenc e,

d2x 2

3_ 0 x-2_ 0 _t

d 2

_t__ + 2_ 0 dxHi- = 0

d2z 2

+_0 z = O.

= 0

(62a, b, c)

These equations have the solution

( xo ) ,o
x = 2 _0 3y 0 cos _0 t + _0 sin wot

2;_o_

y = 2\ _0 3y sin_o t 2Y0 cos_oot
w0

+ (6_°oYo - 3_o)t +(Xo ÷

z 0

Z = Z 0
m

cos _0 t +_0 sin_o t ._
(62d, e, f)

These equations have been presented in numerous

references, among them Refs. 6 and 7, and have
been utilized in connection with various terminal

guidance studies. However, the present goals

are best served by altering the form of these
equations by introducing a set of normalized
variables.

X

p -- m

r t

r t

Z
k --- --

r t

T - _0 t

(63)

Note that a is the downrange angle of the homing

vehicle relative to the target, while k is the cross-

range angle. The normalized time T is actually
the angle of travel of the target from t = 0.

It is also beneficial to define the following
normalized rates,

A d, dk VN

=_0 =_-=

B -

C -

dx

_I- - _0 y

V 0

+_oX

V 0

"iVjo

d_ +p= VC (64)

where

V o = _0rt

vR-- -aT- - -di-/ Tx

(65)

Note that VC, VR, V N are the instantaneous

differences of the inertial velocity vectors in

the circumferential (y), radial (x), and normal
(z) directions, respectively. Hence, C, B, and

A are the normalized instantaneous differences

of the inerzial velocit:_" components.

If the normalized position variables of Eq (63)

are substituted in Eq (62), Eqs (66) result.

d2p 3p- 2 d_ : 0
dT

I

d2a

d2k

dT_ + k : 0
(66)

Solutions of Eqs (66)° in terms of initial normal-

ized positions and rates, are

p = 2(P0 + C O ) +(B 0 + a 0) sin T

- (P0 + 2CG) cos T

a : -(a 0 + 2B 0) - 3(P0 + CO) T

+ 2(B 0 + a 0) cos T (67)

+ 2(p 0 + 2C0) sin T

k : k 0 cos T+A 0 sin T.

Also by straightforward differentiation,

a'T- C -p : - 3(P0 + C0) - 2(B 0 + a0) sin

+ 2(p 0 + 2C 0) cos T
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/

a'T B+a=(B 0+ a0 ) cos T

+ (P0 + 2C0) sin T

dk

B'T : A : A 0cos T- k 0sin T (68)

Inasmuch as Eqs (67) and (68) specify three in-

dependent position coordinates and their rates,

the analytic solution of Eq (60) is complete. The

value of the solution, however, is further en-

hanced if we utilize Gilbert' s Method of Circle

Diagrams, Ref. 7, to describe the motion.

(2) Gilbert's Method of Circle Diagrams.

The information in Eqs (67) and (68) may be por-

trayed with two phase-plane plots. The out-of-

plane variables, k and A, may be plotted para-

metrically in a A-A phase-plane. The remaining

variables may be incorporated in a p versus _/2

@lot wherein the complete in-plane behavior is

displayed. With such phase-plane plots, the or-

bital aspects of the problem will be made evi-

dent.

In order that we may assign special orbital

significance to the normalized variables, the fol-

lowing assumptions are made:

(I) The inclination of the homing vehicle's

orbit plane with respect to the target' s

is small.

(2) The eccentricity of the homing vehicle's

orbit is small.

These assumptions are valid for a wide class of

rendezvous missions and allow the following in-

terpretation.

A = homing vehicle's yaw or velocity azimuth

angle with respect to the target's orbit

k = homing vehicle's cross-range angle with

respect to the target's orbit plane

= homing vehicle's downrange angle with

respect to the target

p = normalized altitude of homing vehicle in

excess of rt.

C = normalized speed of homing vehicle in

excess of V 0 = c_0r t

= B + (_= homing vehicle's fligh t path angle

(positive if measured upward from its local

horizontal).

Out-of-plane motion. By elimination of T between

k and A, there results

A 2+),2 2+ 2 (69)
= A 0 k 0

But for smaU inclinations i0,

2 20 2 (70)i0 = A + ),0

THUS,

A 2 + ),2 = i20 (71)

The locus of Eq (71) is a circle of radius i0 in

the ),-A plane. The argument of the locus point

is T. Hence, in one complete orbit revolution

on the part of the target, T changes by 21,, return-

ing the locus point to its initial location. The

following sketch shows the circle diagram of out-

of-plane motion.

The time history of the homing vehicle 's cross-

range and azimuth angles are portrayed conven-

iently in the sketch. The angle of travel of the

radial segment i0 is T and is related to time by

Eq (63). The value T = T N corresponds to the

crossing of the positive A-axis and defines the

ascending (from -z to tz) node.

Important characteristics of the out-of-plane

motion are easily obtained from the circle. For

example, Zma x = Rtkma x = Rti 0 and (dz/dt)ma x =

VoAma x = V0i 0.

Nodal crossing
(ascending)

T=T N

....... 'I':0

i0

k

Clockwise rate
of 2 7rrad/orbit-_ " -

In-plane motion. The homing vehicle' s in-

plane orbit elements may be written directly in

terms of the normalized variables in view of the

interpretations allowed by the assumption of
e<<l.

Hence,

A E E-E 0 =

_ - 2(% + po)
(72)

where E = energy of homing vehicle's orbit.

2

E 0 = - i/2 v 0 = energy of target' s orbit.

e2 = (P0 + 2C0 )2 + Y02 (73)

where e = eccentricity of homing vehicle' s

orbit.

-I _(0

Tp = -tan P0 + 2C0 (74)
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where Tp = normalized time to perigee from
T--0

ap= a 0 - 2_ 0 - 3(p 0 +C O) Tp (75)

where ap = downrange angle of homing veh-

icle at perigee passage (T = Tp).

Equations (72) through (75) permit the solutions

of Eq_ (G7) and (83) to be written L_ _elms of orbit

elements of the homing vehicle.

= op - 3(P0 + CO) (T - Tp) + 2e sin (T - Tp)

p = 2(p 0 + C O) - e cos (T - Tp)

C: - (P0 + CO) + e cos (T - Tp)

"_ : e cos (T - Tp). (76)

Portrayal of in-plane motion is obtained by a plot
of p versus a/2. The parametric relation is

(Y[p -,(po+Co)/2+

- _(PO + CO) (T - rp)] } 2 = e 2 (77)

orj

[p 2 ,o* Co)/ 2 +t

_3 T]- _0 _ (P0 + C0) = e2. (78)

Equation (77) or its equivalent, Eq (78),repre-
sents a circle of radius e in the p - oil2 plane.

The center of the circle is located at 2(P0 + CO) and

in the p and a/2 directions, respectively. As the

target moves in its orbit an angle T, the point on
the circle representing the moving vehicle's relative

coordinates travels an angle T counterclockwise.

Simultaneously, the center of the circle drifts in

the positive _r/ 2- direction at the rate of -3/2 (P0

+ C 0) radians per unit T. The idea of a point tra=

versing a circle of radius e, which drifts at a uniform

rate along the a/2-direction, is the process by which

the p - a/2 trajectory is most easily visualized.

This circle diagram generatrix is shown in Fig. 9.

The locus of relative motion in the p - a/2 plane

is, in general, a trochoid. For 3 ,Ip0 + C01 < 2e,

the generated curve has loops. For 3 Ip 0 + C0] =

2e, the curve reduces to a cycloid and has cusps.

For 3 [P0 + CO[ > 2e, the curve has neither loops

nor cusps and tends toward a straight line for

3 IP0+C01> > 2e.

The values of the in-plane relative coordinates

p, C, 7, and a are readily obtained by circle dia-

gram sketches using the generatrix of Fig. 9. The

value of a is slightly more difficult to obtain since
the simultaneous motions of translation and rota-

tion must be considered. On the other hand, the

values of p, C, and _ are obtained by simply con-
sidering motion along the circle. The value of p

at any time is equal to the p-coordinate of the

locus point, and C is equal to (P0 _- CO) - p" The

value of _t is merely equal to horizontal displace-

ment of the locus point from the vertical line

joining apogee and perigee (line of apsides). In-

asmuch as the argument of the locus point along
the circle is T (the angular travel of the target),

the values of p, C, and ¥ may be readily calculated.

(3) Sample anal_,sis using circle diagrams.

The convenience afforded by Gilbert's circle

diagrams in establishing functional relations be-

tween various parameters and in generating tra-

jectory requi1"ements overshadow_ the desir-

ability of graphical plots for the relative motion.

In this section the application of Gilbert's method

of circle diagrams as an analytical tool is illus-

trated. For purposes of illustration, the initial

conditions will be

(1) Target in circular orbit with radius, r t

(2) Homing vehicle injected ahead of target
with

x 0 = 0

YO = So > 0

z 0 = 0

VN = 0

V C = -WO; W o >0

(79)

V R = -u0: u 0 > 0

The situation is shown in the following sketch.

Out-of-plane analysis. Since

z 0 =0

VN= (d_) =0.
0

Equations (63) and (64) yield

X0 = A 0 : 0. (8O)

Accordingly, Eqs (70) and (71) yield

i0 = A (T > 0) = X (T > 0) = 0. (81)
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X

- W 0

U 0

The out-of-plane circle diagram thus degenerates

to a point at the origin of the X-A phase plane,

indicating coplanar motion.

In-plane analysis. From Eqs (63) and (64)

PO = 0 q

22_o
eO = r t

4v° 182)
C O = _

0 Js o u 0

70 : BO + CtO: _-t - _"

Equations (73), (74) and (75) then yield

u0) e :v-%.-o/ + -7;- 0 (83)

u o
(84)

u0 s O ) 3W0ap : 2 _ - rt - _ Tp. (85)

The in-plane circle diagram is shown in Fig. i0
assuming

s o u 0 S_o0

r_2_-'t < "_0 < r t

It is of interest to consider the following

special cases

(i) Y0 : 0 (homing vehicle's flight path

angle is zero)

(2) W 0 : 0 (no speed deficit)

(3) Combination of s o , W 0, Y0 which

causes locus point to pass through

origin (coincidence of vehicles).

The circle diagram for Y0 : 0 is shown in

the following sketch. As can be seen, there

exists the possibility of a being always posi-
tive, i.e., nonelosure, in spite of the speed

deficit, W 0. The limiting condition for down-

range angle closure (a = 0) is obtained by lo-

cating the locus point having minimum

and requiring it to be zero. This point oc-

curs when the circle's drift rate cancels out

the "speed" of the tip of the radius vector in

the negative cr/2-direction. Since the radius

vector rotates at angular rate of l radf unit T

and the radius is e = 2W0/V 0, the speed of the

tip of tile radius vector is 2W0/V 0. Thus, its

rate in the negative _/2-direction is 2W0/V 0

cos T. Equating the rotational and translation

rates in the _/2-direction,

2 W 0 3 WO

-_0 cos Tmin = 2 --_0

or

-I 3
Tmi n = cos 7[ " (86)

-2W 0

V 0

S o

ti

NOTE:

3 W0

Center drifts to the right _

units per unit T

The value of(_-) at that point is

s o 2W 0

[_)min = -_t - _ sin Tmin

3 W0

+ 2 -_0 Train

s o W 0

-0"247;-0 (87)

For the limiting case of downrange closure

(qmin = 0).
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,0
rain = 2.26 rt (88)

That is, if closure is to be obtained, the speed

deficit W 0 must be greater than the minimum

value specified in Eq (88). The limiting locus is

shown in the following sketch along with the locus
expected on the basis of rectilinear considerations.

The sketch shows that a rectilinear analysis

for the specific injection conditions of _0 = 0

and W 0 = Wmin is far too optimistic. As indi-

cated, the actual crossover time is given by

Tmi n = _0tmin = 0. 724 compared to T G = _0tG =

0.442, where tG = s0/W 0 is the rectilinear

time-to-go. For the limiting case, the time ex-

pansion is

t T

rain. rain _ i. 64. (89)

tG = ---TG

o -- _s °

I "---Actual locus

-I.13 _0[ (Tmin = 0.724)

rtl_ ......

(T G : 0. 442)//_- Rectilinear locus

If W 0 < (W0)mi n the expansion would be infinite

since downrange closure cannot occur. Note

also that the orbital nature of the problem causes

the homing vehicle to be low in altitude by I. 13 s O

at closure, while rectilinear analysis predicts no

altitude deviation. This effect is due to the fact

that the speed deficit causes the homing vehicle's

injection point to be apogee. The homing ve-

hicle's altitude thus decreases as it progresses

toward perigee. This same effect accounts for

the expansion in the time of downrange closure,

since the homing vehicle's speed increases as it

progresses toward perigee.

For the special case of (W 0 = 0) the general

circle diagram of Fig. I0 reduces to that of the

following sketch.

It is evident that by proper choice of the flight

path angle, V0 ' complete coincidence of the

vehicles can be obtained. By inspection, the

circle will pass through the origin at T = 7rfor

so

_'o = _ • (90)

Thus, coincidence occurs after the target moves

through T = _ radians or 180 degrees, if the

homing vehicle is lofted an angle

So _0
= --

4r t 4

0

I

enter does

not drift

s o

Rendezvous of the vehicles for the more

general case of s o , W0, Y0 ¢ 0 may be obtained

by considering the general circle diagram of Fig.

I0. The first crossing of the a/2-a_xis (p = 0)
for T > 0 is at

T 1 = 2TA

where

(91)

T A = normalized time to apogee = Tp - ,_

=tan-I _0V0

. (92)

For complete coincidence we require

a (T I) = O. (93)

Hence, the drift of the circle must be such that

at T = T1, _ = 0. In Fig. 10, symmetry shows

that the a/2-component of the radius vector at

T = T 1 is -_0" Considering the fact that the

circle's center was initially at (s0/2r t) - Y0

and drifted (3]2) (W0/V 0) T I units in the plus

a/2-direction during the travel from T = 0 to

T = T 1, the value ofa(T1)/2 is

---2-- = "_t - Y0 + _-_0 T1 - _0 "

(94)
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SubstitutingEqs(91)and(92)into(94)andin-
vokingtherequirementof (93),thefollowing
parametricrelationis obtained.

So W0 Y0
rr6-t - 0 -3 v7° tan-1 2%/%

(95)

This relation is analogous to the "Hit Equation"

of ballistic missile theory (Ref. 8). Figure ii

sho_s a plot of }'0 and s0/r t for various values

of W0/V 0. The required rendezvous time, tR,

is given by

T R : _0tR : T 1 = 2 tan -1 70
2W0/V 0

(96)

Thus, in terms of tile target's orbital period, _'0'

tR) i tan-t _0= _ 2W0/V0 (97)

On the basis of rectilinear analysis, the initial

time-to-go is,

s O

t G = We---_ (98)

Hence

tG) 1 (s0/rt)= _ (W0/V0 } (99)

The ratio of the actual rendezvous time to the

initial time-to-go based on rectilinear analysis
is thus

t R _ ( 2W0/V 0 ) Y0t G s0/r t tan-1 (2W0/V0)"

(tO0)

The ratio is plotted in Fig. 12 as a function of

W0/V 0 ands 0 = (s0/rt). The dependence ons 0

was introduced by utilizing Fig. 11 in a crossplot

so that _0 could be expressed in terms of s 0 and

w0/v 0.

Note that in this example time compression

occurs since tR/t G < 1. This is explained by

the fact that for W 0 > 0 andS0 > 0, the homing

vehicle is on its way toward apogee at the start

of the problem. This is obvious in Fig. 10.

Thus, the homing vehicle's speed over the lofted

flight is less than its initial speed, causing more
rapid closure than expected on the basis of recti-

linear analysis.

Figure 12 may be used to compute the required

rendezvous time. First compute t G -= s0/W0;

then locate the appropriate W0/V 0 curve, inter-

polating if need be. The value of tR/t G then

gives the attenuation factor for a particular

s 0 = s O / r t-

(4) Circle diagram extension to eccentric
orbits. In the following paragraphs the basis

upon Which Gilbert's Method of Circle Diagrams

can be extended to targets in eccentric orbits

is presented. The eccentricity, however, must
be small in order to retain a linear or first-

order analysis. Only the in-plane motion is
treated since out-of-plane motion is unaffected

by target orbit eccentricities.

Circle Diagram of Target Motion. Previously

the motion of the homing vehicle relative to a

target moving in a circular orbit was analyzed.
In this section all motion is referred to the tar-

get's mean motion. For small eccentricities

the target's mean moran is circular with a

radius equal to the scmimajor axis. Thus, to

obtain a circle diagram of eccentric target

motion, it is merely necessary to replace the

homing vehicle by the target vehicle and the

target vehicle by the mean target in the previous

results. The Circle Diagram of Target Motion re-

ferred to the mean target is shown in the follow-

ing sketch. All the features of the in-plane circle

diagram which were mentioned in previous sec-

tions still hold except that motion is strictly

periodic. The center of the circle generatrix
does not shift in time.

P

Apogee

not Perigee
drift

-- T=0

I a

Counterclockwise rate
of 2 _r radians per orbit

revolution of mean target

Composite Circle Diagram of Relative Motion.
If the homing vehicle's circle diagram, referred

to the mean target, is superimposed upon the

target's, the composite circle diagram of the

following sketch is obtained. Note that the circle

diagram differs from that of Fig. 9 merely by the

fact that the target locus is a circle of radius e t

(target orbit eccentricity) rather than the origin

of the p - a/2) plane. As e t approaches zero

the locus shrinks to a point at the origin, yielding

the circle diagram of Fig. 9.

The relative motion is obtained by plotting

both the target and homing vehicle loci and noting
the differences in relative coordinates as a

function of T (time).
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(5) %[otion in presence of impulsive thrusts.
In the presence of impulsive thrusts, thel'e exists

segments of thrust free motion which are separated

by discrete changes in velocity. Hence complete

motion is obtained by regarding it as a succession

of thrust free segments under various initial con-

ditions. Inasmuch as the position coordinates

cannot change instantaneously, the final position

coordinates before the impulse become the

initial position coordinates after the impulse.

The complete motion is readily obtained by

sketches of circle diagrams. Each impulse changes

the size and location of the circle generatrix. The

effects of velocity increments in the normal,

radial, and circumferential directions are dem-

onstrated below.

Normal velocity increment. For small in-

clinations between the orbit planes of the target

and homing vehicle, a velocity increment, AV N,

normal to the target's orbit plane produces an

increment _A in the homing vehicle's velocityl

azimuth relative to the target's orbit plane. The

relation is linear for small inclinations and ve-

locity increments.

_V N

= _ (i01)

The relative out-of-plane motion is illustrated

in the following sketch. This sketch shows the

situations just prior to the impulse (T = 0-) and

just after the impulse (T = 0+). Since position

cannot change instantaneously, the crossrange

angle, k, remains unchanged. However, the

azimuth angle changes by the amount given in

Eq (I01). The result is a change in inclination

angle. Out-of-plane motion is thus typified by

motion along the circle of radius, iO, until the

impulse is applied. After the impulse, the

locus point moves along the circle of radius, iI.

From this sketch it is apparent that incli-

nation may be Completely removed by applying

a normal impulse at AA = ±i 0 and k = O. The

velocity increment required would be

AV N = _V0i 0 (102)

This corresponds to a velocity increment at the

nodal crossings equal and opposite to the ex-

isting normal velocity.

A
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Radial velocit_¢ increment. A change in the
homing vehicle's velocity vector by an incre-

ment, _V R, parallel to the target vehicle's

local vertical yields a change in the homing ve-
hicle's flight path angle, B, measured with re-

spect to the target's local horizontal.

(ion}

Inasmuch as the homing vehicle's flight path

angle measured witil respect to its own local
horizontal is given by

7 = B+a

then, since adoes not change instantaneously,

AV R
A'/ = AB (104)

V 0

The effect of a change in Y is shown in the

following sketch. As shown in this sketch, a

positive change in the flight path angle causes an

increase in the horizontal displacement between

the locus point and the center of the generatrix.
Inasmuch as the position coordinates cannot

change instantaneously, the center must move to

the left by the amount, &y. This causes the

radius to increase, indicating an increase in ec-

centricity. The center does not shKt along the
p-axis,since the location of the center in such a

direction represents the orbit's energy level

which is invariant for flight path angle changes.

_ GeneratrLx /- GeneratrLx

after [mpu____/. before impulse

,,

The complete relative motion is thus given by

the locus of points generated by the circle of

radius e0 before the impulse and that generated

by the circle of radius e I after the impulse.

Since the energy level is unchanged by the radial

impulse, both circles drift in the negative a]2-

direction at the same rate. It should be noted

that if it is desired that the homing vehicle's or-

bit be circular using a single radial impulse, one

should wait until

Y0 -- + e0

and produce

,_y = _e 0

by applying

_V R = ¥ V0e 0 (105)

These points correspond to points 90 ° away from

the apmcles wnere tile flign_ path angle possesses
extreme values.

Circumferential velocity or speed increments.
A change in the homing vehicle's circumferential

velocity, AV C, is synonymous with a change in

its orbital speed and, hence, a change in orbital

energy or period. In terms of the normalized
rate, C,

AV C

_C = _ (106)

The effect on the relative motion is indicated in

tile following sketch, Since the position of the

generatrix's center represents the homing ve-

hicle's orbit energy, an increase in the homing

vehicle's speed, AV C, causes a vertical shift

of the circle's center by the amount 2&C =

2(&Vc/V0). This has two effects. First, the

orbit eccentricity changes m general; secondly,
the center drifts at a different rate in ti_e a/2-

direction. As shown in the sketch, the energy

ievel before the impulse is characterized by the

p-position of the circle's center, 2(@0 + CO).

This energy causes the circle to drift in the

negative a/2-direction at a rate of 3/2 (P0 + C0)"

The increase in energy yields a new energ 3,

level, 2(00 + C O) + 2AC, and causes the new

circle to drift in the negative a/2-<tirection at a

rate of 3/2 (P0 + CO) + 3/2 AC. Thus, for a

positive AC the new circle moves at a faster

rate in the negative a/2-direction.

iiieltiiiier ,
ilni  '' '

0 _"
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Notethat,if desired,orbit eccentricity can be

made zero by waiting until the locus point is
either at the highest or lowest point of the circle

of radius, e 0. If the locus point is at

Pmax = 2(Po + CO) + eo

the resulting eccentricity, e 1 , can be made zero

by making 2AC = e 0 or

Voe 0

_Vc = ----T--- (107)

If the locus point is at Pmin" el can be made zero

by 2AC = -e 0 or

V0e 0

_VC = - --"--T- (I08)

Comparison of either of these velocity increments

with Eq (105) shows that for control of eccentricity
circumferential increments can be twice as ef-

ficient as radial increments. Note, however,

that circumferential increments also produce

changes in the orbital energy or period, while

radial increments affect only eccentricity.

(6) Sample problem. Assume the vehicles are

in circular orbits of equal radii which are inclined

at an angle i 0- Assume the phasing to be such that

the homing _,ehicle crosses the target's orbit plane

an angle a 0 ahead of the target. This is shown in

Fig. 13.

Suppose it is desired that rendezvous be ac-
complished with only two thrust applications of

an impulsive nature. One method by which this
may be accomplished is to wait until the situation

of Fig. 13 occurs and apply a velocity increment

which rotates the homing vehicle's velocity vector

into the target's plane while simultaneously chang-

ing the flight path angle so that a lofted flight is
obtained. The loft should be chosen so that the

two vehicles coincide when the homing vehicle

returns to its original altitude. The trajectory
is shown in Fig. 14. At coincidence, the second

impulse is applied to restore the flight path angle

to zero and, hence, restore circularity. Since
no period changes are involved, the two vehicles

will subsequently move in identical orbits and,
hence, be in coincidence thereafter.

Another method also converts the situation

depicted by this sket,h into a coplanar situation

but involves changing the flight path angle and

period with the first impulse and restoring to

the original values with the second impulse upon

coincidence. The trajectory is shown in Fig. 15.
It is similar to the method of Fig. 14 except that

the required rendezvous time is reduced through

the use of speed (period) changes as well. Re-
call that this situation was partially analyzed

previously.

Both methods are analyzed below with respect

to velocity and time requirements.

Method A: yaw and loft. To convert the
situation of Fig. 13 into a eoplanar situation a

normal velocity component is required. According

to Eq (102) we require

AV N = V0i 0 (109)

Initially, the p - a/2 phase diagram is as

shown in the following sketch. To cause coin-

cidence with a pure radial increment (flight path

angle change) requires a flight path angle change

of

a 0

AYI = YO = 4 (ii0)

Initial circle diagram

(no relative mo_ion)

a 0 '2"

-'2-

The resulting relative motion is shown in the

following sketch. Note that rendezvous occurs

at T = _r or one-half period later. At this time

the second impulse must be directed radially
outward to remove the existing flight path angle

(reduce the ensuing circle diagram to a point at

the origin). The second impulse must produce

a 0
•_72 = 70 - 4 (iii)

_ee _ Center does

aO _0

"-4- "2"

a,

Thus, the actual radial components are

a 0

(AVR)I = VOATI = V0 4
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a0
( AVR)2 = VoAY2 = V0 "'-4- (112)

Assuming an orientated thrust vector, the

radial and normal velocity components of the

first impulse require

&V 1 = V 0 20 + (113)

The second impulse requires

_0

Av2 = (AVR)2 = V0 T (114)

Thus,

(_V)orie n = _V I + _V 2

a0 2 0: V 0 --_- + + (i15)

If separate nozzles are used _or increments in

the various directions,

AV 2 : VI)

Hence,

(_Vlse p

_0

4

(li7)

in either case the total rendezvous time, as indi-

cated in Fig. 14 and the preceding sketch (T = _>,
is

7 0
tR = T (i18)

where again

70 = target's orbital period.

Method B: yaw, loft and period changes. In

either method the yaw velocity required is the

same,

AV N : Yoio (119)

The radial and circumferential velocity incre-

ments depend on the desired time of rendezvous.

Let us suppose that a rendezvous time of 70/4

is desired. That is, rendezvous after the target

moves through 90 ° rather than 180 ° as in Method
A. Equation (97) shows that

tR) 1 I V (120)

where Vp : YO V0

W 0 = speed (circumferential velocity) re-
duction.

Thus, for t R = 70/4

Vp

W---O = 2 tan
= 2 (121)

The ratio of the radial velocity increment to the

circumferential increment must, hence, be

equal to 2 for rendezvous after the target moves

through 90 °.

Equation (95) shows that for tnls ratio

o0 04)_-v 7
(122)

is the condition for rendezvous.

VO_ 0

W 0 = ------w=-_ = - &Vc1

Thus,

(123)

and

VO _0

Vp -- ----Tf-4- -- = _VRI
4

(124)

Equations (119), (123) and (124) are thus the

yaw, speed reduction, and pitch components of

th_ velocity incr_:mcat applied at point _ i.
Fig. 15.

The pitch and speed components at point

(Fig. 15) by symmetry are

V0_ 0

W 0 - _ : AVc2 (t25)
8- -2-

Voa 0

Vp = --_-_4---4- : _VR2 (126)

This may also be obtained from the circle dia-

gram of the following which shows the flight path

angle and energy changes required to reduce the
circle generatrix to a point when the locus point

is at the origin.

As shown in the following sketch.the generatrix

is reduced to a point at the origin by shifting the

center to the left by &'Y2 = Y0 and upward by

2_C 2 -- 2(W0/V0). These correspond to the ve-

locity components of Eqs (125) and (126).

For an oriented engine nozzle, velocity re-

quirements are as follows.

(AV)I =[(AVN )2+ (AVc1)2

2 i/2
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(128)

Thus,

(AV)orie n = (AV) I + (_V) 2

2 i/2

[ (o)]= V 0 i20 + 5 _

(129)

For separate nozzles the absolute values of

the components are added directly, yielding

[ (0)](_V)se p = V 0 i 0 + 6 _ (130)

8- -2-

By comparing Eqs (129) and (130) with (115) and

(116) the reduction of rendezvous time from

70/2 to 70/4 can be seen to involve a consid-

erable increase in velocity requirements. As-

suming i0 = 0

4_ = 2.72 for oriented(AV)70 / 4 nozzle
=

(AV)70/2 18 _12
- 3.64 for separate

nozzles.

2. Terminal Guidance Schemes (Ref. i0)

In the previous section the general linear

differential equation of relative motion was de-
rived as

d2_ GM _ - 3F

r t r t

(131)

where

= rh - _t = relative position of homing
vehicle with respect to

target.

Equation (131) was derived in terms of motion

relative to the target. In this section it is as-

sumed that the homing phase is conducted by the

homing vehicle utilizing an onboard guidance

system and that the target does not execute

thrust maneuvers of either an evasive or coop-

erative nature.

It is convenient to re-express the diffarentia!

equation of relative motion so that the target's

motion relative to the homing vehicle is obtained.

This is readily obtained from Eq (131) by replac-

ing -s by -R where

-= _t " Fh = range vector of target with
respect to homing vehicle

(132)

Thus, since the thrust acceleration of the target
is zero

_t = o (133)

and the differential equation of motion relative

to the homing vehicle is

=- ---_2- _-t r t .Idt" rt

(134)

The effect of the gravity vector differential is
obtained by inspection of Eq (134), that is, the

apparent target acceleration is of magnitude

(1) rGt--_(-_-t) directed inward along the

line -of- sight.

(3
rt _) , directed upward

along the target's local vertical.

Both effects decrease linearly with range. Note

that they are not necessarily orthogonal unless

the line of sight is normal to the local vertical.

For such a situation, however, the vertical ac-

_celeration vanishes since it is proportional to

R • rt.

A convenient description of the apparent tar-

get acceleration is obtained by resolving it into
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components parallel and transverse to the line of

sight. This is shown in the following sketch.

Line of /I
sight I ,

Homing

vehicle ,s

local

vertical

Target,s local vertical

3 9__ (_RR)cos e
r t rt

vehicle

As may be _een in the sketch several new var-

iables have been introduced. These are

@ = angle between target vertical and

line -of- sight

¢_p = pitch (angular) rate of the line of sight

= yaw (angular) rate of the line of sight.
Y

The apparent acceleration outward along the line

of s_ght is

(5)_gR --'-2- (1 - 3 cos 2 8) (135)

r t

The apparent acceleration normal to the line of

sight tending to increase the pitch rate of the

line of sight is

GM (r_): _ • 3 sin 9 cos e (136)
Agp rt

Note that the apparent gravity effects act solely

in the plane of the line of sight containing both

the target and homing vehicle local verticals.
Thus,

Agy = 0 (137)

a. Formulation with respect to line of sight

Since

N = I-RR (138)

where i-R = unit vector along line of sight

_-% dR +(Zx (is9)--dK

where U = angular rate of line of sight in inertial

space

and

d2_

(I 40)

Equation (134) may be resolved into components

along (parallel) and transverse to the line of

sight.

is

The equation of motion along the line of sight

d2R

7 R_2 = -aR + AgR (141)

where the subscript "R" denotes components

along the line of sight and the superfluous sub-

script "h" on the thrust acceleration has been

dropped.

The equation of motion transverse (normal)

to the line-of-sight is

dh
_9

: R (Agp - ap) (1 42)

cth

= - Ra Y
(i 43)

where

= R2w : angular momentum in pitch:
h_o p

P
(144)

h , _-R2Uy : an_alar momentum in _va_""
Y

(145)

Note that in the absence of transverse thrusts

R2w is conserved, while R2w is not generally
Y P

conserved due to the torque, RAgp, exerted by
the gravity differential.

b. Transverse corrections

The general transverse command logic takes
the form

AV T : klW + k 2 V T + k 3 (146)

where

= desired transverse velocity
increment

k I, k 2 = constants of proportionality

V T = velocity of homing vehicle trans-

verse (normal) to line of sight

k 3 = bias term.

Equation (146) may also be considered a vector

statement wherein AVe,_ w, V T and k 3 are two-

element column vectors whose components are

those of yaw and pitch. That is,

= , (147)

%
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¢o = <toP) (148)
Wy

VT = (Vp) (149)
Vy

k3 : (150)
\k3y /

The "constants of proportionality" are then 2 x 2
matrices

(151)

[KPp KYp]

k2= LK_y K yJ
(152)

where the subscripts indicate those elements be-

longing to the pitch or yaw velocity command, and

the superscripts indicate the elements which scale

the pitch and yaw components of to and V T. Except

in cases where the homing vehicle is called upon

to execute roll maneuvers, there will generally
be no interehannel crossfeed terms in the com-
mand logic. Hence, in most situations the elements

outside the principal diagonal are zero.

If k 2 and k 3 are zero while k 1 is equal to the

instantaneous range to the target, a collision
course results. A lead-collision or biased-colli-

sion course may be generated by defining k 3

appropriately so that the homing vehicle in effect

steers on a collision course to a point offset from

the actual target. If k 2 and k 3 are zero while k 1

is a constant other than the instantaneous range,

a proportional navigation results if k 3 is other

than zero. For k 1 and k 3 equal to zero while k 2

is -1, a pure pursuit course results since the

homing vehicle is directed to fly along the in-
stantaneous line-of-sight. Thus, by proper

selection of the constants of proportionality all

types of homing schemes are possible including

hybrid schemes which do not completely fall into

the above classes. It is also possible to fly a

slightly different course in pitch than in yaw by
choosing the constants of proportionality for the

two channels differently. Moreover, the complete

homing phase may be a blend of various types by

varying the constants of proportionality as a func-
tion of range or some other appropriate variable.

Collision course. If range information is

available a collision course may be flown. This

will tend to minimize the homing time since in

nonrotating relative coordinates the motion is

completely along the line of sight, which main-
tains a fixed direction in inertial space. Thus,

in nonrotating relative coordinates the motion of

the target is radially inward toward the homing
vehicle.

Integration of Eqs (144) and (145) with respect

to time yields

.t t

= 2 +I Rhgpdt-_ Rapdt
R2 toP R0 Wp0 0 0

(153)

R 2 2 _t
= toY0 - Ra dt (154)

Wy R 0 _0 Y

If proportional transverse lets are used (alter-

nately, a gimbaled nozzle) the thrust accelerations
are of the form

_xV* R

a - P - P (155)
p _- _-

P P

AV* R w

a =---Y-: ___Z (156)
y _" 7

Y Y

where Tp and 7y are the pitch and yaw channel

time constants. Substituting Eqs (155) and (156)

into (153) and (154) yields

2 !

Wy e Y (157)

_J

P

t

= 2 + ,.%gp eTp e
P0 R0 R 2

0
(158)

Note that if the time constants are small enough

R 0

that --_ does not build up appreciably within, say

three time constants, the initial rates top0 and toy0

are steered out exponentially. In fact, if _p, Vy,

and the range rate are small enough such that
values of range separated in time by time con-

stants are nearly equal,

-t/Ty
w _to e (159)
Y Y0

-t/Tp_+ _P (1-t/Vp)top _-topO e - e

(160)

Thus, in the steady state

to = 0 (161)
Y

Wp Tp (162)

J
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Note that a pitch rate exists due to the pitch com-

ponent of the gravity differential. This empha-

sizes two signHicant points:

(1) A nonzero steady:state pitch accelera-
tion of

R
a = -- 0J

p _- p
P

= ,.%gp (163)

will exist.

(2) A precise collision course cannot
be realized in pitch if Eq (155) is used,

since the gravity differential causes

a small steady value of pitch rate to
exist. For extensive homing time the

pitch displacement of the line-of-sight

may be appreciable.

The first point is, of course, clear upon inspec-

tion of Eq(142). The obvious remedy for the

second point is to make "rp sufficiently small so

that the total displacement is negligible. This,

however, is not always possible, since high con-

trol loop gains may result in control instability.

In the next topic, "Biased-Collision Course, "

a solution to this problem is indicated.

If impulsive thrusts are used for transverse

corrections, the accelerations assume the forms

AV; 5(t) 6(t) (164)ap rWp

ay : /',Vy 5(t) : rWy 5(t) (165)

where

6(t) = Dirac delta or impulse function.

Hence, Eqs (153) and (154) for t> 0 become

.t

R 2 Wp= 11 R Agp dt (166)

R 2 w = 0 (167)
Y

Thus, w does not require further corrections
Y

in the ideal case, but Wp soon builds up such that

if a set of transverse corrections are scheduled

at t = ti, the required velocity increment is

t.

AVp (t i) = i_i R _gp _ (168)

In many cases a control deadzone is used such

that corrections are made whenever COp exceeds

some threshold value. Equation (168) may be

used to compute the range at which this occurs.

Thus, if the previous correction occurred at

t = ti_ I when R = Ri_ I, then the threshold value

will be exceeded at the range R = R i _iven by

R 2 ='_Pl _RI- 1 Agp (169)

where

P
= deadzone threshold value for

P

dR (assumed to be
= range rate = -_

negative).

The magnitude of the correction at such a time is

_V. = R n (170)
i t p

Hence, the total pitch velocity increment is

n

= R 0 + _ AV i
(AVp)total _Po

i=l

n

=R0 +%y R
_)Po _ i

i=l

(171)

The total yaw velocity increment is

(AVy)total = R0 _Y0 (172)

Thus, the total transverse velocity requirement

is n

(AV T) = R0 (W + t°y0) + %_ Ri
total P0 i= i

(173)

where it is assumed that and are positive;
Wp 0 Wy 0

if they are not positive, absolute values are to be

used in Eqs (171), (172) and (173).

Biased-collision course. In this method the

line-of-sight rates are controlled to appropriate

bias values. If the biases are zero, a pure colli-

sion course results. One particular application

of this technique is that which maintains the line

of sight at constant angles with respect to the

target's local vertical and orbit plane normal.

Thus, if the target's body axes are maintained

at fixed angles with respect to its local vertical

and orbit plane normal, the homing vehicle ap-

proaches the target at a fixed aspect in target

body coordinates. This is shown in the following

sketch for a coplanar situation.
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For a target in a circular orbit, the local

vertical has an angular rate of

Thus, assuming coplanar rendezvous, the line-

of-sight rate in pitch must have a magnitude _t"

If the homing vehicle is behind the target the

sign of _p must be negative (downward rotation);

if ahead, positive. The yaw rotation must be

zero in the case of coplanar rendezvous. Thus,

there exists biased-collision steering in pitch

and pure collision in yaw.

For continuous, proportional steering

aVp R (wp - wb): =

ap _P _'P (174)

#

= Y =

ay • _"
Y Y

(175)

where

_;b - desired bias rate

= +_t"

Substituting the above into the general equations,

Eqs (153) and (154) yields upon solution of the

differential equations

_)2 e_t/Vy
¢_y = Uy 0 (176)

Wp = Wp0 _/2 e-t/VP+#S: R /Agp

(t- ¢)

R_°b _ _P+_ e da

Tp /
(177)

As before, if the ratio of range values separated

in time by three time constants is approximately

unity,

-t/Vy
w _- w e (178)

Y YO

(Wp- wb) "_(Wp 0 - _b) e-t/Tp+T_'pAgp / 1

- e -t/_'p) (179)

Thus, in the steady state

= o (13o)
Y

Wp w b + Tp (i81)

This equation shows that the steady pitch rotation

obtained using conventional collision steering can

be removed by t_b = _Agp/R mp and implies use

of angular acceleration measurements.

Using Eq (136) in Eq (181) yields

= GM
_p w b + 3 _ _p sin O 0 cos 0 0

rt

2

= wb + 3 ¢_t _'p sin 00 cos 00 (182)

Then, for Wb = _Wt

_p = ±_t (i _: 3m t Tp sin e9 cos O0) (183)

Since the maximum value of sin O0 cos O0 is 1/2

and Tp is usually on the order of seconds, the

bracketed term is approximately unity. Thus,

in the steady state CJp = _b = ±_t"

For impulsive thrusts,

: AV* 5(t) : R (Up _b ) 6(t) (184)ap p

= AV* 6(t) = R_y 6(t) (185)ay Y

Hence, after such a correction

_t R2R 2 Wp = R Agp dt+ _)b (186)

0

R 2 w = 0 (187)
Y

As in the case of the collision course, the

gravity differential requir.es subsequent correc-
tions in pitch. Thus, if corrections are made

whenever Wp deviates from wb by %, the range

at the time of each correction is given by Eq (169).
For the present case since

Agp = 3R wt 2 sin 80 cos 80 (188)

Equation (169) becomes

3t0t2 sin 80 cos 80 _ R 2 dr
Ri 2 (189)

%
Ri. 1
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where the absolute value signs on the right mem-

ber are implied. If the closing rate, (-_t), is

constant between the ith and (i - 1)st corrections

2

R.2 = cot sin e 0 cos e0 (R3 I- Ri3) (190)

i _p (_l_)i_ i

The total pitch and yaw velocity increments

are

n

(&Vp)tota I = R 0 AWp0 + %_ R i (191)

i=l

= R 0 _ (192)
(AVy)total Y0

Hence,

n

(AV T ) = R0 (A¢° + _y01 i_ltotal P0 + _p R i

(193)

By comparison of Eq (193) with Eq (173) it

might be in/'erred that "biased-collision" is most

efficient for a coplanar rendezvous since ,-%¢_
P0

is involved in biased-collision; whereas the full

initial pitch rate, _0po, is involved u'l "pure colli-

sion. " This is deceiving unless it is realized

that faster range closure occurs in pure collision

and hence fewer number of pitch corrections are

required, since the time-integrated effect of

gravity is smaller. Thus, biased-collision does

not necessarily require less velocity.

Proportional navigation. Proportional navi-

gation involves transverse accelerations pro-

portional to the line-of-sight rates. That is

ap = K a cop (194)
P

ay = K a COy (195)
Y

If

R (196)

Ka = y--pP

R (197)

na = T-_Y

then a collision course results. However, in

the absence of range information a collision

course may be approximated by Eqs (194) and

(195) when K a and K are constants. This is
p

the prime purpose of proportional navigation.

SubstitutingEqs (194) and (195) inEqs (153)

and (154) yields

2

_y = Wy 0(-_ Qy (t) (198)

_Op= [R 0 copo + --_ d R2 (199)

where

Q (t) - exp --_ dt (200)

Explicit solutions of Eqs (198) and (199) re-

quire knowledge of the time variation of range.

If we assume that proportional transverse jets

are used, then in the absence of accelerations

along the line of sight,

R _- R 0 + l_0 t (201)

It is also ass.ln_e_] that the initial closing r:-_te

(-I_0) is high enough so that Eq (201) is true in

spite of gravity effects and line-of-sight rotations.

With Eq (201), Eq (200) becomes

Q (t) = (202)

where

K a
m =

(-i_o)
(203)

yielding

w
Y

(204)

t [R _2-m dt] [ R_m-2COP= [WP0+_0 ? '_) '1_0)

(205)

Ifthe closing rate is sufficiently high so that

gE
can be taken outside of the integral

/R_ m'2

_P _" WP0 k]_0]

m m-l]

P

(206)
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Note that in order to be effective

F

K a )2 for yaw
m =-- > (207)

(-Ro) t3 for pitch

Thus, by choosing m sufficiently high (implying

high K a ) in the steady state
P

¢0 :0
Y

: _ (negligible for K a high enough).
_Op a p

P

It is seen then that the proportional navigation

course can adequately approximate the collision

course for sufficiently high gains and closing

rates.

Biased-proportional navigation. This tech-

nique is a generalization of proportional naviga-

tion, analogous to biased-collision in its general-

ization of collision steering. If this technique is

applied to the coplanar situation analyzed for the

case of biased-collision, one obtains

/R \m-2 (208)

w + _b R'2-m ] /R hm-2P P0 _t &gp Kap (1_0) dtw = + R _l_o]
0

(209)

under the same restrictions imposed on the ex-

plicit analysis for proportional navigation. For
this case

_J_ 3wt2= sin 90 cos e 0.

Therefore,

/ R_m'2+ 3_ wt2 sin e 0 cos 80 [I

Wp = Wp0 _0) _m - J] Kap

[R m-q+ [i /R  m-2]J L-t) ] ( 10,
Thus, in the steady state

2

" (m---_-) wt s ineoe°SSo + (m---_-)m wb
Wp 3 Ka

P
(211)

For Wp -_ i-t0 t, it is required that

2 0]±tatrm_2 ¥[m -2_wt sineoc°sO(_b
L--- km----=_- ] Kap

(212)

where m > 3. For large m (large K a )
P

_b = ±c_t (213)

As in the case of proportional navigation, this

technique can adequately approximate its collision

counterpart for sufficiently high gains and closing

rates.

c. Homing flight paths

The flight paths produced by the transverse

steering techniques presented are simple to

derive. For example, in the steady-state, colli-

sion and proportional navigation maintain the

line of sight in a fixed inerzial direction, as-

suming the flight times are small enough to war-

rant neglect of the gravity effect. Thus, in a

nonrotating frame centered at the target, the

homing vehicle closes radially on the target. On

the other hand, for the coplanar biased-collision

and biased-proportional navigation examples

presented, the line of sight is maintained fixed

in a rotating frame centered at the target. In

this frame the biased-collision and biased-pro-

portional schemes produce an apparent homing

vehicle motion radially toward the target. The

following two sketches show the flight paths in

these frames. The mapping of a flight path from

one frame to the other is relatively simple since

the two frames differ by a rotational rate.

Y

Target' s vertical

Biased collision

_n H°ming

vehicle

Target

_/_ollision

Target
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Note that if the target's body axes are con-

tinuously aligned with its local vertical, an
observer on the target will see the homing vehi-

cle approach along an apparent straight line if
biased-collision is used. To this observer the

collision course will appear curved. However,

assuming no thrust accelerations along the line

of sight and identical initial conditions, the hom-

ing vehicle reaches the target sooner along the
collision course.

d. Motion along the line of sight (longitudinal)

The governing differential equation for this

maneuver is Eq (I41) which is repeated at this

point.

d2R 2

------v- - R_ = -aR _ AgR
dt"

(214)

where

zk gR --2- (I - 3 cos 2 e)

r t

(215)

For a target in circular orbit, the differential

equation can be written as

2]+ R'_t 2 1 - 3 cos 2 e) -_-_t

where

wt = target's angular rate.

For the cases treated it was seen that biased-

collision and biased-proportional navigation yield

d 2 R 2

7 - R wt (3 cos 2 O0) = -a R
(217)

whereas collision and proportional navigation

yield

d2R
+ R cot2 (I - 3 cos 2 O) = -a R (218)7

The above equations show that the gravity effects
reduce the closing rate in the case of biased-

collision and biased-proportional navigation.

However, the gravity effects may actually in-

crease the closing rate or at worse reduce it to
a lesser extent in collision and proportional

navigation. Hence, all else being equal, the
latter produce shorter homing times. The dif-
ferences are small when rapid rendezvous is

involved. However, for extended or long-time

rendezvous the differences may be significant.

Neglect of orbital aspects. The homogeneous

solution of Eq (217) admits hyperbolic functions

whose arguments are proportional to tot. For

Eq (218) since O = 80 + _°tt' Mathieu functions,

whose arguments are likewise proportional to w t,

are admitted. These homogeneous solutions

represent the perturbative effect of the orbital

aspects of the problem. If the homing phase is
restricted to small homing times such that the

arguments of the homogeneous functions differ

negligibly from zero, the range variation will be
approximately that which is obtained by letting

_t = 0 in Eqs (217) and (218). In such instances

all techniques analyzed in subsection d have range

variations governed by

d2R ,_

7 = -aR (219)

In all ensuing work in this chapter it is assumed

that Eq (219) is valid. The condition which must
be satisfied for this to hold is

_0t t R < < 1 (220)

or

_'0

t R < < _-_ (221)

where

t R -= rendezvous (homing) time.

This implies, of course, that the initial closing

rate must be sufficiently high so that the integrated

effects of the gravity differential are negligible.

If this is not the case, the problem becomes one

of extended or long-time rendezvous, requiring
the use of Eq (217) or (218).

e. Single longitudinal correction

Satellite rendezvous requires closing rate

control and differs from interception because of

this requirement. It is assumed that the homing

vehicle possesses an initial closing rate (-R 0)

such that longitudinal corrections may be devoted

solely to closing rate reductions or braking. The
initial closing rate is established either by the

booster or homing vehicle upon injection.

The most obvious technique is one involving

a single thrust application at the last possible

moment, such that range and closing rate go to

zero upon completion of the correction. This
technique produces minimum flight times since

the initial closing rate is not reduced until just

prior to rendezvous.

Impulsive thrust. In the ideal case of an im-

pulsive thrust, the initial closing rate is removed
at R = 0. Thus, the rendezvous and interception

problems are virtually identical in this ideal case.
The rendezvous time is the same as that of inter-

ception. That is,

R 0
(222)t R =

= tGo (_rio)
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where

tGo = initial time-to-go.

The longitudinal velocity requirement is just

= (-R0) (223)&V L

Constant acceleration. Physically all thrusts

are 'finite and, hence, regard must be given to the

resultant nonzero braking distance. For constant

thrust and negligible mass change, the braking

acceleration is constant. The distance traveled

over the time it takes to remove the closing rate

is defined as the braking distance b and is given Dy

(224)

where

F 0

a 0 : m0
- initial thrust-to-mass ratio,

Thus, the homing vehicle i3 allowed to close

at the rate (-R 0) until R = b, whereupon the brak-

ing acceleration a 0 is applied so that R = 0 when

I_ = 0. This results in a rendezvous time of

At b

tR + ---'2--= tGo
(225)

where

(-Ro)
_t b _ braking duration = a0

(226)

Constant thrust. For the general case of

constant thrust wherein mass variation is non-

negligible

F 0

a R (t) = - m0 _ fn 0 t (227)

where

_n0 -: mass flow rate > 0.

F (t)

For this case, the required braking distance is
Refs. iO and 11.

(eR0/c -" _(_ cm.__)b = - (1 + R0/c (228)

where

c - effective mass exit velocity.

= go ISp

The rendezvous time is

(i 0)o 0= tG0 _00 - + . (229)

The following sketch si_ows a typical R versus

I_ phase plane for this closure. Impulsive, con-

stant acceleration and constant thrust braking

are illustrated. It is noted, however, that the

difference between the latter t.vo i.- ,_',::_,gg,_r'at_!d.

R o

(D

ImpulseNegligible mass change,

constant thrust

Sizable mass chan_e, constant thrust

I
I I

b F b a
0 :D

R

Multiple longitudinal correctiohs. There are

many reasons for reducing the closing rate in

multiple steps rather than in a single step. The

most obvious reason is the presence of system

errors which can cause significant range and

range rate dispersions if large closing rates

are removed in a single step. Therefore, there

exists the possibility of biasing the nominal point

of closing rate reduction so that the closing rate

is nominally zero at some range R b. Small

vernier jets can then be used to adjust for position

and residual range rate errors. However, for

large initial closing ratds, the residual errors

may be quite high and may require considerable

expenditure of gas since the thrust level and

specific impulses of pneumatic jets are low.

Compounding this is the weight penalty incurred

by the tankage to contain such large pneumatic

volumes. Thus, even if such fine jets are used,

there still exists the desirability of multiple step

reductions so that the single step braking thrust

will not leave large residual errors for the vernier

system.

The underlying idea of multiple step reduction

of the closing rate is this: divide up the total

closing rate to be reduced in smaller increments

and allocate these increments at various ranges

so that percent-type errors in the velocity incre-

ments are also allocated rather than occurring all

at once near the target. Errors in each correc-

tion are than removed by each subsequent correc-

tion, assuming that sufficient time exists between

corrections for closed-loop control.

If done properly, the closing rate control can
be effected without need of a bilateral thrust

capability during the multiple step reductions.
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This is doneby constraining each correction to

yield a certain minimum closing rate even in the

presence of system errors. Thus. each suc-

cessive correction need only decrease the closing

rate. This permits the use of a unilateral thrust,

resulting in a weight saving since a comparable

rear-mounted longitudinal engine is not required.

In addition, since the closing rate decreases

monotonically, the longitudinal velocity require-

ment is no more than the initial closing velocity

(-}/0). There is the matter of the differential

gravity effect and injection dispersions. However,

these are also required of the single step tech-

nique.

It should be made clear that these refinements

occur at the expense of a longer flight time. That

is, under the constraint of minimum velocity re-

quirement and unilateral thrust, final dispersions

are traded off against time. However, except for

emergency rendezvous, the longer homing time

is usually more acceptable than the weight penalty
which otherwise occurs.

A method for selecting the nominal closing

rate profile which utilizes the minimum number

of reductions is now described. To simplify the

presentation, impulsive corrections are assumed.

This is not a restriction, however, since, for

nonimpulsive thrust, it is only necessary to start

each correction at a range which is greater by the

amount of distance traveled during each thrust

period. Thus, if it is required that the closing

rate be reduced from (-R 0) to (-R I) at some

e

range, the difference between the braking dis-

tances b 0 and b I yields the amount of lead dis-

tance. The corresponding difference between

the stretch-out times yields the amount by which

the total homing time is increased over the im-

pulsive case.

Suppose the final braking correction is

scheduled at a range R B which provides a suit-

able bias such that errors in range measurement

do not cause an overshoot in position and, pos-

sibly, premature impact. In addition, suppose

the nominal closing rate at this point is made

sufficiently high to ensure against negative clos-

ing rates in the presence of system dispersions.

The following sketch shows this in the (-R) versus

R phase plane. The 3u contour of dispersions is

shown, assuming a bivariate gaussian distribu-

tion in closing rate and range.

It is implicitly assumed that the range dis-

persion is acceptable with regard to specifica-

tions or that use of small bilateral verniers for

clocking maneuvers can comfortably accommo-

date the range errors. The primary concern

then is to ensure that the closing rate dispersion

is also within allowable limits. From this sketch

it is apparent that the closing rate bias (-I_B)

must be at least equal to the expected 3c¢ closing

Nominal closing
rate prior to nth

correction

,Nominal nth (final)
correction

(-RB)_ _3_ contour of dispersions

0 i RB

R

rate error if range is to decrease monotonically.

Hence, for large dispersions in the final closing

(-R N) the bias becomes large and may berate

unacceptable in terms of vernier fuel and tank

weight requirements. To avoid this the following

process may be used to obtain the desired closing

rate profile. Let

N = total number of required correc-

tions (to be determined)

V. : closing rate following ith correc-
1 tion

AV. = velocity increment of ith correc-
t tion

AV* = commanded velocity increment of
i ith correction

ki' _i = proportional (percent-type) and
additive errors in execution of

Av*
1

D. --desired or nominal closing rate

I following ith correction

= error in measurement of V i.E i

The proportional error k i is the per-unit error

in execution of AV i and may result from either

accelerometer bias, scale factor errors, or

from thrust and I variations if corrections are
sp

metered on a time basis. The additive error _i

is the effect of residual impulse uncertainties.

Since

V i = Vi_ I - AV i

AV* = (Vi_ I + El_l) - D i

(230)

(231)

and

AV i = (i + k i) AVe+ _i (232)
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It is possibleto writefor thegeneralcorrection

Vi =Di " ki (Di-I - Di) - (_i-1+ _i) (233)

if all cross-productsof errorsareassumedtobe
negligible.In particularfor theNth(final)cor-
rection,

DN = (-I_B)

(234)

= closing rate error after Nth
correction

_ = total additive error of Nth

correction

EN + _N (235)

Hence, if the 3(_ dispersion in the final closing

rate is allowed to be no_greater.,than C [and by

the
preceding sketch (-R B) = CJ, then it is re-

quired that

C _ 9o2 NIl/2DN-1 +\ (236 
\ N

Thus, if a single step correction (N = i) is to be

used, the following relation must hold.

C _ 9_ 2 \1/2

: o,)D O i-R 0 ) < C + (237)

- 9all

If this is not the case, then a single step correc-

tion cannot be used and hence N must be greater
than 1. This implies a prior correction at a

range

R = RN_ I >R N = R B.

For this prior correction, the unilateral thrust

constraint is invoked, requiring that VN_ 1 > 0.

Using Eq (233) with i = N - i, this is established

with 3(7 probability if

DN_I2 > 9_IN_ I (DN-2 - DN-I )2 + 9a2aN_ 1

(238)

If DN_ 1 is assumed to be at the maximum value

allowed by Eq (236) (to minimize the nominal closing
time),

DN- 2

0o\"
<Max +(
D.,,_,=.,\ /

(239)

where the notation implies the maximum value

with respect to DN_I. Thus, in order for a

two step reduction to be possible,

Max /DI - 9_i\

DO = ('IRO) < D I i + 9Gk12

40)

where (Dl)ma x is given by Eq (236) for N = 2.

Usually, it is not necessary to proceed beyond

the case of N = 2 since the presence of a small
2

number in the denominator of the square root
ek 1

expression in Eq (240) yields a very large number.

In addition, the fact that the maximum value of

D 1 is involved in Eq (240) further enhances the

situation. However, should the initial closing

rate be extremely high, so that Eq (240) does

not hold, N must be made greater than 2. This

implies a prior correction at

R = RN_ 2 > RN_ I > R N : R B

Again for this prior correction the unilateral

thrust constraint is invoked, and an expression
similar to Eq (238) results. If the maximum

value of DN_ 2 is used, a constraint on DN_ 3,

similar to that of Eq (239), results.

-FDN-3 DN_ 2 N-2 _ 9.1N_2 )

(241)

where (DN_ 2) is given by Eq (239). If three
max

reductions are to suffice, then Eq (241) requires
that

"" ,+\o< /
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\

which is identical to Eq (240), except that the unity

subscripts apply to the first of three scheduled

reductions, and, if written out cumulatively in-

stead of recu:sively_am:l:: x

D O -- (-R0) < ID1 D2

%

I 2/o. . 2 \i:I\ 9% /
\ N-i /

where (D 1) and (D 2)
max max

(236) and (239) for N = 3.

What has taken place so far is an exercise

in dynamic programming (Ref. 12) to determine

the minimum number of reductions N necessary

to satisfy the criterion C under the constraint of

unilateral thrust. By inference, the general allo-

cation policy for N reductions may be written as

ID / 2 2 \i/2_

< Max +(DN-i+l-9CON-i_ I

DN-i DN_i+ 1 N-i+l _ j j
(243)

for

i=2, 3 ..... N

where

D O = (-R0) (244)

/ 2 2 \I/2

-"%\

The process is continued until it is found that

D O --(-R0) < Max DN_ i (246)

whereupon N is determined. The process also

yields the desired closing rates at each step.

Hence, upon satisfaction of Eq (246) all Di's

are determined.

There now remains the problem of allocating

the desired set of closing rates at appropriate

times or ranges. Generally, the choice should
be made so that a sufficient amount of tracking

and smoothing time exists between consecutive
step reductions. Also, the reductions should

be spaced so that the transverse channels have
sufficient time to steer out errors. The non-

impulsive nature of each thrust application must

also be taken into account. Thus, generally, the
time between reductions is

At i = Atsi + At1. + AtB. (247)
1 1

where

At. = time between ith and i - first
1 reduction

Ats. = ith smoothing time
1

At_ = ith lag time (computing time, valve
1 lag, etc. )

AtB. = burning time of ith correction
1

The range difference between the ith and (i - 1)st
correction is thus

_Ri= (Atsi+ -_tfi) Di_l + Ab i (248)

where

Ab. = distance traveled in braking fromI

Di-l to D..
1 (249)

Equations (248) and (249) then allow for the com-

putation of the spacing of step reductions and,

hence, the generation of the nominal closing rate

profile. For any given set of spacings between

corrections, the closing rate profile is the

minimum time profile under unilateral constraints.

This follows, since at each step the closing rate

is assigned the highest possible value under uni-

lateral thrust constraints.

g. Other rendezvous schemes

So far the work presented in this section has

been based on the differential equations of rela-
tive motion. This approach is, however, not

necessary as will be illustrated in the two re-

maining schemes to be discussed.

Combined injection and terminal guidance.
By timing the initiation of thrust and providing
thrust of a variable magnitude and direction, it

is possible to perform the injection and any

maneuvers necessary for closure simultaneously.
The most notable studies conducted for this

scheme have been conducted at the MIT Instru-

mentation Laboratory (see Refs. 13, 14, 15 and

16). These studies are concerned with a guidance
equation of the form

i_c= Sl_'r [l_+f(R)_ + $2 [R_Ls] (250)

where

}- = commanded acceleration vector
c

S 1, $2= sensitivity coefficients
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I_ = range rate

R = range

_LS = angular velocity of the line of sight

f(R) = desired range rate as a function of

range

_R = unit vector along the line of sight

For the studies conducted to this date, the

f(R) utilized has been K_R. This selection was

made based on trials of several functions satis-

fying the boundary conditions for f(R} (namely

that f(R) be defined for all R and go to zero at

R = 0). A variety of values have been investi-

gated for S i and for K. With regard to K, the

implications are that some linear function of
the required velocity increment (i. e., a + b_v)

may be advantageous from the standpoint of pro-

pulsion system performance.

Because of the extreme initial closure ve.loc-

ities (as great as 4500 mps) and the limited

range of the radar unit, it is, in general, nec-

essary to begin the injection maneuver with a

programmed thrust. Then at some time during

the maneuver after the target is acquired, the

guidance equation must be utilized. This

sequencing is desirable in other respects as

well, since it allows the planar change to be

made while the velocity is near minimum, thus

conserving the energy available.

A single variable thrust gimbaled motor (along

with an adequate control system) comprises the

propulsion system. The utilization of a single

motor is made possible by restricting the initial

conditions for closure to lie within a region ahead
of and slightly below the target. Under these

conditions the target overtakes the shuttle during

the injection maneuver. The energy require-
ments for these maneuvers closely approximate

the minimum (for small changes in the plane of
motion).

The purpose of the variable thrust motor is to

provide additional tolerance in the relative posi-

tion of the two vehicles at the time the injection

maneuver is initiated. In this manner it is possi-
ble to simultaneously compensate for errors in

the ascent trajectory and launch timing.

The data obtained for the necessary compu-

tations are taken from a single radar unit mount-

ed to the vehicle on a set of gimbals. The range

and range rate are measured directly, whereas
the angular velocity of the line of sight is com-

puted from signals taken from the dish gimbals
and the inertial platform.

An elementary functional block diagram of this

system is shown in the following sketch.

Positive closure. Utilizing the analytic solu-
tions for positive and velocity presented in the

discussion of relative motion for nearly circular
orbits, a purely numerical study of rendezvous

has been conducted. The guidance scheme for
this technique requires that the vehicle be acceler-

ated toward the target with some given velocity.

Then at a specified distance and range rate, thrust

is again initiated to drive both the range and range

rate to zero. This scheme has been investigated

in studies conducted within the Martin Company.

In order to maintain the vehicle antennas in

known orientations with respect to the earth, and

to simplify the attitude control function to one of

stabilization, the vehicle considered is assumed

to be aligned with its fore and aft axis parallel to

the orbital plane of the target satellite. Further-

more it is assumed that the fore-aft axis and the

lateral axis lie in the plane normal to radius

vector to the satellite. Thrust units are located

so as to provide fore-aft, left-right and up-down

accelerations. The attitude reference for this

orientation is provided by an inertial platform.

Analog studies have been conducted to investi-

gate vehicle to target closure employing on-off

thrusts applied through the cg of the shuttle ve-

hicle. The basic scheme utilized in these runs

Acquired

Guidanceequation

H IRadar search pattern Timer

Not

acquired _ [ Programmed

_[ thrust profUemagnitude and direction

J
Motor

glmbal II
I!

Variable

thrust motor
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is illustrated in the following sketch. This sketch

shows the relative range and range-rate phase
plane (where Points A and B are two representa-

tive conditions existing at the time of radar lock-
on).

I Switching line

e rate

h 4- "h--- -'=:---

I \
Thrust is applied in all cases to produce a given

specified closure rate, r d. The vehicle is then

allowed to coast L/ntil the switching line conditions
are reached. At this point thrust is again initiated

and the range and range rates are nulled to zero.

The choice of h'_ in _b.e s'.vitchh_,g line equation is

determined by knowledge of the acceleration avail-
able from the motors. Thrust mast be initiated

sufficiently early to avoid overrunning the target.

Because of the on-off nature of the propulsion

system, a dead spot must be provided to prevent
chattering. In addition, it is necessary to bias the

preselected closure velocity since the relative

velocity components will change even in the ab-

sence of thrust due to slight differences in the
orbits of the two vehicles and the differences in

the perturbations effecttng them.

The guidance law for each thrust component

(neglecting the velocity bias previously discussed)

is of the form

""T--+T O R-_) +K >D;I_ >-R d

_[_r 1_]R t) +K <-D; _t>l_ d

T---T0_[(R-.) +KR]>D;I_<-I_d_

T--0 -o< <oI I
L..J

where

251)

E = stand off distance

D = dead spot (±) about E

Rd = preselected closure rate.

It can be shown that closure from any point in

a region about the target vehicle is possible.

However, the most economic utilization of the

propellant occurs when the shuttle is initially

ahead of the target with a slightly lower velocity.
If the vehicle is initially behind the target, two

possibilities exist. First, thrust can be applied

to produce closure without regard to propellant

consumption. Or secondly, the orbital period of

the shuttle vehicle can be adjusted so as to pro-

duce a gradual closure with respect to the target,

and then at such time as the vehicles are appro-

priately located, the previous routine can be em-
ployed.

Studies conducted with initial separations of

approximately 32 km and velocities of approxi-

mately 90 raps i.ndicate that thrust-to-weight ratios

of 0. 1 to 0.2 g are quite adequate for control.

Closure times for these runs were generally in the

order of 400 to 800 sec with a fuel requirement

W 0

of approximately --8-- which checks "very closely

to the estimate obtained from

1

AV --go Isp I n 1----:"_"

The motion of the shuttle vehicle under the in-

fluence of this set of control laws is illustrated in

the following sketch which shows the projected

motion in the vertical-longitudinal plane and the

lateral longitudinal plane.

_D
> jY

Longitudinal (-y)

il f
J

Longitudinal (-y)

Signals for implementing this guidance law are

derived from the radar data. Range (r) and range

rate (/9 along the line of sight are measured by the

tracking radar; the Euler angles defining relative
position are provided by pickoffs on the radar dish

gimbals, and the angular rate of the line of sight

as computed from the signals from the rate gyros

on the radar dish gimbals and the angular rate of

the vehicle which is slaved to some reference (for

example,local vertical).

h. Use of explicit control

The preselection of a nominal closing rate pro-

file implies a fixed number of corrections at fixed

ranges. In the early stages of mission planning,

this is perhaps necessary for determination of sen-

sor, propulsion, and time requirements in relation
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to final accuracies and desired payload. However,

whenever the question of optimization arises, the

selection of a nominal profile can become an in-

volved process, particularly when many correc-

tions are necessary. Moreover, when the statis-

tical interactions are considered, there may be

some disadvantages in the idea of a fixed profile.

Under such involved circumstances, it may be

desirable to allow the vehicle to adjust the closing

rate as a function of the conditions which exist at

the time, rather than purely on the basis of range

or time. Such a scheme would involve estimating

the final range and closing rate dispersions which

would result upon application of the final braking

thrust, and an eventual adjustment of the closing

rate if the estimated dispersions were unsatisfac-

tory. Thus, the times and number of thrust appli-

cations would depend upon the particular circum-

stances encountered during homing, with due

regard for system constraints.

3. Closure Times and Energy Requirements

The requirements for time and mass fraction

to produce terminal closure under any one of the

guidance laws discussed in the previous section

can be obtained by programming the equations of

motion for numerical solution and by substitution

of given sets of initial conditions into the program.

Although this technique has been employed fre-

quently in the literature, it has the disadvantage
that the solution is accurate only in the neighbor-

hood of the initial set of conditions. Thus, for the

present purposes a better approach is to present

an analytic approximation which is reasonably

valid than to discuss numerical solutions. This

technique should have the advantage of pointing up
the significant parameters.

Consider the two space curves representing the

motion of the two vehicles in the following sketch.

or in terms of the various components of position

F x ={nxC =[mo - ({nx +*:ny +{nz)t ] _(t)

= (m 0 - _nt)'x

(where rn represents the total mass flow rate

assumed constant)

and the boundary conditions are R --R 0 and

= 0 at t = 0 and = V --0 at t --tb. The ground

rule is that thrust be maintained constant. This,

in turn, means that the induced velocity will be

canceled at some point in the maneuver by revers-

/ng the thrust for the remaining burning time. It

is noted that this is the general requirement. If

the initial conditions are proper for a given thrust

level and burning time, tt will be possible to

eliminate the necessity for thrust reversal. This

will be seen in the discussions which follow.

Each of the components of position can be ob-

tained as a function of burning time (prior to thrust

reversal) by integrating

F
X

m 0

• < m)lx(t) =_0-0 ----_- tn 1 - _00 t +C1.

Now evaluating _ at t = 0, yields C I = x0" thus

Z Y

/

Given the position and velocity errors at a time

corresponding to injection it is possible to com-

pute the required change in position and velocity

at a time in the future at which rendezvous is

desired. This information is sufficient for a first

order estimate of energy requirement if guidance

schemes are not considered. (The energy require-
ment will be no more valid than this due to the

fact that coupling of the differential equations will

be neglected. )

The differential equations governing this ma-
neuver are

..

F - mC • (m 0 - n_t) R (252)

F m
x(t) = ---v--x In(l - t) +x 0m

mo {'x (t) = x fn rh
---r--m( - --v--)m 1 -_00 t) n(l _00 t)

- 1}] +Xot +C 2.

Again evaluating at t = 0 yields

Fxmo _ rot) {i _nt }]x(t) ='-'--7"2--m I - mo n(1 -_0 ) - 1

(continued)
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F x m 0

+ x0 t + x0 + .-"'7-2--
m

" _ mo/ \m

+ _0 t + x 0

(253)

*_o]

and similarly for y and z. But this solution is

valid only for t < t I where t I is the time at which

this component of thrust is reversed. At times

greater than t I the same procedure must be uti-

lized but T must be of the opposite sense,
x

x(t) -----r- n I - +C 3
m

where

M 0 = m 0 - mt I

But x must be x I at t =t I . Thus

{n t l-n

Fx ['n (' :_-o_)Jc 3 --x 1 - --_--

and

x(t) = x rrnt--r- n(1 - )-_n -m _

mtl.'1

- 'n (l - -_-_-0)j +_o

[,<,--_- n - -,n --%-0/

- mon J _o'

At this point the relationship between t I for this

coordinate and t b can be determined by requiring

that x = 0 at t =t b. Thus

l- - ..-. o
"%-o

or

tb -- - - -_-./ e
(254)

_tl2
2t 1 - 2 m"--'_ for x 0 = 0

t/

Now continuing to

F
= xx (t)

m

the definition of x (t) yields

-t
(continued)

mtl_ mtl_]-"° ('-

where

+ x0t + C 4

x(t) =x 1 at t =t 1.

Thus

C 4 _-'_-o/ (1" To/-

mo/IJ

Fx [m <1 _ n_tlh _[n (| r_ntl_ l_nt l= "-_ 0 m 0 ] m 0 ] + m--'_'-

%-o/

+tltn 1(1--_.0] (l-mtl_] +xff
mo )lJ

Now at t = tb, x = 0, therefore

- x 0 = .--;--2- M0 -
m

- rn (t b - t 1) tn

{'n -
{n t,_ zntl_ t('-

Ln (1 - toO/ +_t 1

-{ntl_ lln (1-l:ntl_ -

(255)

This expression can be simplified by eliminating

tb from the equation using

M0 _ n_tl_tb =- _ -A (1--_0 ] (1 -%)]

-_o_ r
A = e (256)

or
M0 m

tb =--_ (I -A) +A2t I (I - _0-0 tl)

M 0 M o

=--_--(1-A) +2At I
(257)

r_t 1

Now letting -_0 = gl"

VII-41



Thus

_ m0
tb - -- (1 - _1 ) (1 - A) + 2A (I - gl)tl

rntb [(1 A) 2Agl]
1 --]_--0 = I - - +

--A - 2Ag I =A(I - 2_i).

- x 0 =# -Am0(l -gl)(1

- 2_1) {in _. (1- 2_1)- 1}

- {m0(l - _i ) (I - A) + m 0 _I

• (2A (l - £.i) - i)} tn (I - 261)

+ r:no (i -_ I) _n (i - _I ) + m0_ I

-x 0 = F x i_ 0 [ '}7 - A (I - 3{i + 2{I-) in (I-2_ I)

+ (I - 3_ 1 + 2E}) (I - InA)

- {(I- _i)(I-A) +_I [2A(I - El)

- ,n
+ (I - _i ) In (I - E l) +E l +(I - 2_ I)

{'n (I - 2_I) -'n(l -_i) - I}] .

Now adding and subtracting (I - 3_ I + 2El 2) tn

(I - 2 El ) within the bracket yields

1 - 2E 1)

-x0 =m0 --- _ g In(l-_l)+2g
r_ 1

+ (1 - 3E I + 2_i 2) [(I -A) tn (

(258)

This equation is solved for tl; then the equation for

t b completes the solution. However, if _ is of the

order of 0. 1 or less as it is for most maneuvers a

further simplification can be achieved by expansion
of_n (1 - g)

(I - E)--- E - _:.In

Thus

{I
-x =m 0 # }- _ (1- 3E I +.26})}

[(1- A)(-2_ l - 2E}) tnA]I

t:n2 x 0

=InA +2EI(I - A) + El2 (- I + 8(1 - A))

+ _3 (_ __ 2(I - A)) + .... (259)

This is a cubic equation which can be solved by
successive approximations. Since there exist three
such equations (one for each of the coordinates)

parametric data seems extremely impractical.

However, the form of the solution is sufficiently

simple to facilitate hand computions for any

given set of initial conditions.

Once t I and tb are known, the total mass frac-

tion is simply

r_ t b T t b
= . i (260)

m0

and the corresponding impulsive velocity is

I

_V = go Isp in

= go Isp C = go Isp

_h t b

m 0

T tb

= go Isp -C"
(261)

Thus, in this fashion it [s possible to evaluate the
energy requirements for a rendezvous maneuver

which approximates the guided maneuver.

Example. Consider a maneuver in the x-direc-

tion for which the initial conditions are x - Ft 0 =
F F =

x0, _ -- 0, t = tb, and I_ 0 = Bor m% Bg0,

where B is an unspecified constant. Since x = 0,

Am1.

Thus

.2

m x 0 2

m0_x = - E 1 +O(_ 3)

but

F x 0
F --
x II0

- F.

Thus

m o _- : \ m0 /

2 m0 Xo x0

tl - --_"_ = _'g0

j'
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and

or

Also

t b = 2t 1 (I - mm-_-._-/

W F BW0 = B

t b = 2 - _ Xo
Isp

S -
x0/go

0

= Isp s_p

(262)

This expression shows the importance of several

parameters. First, _b will be larger for the higher

acceleration levels (large B). This behavior re-

sults from the excessive propellant burned to can-

cel the velocity induced from t --0 to t = t I. The

higher consumption, however, resulted in a lower

value of closure time (tb). The second parameter

is the specific impulse (Isp). This parameter en-

ters into two stages: first, higher values of specif-

ic impulse reduce t b, and second, the higher

values of I reduce m. The contribution of both
sp

efforts is observed in the functional form of _b'
Eq (262).

To provide an idea of the magnitude of the re-

quired propellant fraction, consider

= 105 ft = 0.3048x 105 m
x 0

B

go

I
sp

_b

t b

= 0.1

= 32.2 ft/sec 2 = 980 cm/sec 2

= 300 sec

= _:".'Y0"0" -_Y6

= 0.666 [0.176-0.013] s Oi 108

= gb --w-- = gb
m

(300)
= 0.108 _ = 322 sec

t = 170 sec
1

AV = go Isp gb = 32.2 (300) (0. 108)

= 1030 fps or 315 raps

Now consider the some problem but with accelera-

tion levels of 0.075, 0.05, 0.03 and 0.01.

B=0.1 B =0.075 B =0.05 B =0.03 [B =0.01!

_b 0.1)8 i 0.0955 0.0783 0.0616',0.0364 1

tb (see) 322 382 i 489 I s,6 ,103 I

ti,8oo 1,0 I-, j3,8 I

tfp8 1030 922 756 594 352 ,
imps [ 315 281 231 181 ! 107

The first observation is that the energy require-

ments are large. This fact is due to the assump-
tion that the closure velocity was zero initially

(as may be seen in Eq (259), and the fact that the

assumed range at t = 0 was large. To provide an

appreciation of the validity of the solution, how-

ever, a numerical check was made of this set of

initial conditions utilizing a line of sight guidance

law. The results of this investigation proved the

validity of this approximation since the agreement

of the results for the same closure times was

essentially the same as those predicted.

A more realistic approach utilizing the fact

that the vehicle should be placed ahead of the tar-

get at a slightly lower velocity in order to produce

an inverse tail chase would of necessity reduce

these energy requirements to the numbers more

conventionally quoted. In fact by selecting the

proper value of F and t b for a given x0Y0 _0 it

would be possible to eliminate the first type of

thrust (i.e., toward the target) and accelerate

continuously to the desired rendezvous. To pro-

vide more specific information for a particular

guidance system, it is necessary to produce a
numerical simulation of the maneuver. This has

been accomplished for two of the rendezvous

schemes, the first being a constant line of sight
in inertial space and the second being a combina-

tion of a differential correction procedure and
Method I. Table 2 presents typical numerical

results for these techniques for a circular target

orbit of approximately 180 km. Burnout occurs

at 37 km for all runs, and two ascent range angles

(cut off to apocynthian 180 ° and 90 °) are presented.
The differences in the numerical results are due

to the fact that more energy is required for injec-
tion for the 90 ° ascents and the fact that the rela-

tive velocities near apocynthian for the 180 ° as-

cents are sufficiently lower to require longer clo-
sure times. As may be seen from Eq (259), the

maneuver requirements for a lunar rendezvous
and for an earth rendezvous would be the same.

The same cannot, however, be said for that por-

tion of the velocity required to inject into the or-
bit. Thus, the total maneuver requirements should

be increased by the amount of the difference in the

injection velocities to provide a better estimate of

the total requirements for earth rendezvous

AVcorrection = (Vc " Va_ "(V c " Va_
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Ascent

90

90

90

90

! 90

90

90

90

90

90

180

I80

180

180

180
180

180

]
Method 1

Method 2

TABLE 2

Numerical Rendezvous Results

Position
-----r

x0(m) Y0(m) z0(m)

0 -33,109 -16,620

0 -35,693 -9.897
3,426 -35,528 -9,897
3,426 -28,554 -23,343

0 -28,760 -23.343

37,040 0 0

33,617 0 6,723

33,617 0 -6,723

40,466 0 -6,723

40,466 0 6,723

0 -19,886 -31,299
0 -27,?29 -24,256!

23,706 -14,388 -24,256

23,706 5.667 -27,891

0 5,667 -36,604 i

37,040 0 0 i

37,040 0 6,743 I
45,003 0 6,743 I

60,747 0 6,743!

Velocit[

_}0(mps) _0(mPs) z0(mps)

0 43.6 61.0

0 43.6 61.0
0 43,5 61.0

0 43.6 61.0
0 43.6 61.0

-64.6 0 0

-64.6 0 0

-64.6 0 0

-64.8 0 0

-64.6 0 0

0 -15.1 56.1

0 -15.1 56.1

0 -15.1 56.1

0 -!5.1 56.1

0 -15. i 56.1

-26. 1 0 0

-26, 1 0 0

-26.1 0 0

-26.1 0 0

Uncorrected

Miss

Distance

(kin)

0

8.83

9,06

0
__

8.98

0

I4.48

Method I

t AV (raps)

560 81. I

608 84.4

609 89.9

540 100.3

538 93.0

557 71.9

538 91.4

535 91.7

622 92.7

616 92.7

1081 66.1

2G1 69.8

162 101.5

968 112.2

843 66.8

0 1061 40.8

-- 1102 59.1

15.41 1207 64.6

-- 1366 91.4

Method H

t ,_V (raps)

587 71.6

627 78.9

628 79.2

553 88.7

_61 87.a

580 71.9

559 82.6

556 32.6

644 83.8

644 83.8

1095 36.9

1269 45.!

! 470 57.0

i 977 72.5

853 64.6

i 1071 40.5

1112 51.8

1220 59.1

1383 68.3

The inertial line of sight is maintained fixed.

A computation is made using the equations of

relative motion to yield a correction of position.

Then as a final phase, the inertial line of _i_ht

is held constant as thrust nulls veloci_.y and

posit tun error's.

NOTES:

x normal to track

y along track (i. e.. =long V)

z along radius

4. Terminal Guidance Smoothing Techniques

Tracking noise, in particular that which arises

in radar skin tracking, has a profound effect on the

probability of success in the rendezvous mission.

Frequently, the basic accuracy of a homing tracker

is not sufficient to allow guidance command com-

putations without some smoothing. In this section

two techniques for the smoothing of transverse

angular rates of the line of sight are discussed.

Emphasis is placed on the angular rates inasmuch

as the effects of noise in these measurements are

more severe than those in range. The two tech-

niques are:

(i) Angular momentum smoothing.

(2) Sample data (digital) filtering.

The first technique takes advantage of the fact

that the product of the square of range and the

inertial angular rate of the line of sight is very

nearly preserved during thrust-free flight. Thus,

the average of this product over many points in

time yields a near-optimal estimate of the "angu-

lar momentum" of the target-homing vehicle sys-

tem. Division of this estimate by the square of

the most recent value of range (suitably smoothed

and updated) yields a near-optimal, updated esti-

mate of the line-of-sight rate. Alternatively,

division of the estimate of angular momentum by

the most recent value of range yields a near-

optimal, updated estimate of the transverse velocity.

The second technique is that of digital filtering

of the line-of-sight rate, assumed to be of the form

of a signal polynomial plus uncorrelated noise.

This technique is the conventional sample data

minimum mean square error scheme discussed

by Blum (Ref. 17). While the angular momentum

smoothing scheme is simple and effective, range

measurements must be available. Sample data

filtering on the angular rates does not depend on

range information and is, hence, applicable to

both collision and proportional navigation.

A third technique not discussed here is that

of analog filtering of continuous data outputs from

the tracker. The smoothing may involve either

a straightforward low-pass filtering of the track-

ing outputs or the use of Wiener filters. The

interested reader is directed to Refs. 18 through

26 on the topic of optimum mean square error

filters for continuous processes.

The forms of the true rates _ and _ are
Y P

suggested in the discussion of homing techniques

formulated with respect to the line of sight. For

thrust-free motion

t

:R02_ +_" RAgp dt
hwP P0 0

h : R20 Wy 0

} (263)
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where

= R2_ 1

hcop P

(264)

h = R2_

COy y

Thus, for angular momentum smoothing, the yaw

signal, h , is a constant, while that of pitch is

%,
very nearly so if the gravity torque is small. For

sample data filtering of the rates, upand wy, sub-

stitution of Eq (264) into Eq (263) shows that

t

R02_p0 1 !" RA gp dt

_P = R2 + R'2 0

(265)

R02_p0

_v = R 2

Over smoothing times much less than the total

homing time, _p and coy, may be closely approxi-

mated by general polynomials in time. For ex-

ample, if the closing rate is reasonably constant

over the smoothing time,

)R=R0-(- t

= R 0 1 - (266)

where

-/_0

tG0 = initial time-to-go -- -_0
(267)

Thus,

co

YO

tG 0

1 + 2 t t 2 .)= CO -- - 5 .-----if- + .. (268)

Y0 tG 0 tG0

and similarly for CO except that an additional ex-
P

pansion is required due to the presence of the

gravity torque.

Thus, in both schemes it can be said that the

true signal is a polynomial in time. In the case

of angular momentum smoothing the behavior is
nearly a constant in pitch and truly a constant in

yaw. The angular rates are polynomials of higher

order depending on the smoothing time. For very

short smoothing times a linear variation is valid.

For moderate to reasonably long smoothing times

a second or third order polynomial is valid.

a. Angular momentum smoothing

Let

h = estimate of h , h

P' Y _p Ov

then assuming a large number of samples, N,

over the smoothing interval,

N

1 ! (h p,y ) (269)hp,y = i=l i

may be used to smooth the anffutar momentum
over thrust-free periods. In the following, tim

range measurements are considered *o be noise-

less since current trackers have canoe accuracies

giving rise to negligible transverse a-aldanee

errors. The input to the smoothing process may
be written as

h ) = R02_p0 + R.2&o_Op [ l Pi

t0*t.

+ RAgp dt

t 0

h ) = R02_y 0 + R 25w_Y i 1 Yi

where

(270)

5COp

5_
Y

Thus,

= pitch rate noise of line of sight

= yaw rate noise of line of sight.

N

hp=R02_p0+_ ! Ri25Wpi
i=l

N t0+t i

i--1 t o

N

hy = R02_y0+l ! R25w1 Yi
i=l

(27 I)

At the end of the smoothing interval at which

the estimates are to apply, the true values of the

angular momenta are
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t 0 + t N "_
= R02_p0 + R_gp dthp

to

hy = R02_Oy 0

Hence, the errors in the estimates are

(272)

N

1 v" Ri26_p 16hp = ?_ _

i=l

N t0+t N

v
N /

i=1 t0+t i

R_ gp dt
(273)

N

= R.26¢o
_hy _ l Yi

i=l

Utilizing the apparent gravity effects (discussed
earlier) and the fact that range decreases mono-

tonically, Eq (273) are seen to be bounded by

RO _ 3 GM RO2tN
= +4 rt

(Shp)max "N" 5Vpi --
i=l

N

R° r(6hv)ma x = 6V
Yi

i=l

)(274)

where

= R.6_ t

6Vp i i Pi

= R.6_
6Vy i I Yi

Hence,

S "%

('hp}max (_) 1_ 1(6Vp)max = R = 1 6Vp
=

+ 3 GM R02

4 VTtN

r
i=l

UsingEq (266) witht = t N< < tG0

6V

Yi

(275)

(276)

N
%...-%

_ _ ___ + Rt N(dVp)max __ 1 3 GM
N 5Vpi

i=l 4 r t

N (277)

(dVy)max _ 1 71N 6Vy i
-=

Thus, since the samples are uncorrelated, the
maximum values for the standard deviations are

i

max_v =-- (¢;Vi>4"_P -- P max

(278)

1

maX_V --_ Irv i)Y Y max

and the maximum mean pitch velocity error is

_ 3 GM
max u v 4 3- RtN (279)

P r t

The fact that the velocity error due to the

gravity torque is negligible is apparent upon sub-
stitution of some numbers. For a target in a
circular orbit of 500 naut mi or 926 km altitude

and a relative range of 25 naut mi or 46. 3 kin, a

smoothing time of 10 sec yields

1 fps or 0. 3 mpsmax u V
P

At a relative range of 5 mi or 8.7 km this maxi-

mum error becomes 0. 2 fps or 0. O36 naps; at

1 mior 1.73 kin; 0.04 fps or 0. 012 mps. Thus,

while the bias error is initially large, it quickly

drops to a negligible level at small ranges where
fine accuracy is required. This is to be expected

since the differential gravity acceleration dimin-

ishes as range goes to zero. Thus, Eqs (278) and

(279) remain as the principal errors, showing that

the angular momentum smoothing scheme yields
residual transverse velocity errors which decrease

with the square root of the number of samples
used in the process.

b. Sample data filtering

Blum (Ref. 17) presents an exact formula for

the output noise power of an optimum digital filter

designed to make a zero-lag estimate of the input
or its derivatives. The input model consists of a

polynomial signal plus stationary uncorrelated
noise. Graphs and tables of the rms error for the

zero-lag estimation of the 0th, 1st and 2nd deriva-

tives are given as a function of the input polynomial

up to degree 5 and memory spans up to 10 sample
points.

The work of Blum in sampled data filters is

discussed in this section, to the extent of intro-

ducing the variables and notation used in his graphs
and tables, and the results that he derives.

VII-46



Considera setof equallyspaceddata points

(u, yu ) u = I, 2 ..... M. The problem is to fit

a least squares polynomial of degree n to these

points and to estimate the Kth derivative of the

observed data from the curve fit at any point on
the u scale.

For the purpose of the analysis it is convenient

to utilize orthogonal polynomials in the curve fitting

procedure. Thus let the true polynomial be given

by

II

P(u) = Y

L:O

a L_L(U), u = 1, 2 ..... M

(280)

where the polynomials _L (u) are orthogonal,

(Ref. 28) e. g., satisfy the following relationships

M

_h(U)_L (u)

u=l

= 0. h # L, (281) Let

M

_L 2 (u)

u=l

: S(L, /vl). (282)

It is assumed that the observations Yu are _iveq-. by

Yu = P(u) + N(u).

The N(u) are assumed to be random, stationary,
and uncorrelated errors.

Then the least squares estimates _L of the co-

efficients aL are obtained by minimizing

1I = 7 _L {L (u) - y (283)

u=l 0

^

with respect to each of the parameters _L"

Thus one obtains

a_.[_I= I 2 A_v_v(U) - y _L(U) = 0,

8aL _:0u=l

L=0, I ..... n.

(284)

Solving Eq (284) for _L one obtains

Yu_L (u)9 L L 0, i, n.

u=l

(285)

By substituting Eq (285) one obtains the curve fit

relationship

n

Y(u) : ! _L _L(U) .

L=0

(286)

To evaluate the estimate of the Kth derivative

at u = M + a one need only take the Kth derivative

of both sides of Eq (286) (considering u as a con-

tinuous variable), and obtain

dKy(u)

u--M÷a
(287)

n

'_ dK (u)I ¢_L du___ _ L
L=K

I u=M+o

dK j_L(U) - _L (K) (M * _)

u=M+a

Now, substituting Eqs (285) and (287) yields

(288)

y(K) (M + o) =

n M Yu_L(U)_L (K) (M + 0,)

L=K u=l

(289)

Let

then

n {L(U)_L (K) (M + a)7
WM-u = S (L, M)

L=K

u = i, 2 ..... M
(290)

M

_x(K) (M + + 7 *j)= _ WM-uYu+3-"M+j
u=l

j = 0+I =L2 ....

(291)

Equation (291) is directly interpreted as the

input-output relationship of a digital filter with

weighting sequence W0, W I ..... WM_ 1. The

input is the sequence Yu+j and the output is

YM+j (M + j + a). The output is available in real

time after the last data point is sampled and esti-

mates the Kth derivative of the input at u = M+a+j.

The filter has a finite memory over the interval
(M- I)T.
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Sincethe estimators _L are unbiased, the error

in estimate is given by (j = 0),

IYM(K) _ aL_L(K)(M )1
A = (M+a) - +a

L=K

M (292)

A _ * N(u).
= , WM_ u

.._#

u=l

The mean square error of estimate is given by

M

aA N M- (293)

u=l

(aN 2 : noise mean square error).

Substituting Eqs (281) and (282) into Eq (293) yields,

2

aA 52
2 =- (M,a,K,n)

(;N

n F_. (K)(M+_)]
= T L-I_

S(L, M)
L=K

(294)

which is the main result of this section.

Equation (294) has been derived for unit time

between samples. If the interval between samples

is given by T, then Eq (290) is modified as follows:

* _ 1 (295)
WM-u, T -_-_ WM-u'

and Eq (294) becomes

2
a A (T) 2K

2

o N

= 62 (M, a, K, n). (296)

Note that

6 2(M, a, K, n) = 52(M, a, K, n- 1)

(297)

+ [qn(K) (M + °t)] 2

S(n, -M) "

so that increasing the degree of curve fit is never
2

associated with a decrease in a A since the second

term of Eq (297) is positive definite for fixed M0
a, and K.

Special case. Special formulas for 62 are as
follows. Let K = 0, a = 0, -1, -2 ..... (M- 1) then

52 (M, a, 0, n) = W*

As an example, when a = 0, K = 0, one obtains

a zero-lag estimate of the input. The mean square

error output is then proportional to W 0, the co-

efficient which multiplies the latest data point,

e.g.,

2 2 *
= a N • W 0 •Gi. _

Other relationships on the 6 which may be

useful are as follows. Let the order of the deriva-

tive equal the order of degree of curve fit, e. g. ,

K = n, then

(n')2

62 (M, a, n, n) = _ (298)

and is independent of a.

Let the order of the derivative equal ope less

than the degree of the curve fitting polynomial,

e.g., K--n- I, then

62(M,_, n - 1, n) = 52(M,o_, n - I, n - 1)

(299)

= [(n- I)!] 2

5(n- 1, M)

M + 2a - 11 2 22 J

(300)

When_z = - (M - 1)/2; e.g., the midpoint of the

curve fitting interval,

5(M,a =-[-_] , n-1, n)

= 52(M,a, n - i, n - I). (301)

This represents the minimum 62 obtainable with

respect to a.

Tables 3, 4 and 5 present the exact values of
5 using Eq (296). Figures 11, 12 and 13 present

a plot of 6 using Eq (294) for M = 10 to 100 for

purposes of interpolation.

Equation (296) is identical with the results one
would obtain from B1um (Ref. 30) as are the values

of the weighting sequence.

The interpretation of the parameter a is as
follows: when a = 0, one obtains a zero-lag

estimate with respect to the latest data point,

when - (M - u --* 1) < a > 0, one obtains an extra-

polation, and when (M - 1) < a < 0, one obtains

interpolation of the input polynomial. A more
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a_ 2 as a function of a isdetailed discussion of

available (Ref. 28).

Table 6 contains a summary of a few useful

properties of the orthogonal polynomials. A list-

ing of the orthogonal polynomials in consistent
notation is shown in Table 5 of Ref. 29.

The functions satisfy the following recursion
relationship

tv+l(U) - _l(U) t.v(U)

v 2 (M 2 _ v 2)

4 (4v 2 - 1)
{v- 1 (u) (302)

As indicated, the recursion is an identity so that

by repeated differentiation one obtains

(L) (u) -= _l(U) {v(L)(u) + L_ (L- 1)(u )
v+l v

v2(M2 " v2) r (L) (u),

4 (4v 2 - i)
_V I

(303)

where

_:L). (u) = 0, L < 0, x< 0, L > x, and

_vhere _(L) = L'

so that

_(L) (M+a) - [2a+M - 1] (L)(M+_)v÷l 2 _v

L_vL_I)I (M+a)+

- v 2 [M - v 2] .e(L) (M+a').

4(4v 2- i) "_v- 1

(304}

Finally, the sum of squares S(L, M) is given by

Ref. 30.

+L

(L')4 _ (M - j)

i=-U (305)S(L, M) = (2L t (2L + l)t

Higher order polynomials to degree I0 are listed

by Allen (Ref. 31). A very complete table of the

values of _v(U) forv = 0, to 5, ufrom v+ 2 to

104 is made available by Anderson and Houseman
(Ref. 30).

c. Conclusion

An exact equation for the mean square error

of the output of an optimum digital filter has been

presented. The formula was derived using curve

fitting concepts to demonstrate the relationship
between the concepts of parameter estimation in

curve fitting and weighting function optimization
in linear filtering.

Equation (290) represents a convenient formula

for computing the weighting sequence of the digital
filte r.

From Tables 3, 4 and 5, one may determine
the exact value of 6 for small M.

In Figures 16, 17 and 18, the values of 6 can
be determined for those values of M not tabulated.

For M > 100, one can extrapolate linearly on log-

log paper.

TABLE 3

Table of 6(M, a, K, n), _ = 00 K = 0 for Evaluating

the RMS Error for Zero-Lag (a = 0) Est/mation of

the Input (K = 0) as a Function of the Degree of the

Curve FittLng Polynomial (n) and the Number of Data
Points (M)

M/n-- 9 1

2 _ O. 70711

3 5 O. 57735 O. 91287

4 6 0. 50000 O. 83666

5 5 0.44721 O. 77160

6 3 O, 40825 0. 72375

7 5 ('. 3;'7_6 0, 681_

8 5 9. 35355 O. 64550

3 O. 33332 O. 61464

i0 6 0, 31623 O. 58775

20 _ O, 22361 O. 43095

50 6 O. 14142 O, 27865

95 6 O. 10260 O, 20359

1001 L O. 031607 Om 063167

2 3 % 5

O. 97468

0.94112 0.99283

O. qGi;3 _, O. _7096 0 99801

0. 4728; O. '_362 O. i_346 -_ _:,.,_

O, 34162 O, 915_8 O. 9a665 0,0_?06

O. 31278 O. 92650 O. 97800 O. )95 ]_

0.'?,6625 0.30762 0.96802 0.89157

O. 60892 O. 74985 O. 85231 O. 92022

O. 40784 O. 52578 O. 63011 O, 71946

O. 30142 0.39471 0.48223 0,56299

O, 094632 O. 12596 O. 15709 O, 18800

TABLE 4

Table of 6(M, a, K, n), a =0, K = 1 for Evaluating

the RMS Error for Zero-Lag (a = 0) Estimation of

the First Derivative of the Input (K = 1) as a Func-

tion of the Degree of the Curve Fitting Polynomial
(n) and the Number of Data Points (M)

M/n_ 1 2 3 4 3

2 6 1.414

3 6 0.70711 2. 5495

4 6 0.44721 1.5852 3.83895

5 6 0.31623 1. 1148 2. 52568 5.5830

8 6 0.23905 0.85252 1. 90348 3.6802 8. 2418

7 6 0.18898 0. 68138 1.52189 2.8226 5.2190

8 6 0.15430 O. 58167 1,26041 2.3028 3. 9614

9 5 0.12910 0.47377 I. 06943 L 9445 3. 2351

10 6 0.11010 O. %0685 O. 92389 1.6794 2,7476

20 _ 0.038778 0.14855 O. 35079 O. 65608 I. 0684

50 6 O. 0097999 O. 038494 O. 093871 O, 18201 0.30714

95 8 0. 0037414 0.014821 0.036558 O. 071883 0.12328

I001 6 0.000109380 O. 00043711 0.0010913 O. 0021790 O. 0038054
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TABLE 5

Table of 5(M, a, K, n), a = 0, K = 2 for evaluating

the RMS error for zero-lag (a = 0) estimation of

the second derivative of the input (K = 2) as a func-

tion of the degree of the curve fitting polynomial
(n) and the number of data points (M)

M/n _ 2 3 4 5

3 $ 2. 4495

4 6 I. 0 8, 7823

5 b 0.53452 3.207Z 14.017

6 6 O. 32733 t. 8919 7. 0312 26. 312

7 5 _.21J_2 1.2_40 4.38_2 13,334

8 6 0.15430 0.87535 2.3852 8.41L3

3 6 0. I[336 0. 64578 2. 172_ 5. 8714

i0 5 0.,)87039 0. _9335 I. 8434 4, 3527

20 5 O. 015094 _. 087_23 0. 29[79 0.74414

50 5 0.00[5194 0.0089549 0.030657 0.079685

_3 6 O. JO.3303IZ 0.0018129 3. OGS2B72 0._1G468

TABLE 6

O_hogonalPolynomials

_o(U) : 1

z(u) : (u-u),u: M+I2

_ M2-1
_2(u) : (u -_)2 --_

_3(u>: (u u>3 (un) L _0

+ 3(M 2- 1)(M 2- 9)
560

5. Lon_ Time Closure

If relatively long times are acceptable for

closure, several computational schemes may be

employed. One such method has been developed
by D. F. Lawden and is reported in Ref. 31. The

solution outlined is directed primarily toward the

correction of interplanetary orbits but is sufficient-
ly general that it may be utilized for this problem

as well. The major disadvantage of this solution

for manual computation is the iteration procedure

required to define the modified or closure orbit.

A general solution may be obtained by con-

sidering the requirements for closure (i.e., the

radius identity at the poin_ of rendezvous and
specified time of closures). This analysis yields

two equations with 3 dnknowns (_a, _e and A¢_):

however, these new variables are in turn functions

of Ar which is a known error and _V 1 and "_'_1

which are the differences in velocity and flight

path angle immediately after the corrective pulse
relative to those of the target vehicle at the same

time. This analysis yields the following equations

when second order terms in _a, _e and _a_ are

neglected.

[1 - 2efAe ] [1 +_a--]
1 - ef 2

1 + (el + Ae) cos (8f2 + A¢0)

1 +el cos 8f2

At 2w
_" - Et2 - Etl -(el ÷ Ae)(sinEt2 - sin Etl)

Etl :

_/l-(ef +_e)+Ae) (6e2-A _ -Ac_+'_) ]22 tan- 1L_I+ (e f tan "

Et2 :

_/l-(ef+Ae) (_f2 +_) ]2 tan- LTl+(ef+ae ) tan 2

where

An, Ae and Ac_ are the required changes in

the orbital parameters as defined in the following
discussion of the variation of parameters tech-

nique.

8f2 is the angle from perigee to the point of

rendezvous in the target orbit.

2"8 is the angle subtended by the target vehicle

in moving from t 1 to t 2.

A¢ is the central angle between the two ve-

hicles at t 1

The resultant equations for this solution are so

complex in nature that the solution appears un-
attractive.

A third method may be obtained by adapting
the "Variational Method for General Orbital

Errors Analysis" reported in Chapter 12. The

equations for this solution are summarized be-
low.

el2 = ef2 (efl, tclosur e, ef)

( l+e cos 0f2)2 ___f_---At + 3MAn
A¢2 - A¢o- 3/2

sin el2 (2 + e cos 8f2)

+ 2 _e (306)
1-e

[I- e 2 3eM sin 8f2 1

At2 = Ll+e cos 8f2 2(l_e 2) 1/2J Aa

A a I

_/_ e sin 6f2 At- a cos 8f2 Ae - _2 (307)
(1- e 2) 1

2(1 +e COSSfl)2Ar I
+

(i --e2) 2 (continued)
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i

-_(1 +2e cos 0fl + e2)AV 1+ 2
l-e

(308)

(e + cos 6fl)(l + e cos 8fl)Ar 1
A e =

a (I - e2) 2

+ 2 (e +cos 6fl)4/a (I - e 2)
V. (i+ 2e cos 8fi+62)

(1 - e 2) sin 6fl

+ 1 + e cos if1 "11

sin 8fl (I+ ecos 8fl) Ar I
/%_ =

ae (I - e 2)

_V 1

(30_)

At =
P

_/f_ (1 - e 2) Jx
2 sin efl (I + 2e cos _fl + 62)

V 1

2 (l-e 2) cos 6fl ]A_I (310)+ e(l+e COS 0fl)

_3 (1-e2) 3/2 [(A_ -A_I )

(l+e cos 6fl)2

sin 6fI(2+ e c°s_f') ] _}
2 _ -_e - (311)

i -e

This analysis assumes that the orbits of the

target and shuttle vehicle during closure are very
similar and treats the displacement at the initially

selected point of rendezvous, or any other point

where the vehicles are sufficiently close, as an

error in the position at that time of the target ve-
hicle. The solution is made in the following se-

quence:

(1) The required changes in a, e, ¢0 and tp are

computed in terms of known errors Ar 1

and A¢ 1, and the desired parameters AV 1

and A71 .

(2) These equations in terms of two unknowns

are then substituted into the equations for

Ar 2 and Acb 2.

(3) The equations for errors in position at
point 2 are equated to 0 and the resultant

equations solved simultaneously for AV 1

and A7 !.

(4) With knowledge of the velocity and flight

path angle both before and after the appli-

cation of the corrective pulse, the magni-

tude and direction of the pulse required

may be computed from the law of cosines.

This analysis is general and could be employed
for the case of short time closure as well (this

implies large changes in a, e, _, tp) were it not

for the fact that second order terms in AV I, A_ 1

and Ar I have been neglected in the derivation.

This does not preclude the possibility of including

these terms in the definition of Aa, Ae, /xe and

Atp; however, this incorporation is felt to be ex-

cessively laborious.

Sample problem. The utilization of this clo-

sure analysis is illustrated in the following sam-

ple problem.

a24 = 1.38337 x 108 ft Ar 1 = 16. 6426 stat mi

= 42165. 1 km = 26. 7837 km

e24 = 0.61832 _1 = 0.019222 tad

8fl = 107. 90 ° %_tl : 8776 fps

tfl = 8339.5 sec = 2675 m/see

Vfl= 12840 fps tclosure = 20,000 sec

rfl

= 3913.63 m/see

= 20,000 star mi

= 32186.9 km

Y't' = 36. 008"

Note:

X' parameter in transfer orbit before inltl-
tl ating closure

Xtl parameter in closure orbit at time of
pulse

Xfl parameter in target orbit at time of pulse

Xf2 parameter in target orbit at rendezvous

X24 target 24-hr orbit

if2., 28340 sec

2_f2

Mf2 =--v = 2. 086592

From Fig. 1

E K _ 2.46 rad

e (sinE K- E Kcos E K)+M

EK+I = 1 - e cos E K

= 2.457386 rad = 140.7984"

0f2.2tan'lL'1-. 1603788"
2 (I + • cos 8fl)Ar 1

Z_a =

(I - e2) 2

21/a3_ (1 + 2e cos Ofl + e 2)+

(I - e 2) AVI

=(30.1577 + 3. 49074 AV1)x 104 (it)
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where&V1is expressedin feetpersecond.

(e + cos Ofl) (1 + e cos Ofl) Ar 1
A e ,,

a (1 - e2) 2

+ 2 (e + cos Oil) _a (I - e 2)

T 2)(1 + 2e cos 8 + e

•(i - e 2) sin 8fl Ay
+

1 + e cos _fl

= [2. 08560 + 0. 482328 AV 1

• 7261.03 Ay] x 10 -4

sin 8fl (1 + e cos ell) Ar 1
A_ =

ae (1 - e 2)

2sin.__.__._6 4/a (1 - e 2)
+

,'_V 1
e _ (I + 2e cos 8fl +e 2)

[ (i - e2)c°s 8fl ] _7
- 2 + e (l+e cos 6fl)

= (12. 80025 + 2. 396265 &V 1

At
P

"`V 1

- 16188.96 Ay1) x 10 -4

.,,
_(l+e cos 6fi)2 A¢I

sin 8fl (2+e.e2C°S ell) AeJ

3 MAa
2a

r 1

Atp --I1.018824 - + 2.832749"el
wl

- 0.452128x 10 -8 Aa x 104

= -190. 165412 + 2. 224632 AV l + 4107.37_YI

Now since it is desired to rendezvous at el2, It is

known that A¢2 = &r 2 ,, 0. Re-evaluating the

equations for A¢ and Ar at 8f2 and equating them
to zero yields

(l+e cos 8f2)2 F ,,/77--

A¢2 = A¢_ . e2)3/2 L'_j- a &t(1- P

_a_a ] sin el2 (2 + e cos ef2) Ae+ + 2
1 -e

0 = A_ - 0. 262335 x 10 -4 At
P

- 0.808135 X 10 -8 Z_a + 0.770742 Z_e

11 2 3Me sin 8f2 ]

-e

Ar2 = + e cos 8f2 2 (1-e 2) 1/2 Aa

- a cos 8f2 Ae - _--_'--a

e sin 8in At

(1 - e2) _I/2P

0 = 0.660121 Aa + 1.303016 x 108 Ae

- 0.266530 x 104 At
P

Substituting for "`a, Ae, _ and At their equtva-
P

lents in terms of ,-IV 1 and "`71 yields

0.629591_V+ 11670.08 A'_ = 39.983576

2.33986 AV + 8366.51 A7 = -73.310088

Solving these equations slmuitaneousiy produces

AV 1 "-53,998 fps = -16. 459 m/sec

A71 = 0. 00634 rad = 0. 3632 °

These values of ',IV1 and &71 are relative to those

of the target vehicle at point one. The solution

for the required maneuver follows:

Vt! = \rfl +'`V = 12786 fps _ 3,;q7. _ re,see

V'tl= 8775.5 fps = 2674. 8 m/see

A7 =(Nfl + A_'I) - Y 'tl

f-

sin
ell

Yfl =tan'l J:f / = 36. 012"
+ ef cos ellL- J

A7 = O. 3712"

The Law of cosines yields the required pulse

AV12 = (V'tl)2 + (_1)2 - 2V'tl Vtl cos A-r

= 4011 fps = 1223 m/sec

This pulse represents half of the total maneu-

ver. A second pulse is required at the point at

which the two vehicles finally close. This second
pulse must be sufficient to turn the shuttle vehicle

and supplement its velocity vector. The laws of

sines and cosines and the energy equation must
be employed to define this second pulse.

p (rfl Vfl cos Yfl)2
I

rf2 = l+e cos ef2 /a (l+ef cos efl)

= 2. 048322 x 108 ft = 62371.9 km

lf> = 5985.4 fps

= 1824.3 m/sec

_) = 5886.3 fps
af

= 1794.1 m/sec
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ef sin 8f2 = 26. 4495 °

_2 " l+ef cos ef2

(ef+Ae) sin (@f2 + _)
ffi 27.7571 °

_t2 ffi 1 + (ef + /Xe) cos (@f2 +/x_J)

A_2ffi 1. 3076 _

AV22 • (Vf2)2 + (Vt2)2 - 2 Vf2 Vt2 cos &_/2

= 168 fps = 51.2 m/sec

AV T = 4011 +268 = 4279 fps. = 1304 m/sec

This value of &V T represents the total impulse

required for injection and correction of the orbits.

It must not be compared to the impulse require-
ments for closure alone.

As was noted earlier in the discussion of this

approach, the accuracy deteriorates as the devi-

ation from the reference trajectory (in this case

the target orbit from @fl to @f2 ) increases. The

accuracy afforded by this technique as a function
of the distances involved has not been determined.

In an analogous manner the differential cor-

rections formulation presented in Chapter VI

(Maneuvers) may be adapted for producing closure.

The restrictions for usage are, however, roughly

the same. Because this approach is discussed in

detail in Chapter %:I, no further discussion wilt

be presented at this point.

6. Homing Phase Errors

Due to several error sources, errors will re-

suit in an inability to control both the transverse

and the longitudinal motion of the shuttle vehicle.
These sources and their effects are the subject

of the following paragraphs. Particular sensors
will not be discussed because of the rapid changes

being made in the design and utilization of such

equipment s.

a. Transverse errors

Due to the effect of radar tracking noise, ac-

celerometer error and engine shutoff uncertainty,

a transverse velocity error remains at the end
of the transverse correction pulses, including

the final one.

Radar tracking noise arises from:

(1) Receiver thermal noise.

(2) Amplitude scintillation of the target.

(3) Angular scintillation of the target.

(4) Radar antenna serve jitter.

(5) Radar range measurement noise.

The first four sources result in a random er-

ror in the measured line-of-sight angle. Thi_ er-

ror has a nearly flat spectrum at frequencies
below about 1 cps and is heavily attenuated at

higher frequencies by action of the radar angle

tracking loop. The standard deviations of the

angular noise due to these sources are related

to range as follows:

(1) Receiver noise varies with the square

of range.

(2) Amplitude scintillation is invariant with

range.

(3) Angular scintillation varies inversely

with range.

(4) Serve jitter is invariant with range.

Since the computer accepts angular rate data,

the angular noise is effectively differentiated be-

fore use. The computer then performs an arith-

metic averaging of the angle rate noise over a

smoothing period T. (Actually, tl_e computer
operates on H rather than ¢_ but this is unimpor-

tant in the present discussion. ) Since T is large

compared to the reciprocal of angle noise band-

width, the resulting angle rate noise after smooth-

ing is given by

_RMS

_MS :

where _RMS is the standard deviation of the total

angle noise at the radar output due to all four
noise sources. The error in measured trans-

verse velocity due to radar tracking noise varies

as the product of range and angle rate noise.

Thus the velocity error due to radar trackin_ noise

has _he following re_at_on._hip to range:

(1) Receiver noise varies with the cube

of range.

(2) Amplitude scintillation varies directly

with range.

(3) Angular scintillation is invariant with

range.

(4) Servo jitter varies directly with range.

Figure 19 shows the transverse velocity error
resulting from typical radar errors, plotted

against range, with T = 10 sec.

The transverse velocity error due to radar

range noise is a second order effect since the
error is a product of range error and the small

angular rate of the line of sight. The acceler-

ometer error in terminating thrust has a negli-

gible effect for a similar reason. The error
due to transverse engine shutoff uncertainty is
small and constant for any correction period,

and is only important at the end of the last cor-
rection. Its value may be held less than 0.6 fps

or 0.2 raps (3 (;) for a reasonable choice of en-

gine thrust level.

Figure 19 shows a worst possible profile of
transverse velocity during the homing phase.

The correction threshold function shown has

been chosen empirically and is not necessarily

optimum. The 3a noise envelope shown is just
three times the value of the curve of Fig. 19.

The pessimistic assumption has been made in

Fig. 20 that the magnitude of the residual error
at the end of each correction period is 3(_. This

has been done for the purpose of sizing the pro-

pellant tanks of the homing vehicle for the worst
case. The initial transverse error of 250 fps

or 76 raps corresponds to a worst case for the

launch guidance system.
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In determining an acceptable correction

threshold function it must be remembered that

too high a threshold will generally result in a

propellant penalty since corrections are unnec-

essarily delayed. Too low a threshold will re-

sult in frequent small corrections which are un-

desirable for several reasons, among them the

fact that insufficient smoothing time is available
between corrections.

Using typical numbers for a final transverse

correction occurring at a range of 200 ft or 61 m

a 3a value of transverse velocity of less than

1.5 fps or 0.46 mps may be achieved, consider-

ing all sources of error.

b. Longitudinal errors

The longitudinal error analysis is quite

straightforward for the system proposed. The

errors in R and R = (-Vc) at the termination of

any but the final longitudinal thrust period are

quite unimportant, provided that the nominal

closing profile (Fig. i0) has been chosen intel-

ligently. Intelligent choice of this profile, that
is, proper choice of the parameters of Eq (263)
permits sufficiently long coast times, so that R

and l_ may be adequately smoothed before the

next correction begins. If this is done, errors

in the radar measurement of r and [-occurring

at the beginning of a prior correction pulse, as

well as accelerometer error, thrust acceleration

uncertainty and thrust shutoff uncertainty occur-

ring during the prior correction pulse, only serve

to alter the range at which the subsequent correc-

tion begins (that is, lengthen or shorten the coast

period before the next correction). No accumu-

lation of error results.

The profile is also chosen so that the final

correction in close velocity is small and begins

at very close range. The terminal error in r and

I" results from the following sources:

(I) Radar measurement error of r at ini-

tiation of final longitudinal correction.

(2) Radar measurement error of r at ini-

tiation of final longitudinal correction.

(3) Accelerometer error.

(4) Thrust acceleration uncertainty (un-

certainty in predicted ai).

(5) Thrust shutoff uncertainty.

Items (i) and (4) produce only a terminal

range error. Items (2), (3) and (5) are primarily

responsible for a terminal closing velocity error.

For a small final correction, the terminal range

error is primarily due to item (1), and for a good
radar is surely less than 50 ft or 15 m (3c;). The

3¢; terminal closing velocity error due to item (2)

is about 1 to 2 fps or 0.3 to 0.6 raps for a good

radar. The 3a error due to item (3) may be held

to less than 0.4 fps or 0.12 mps with almost any
decent accelerometer. The 3a error due to item

(5) may be held to less than 1 fps or 0.3 raps by

proper choice of longitudinal engine size. Thus,

the total 3a error in terminal closing velocity is
no more than 2.25 fps or 0. 686 mps.

VII-54

The total terminal velocity, including trans-

verse velocity, is therefore no more than 2.7 fps

or 0.82 mps (3_). This velocity defines the quality

of rendezvous obtainable with the vehicle described.

If desired, a vernier system could be incorporated
on the vehicle to effect either a soft contact with

the target, or else a standoff position with respect
to the target (Ref. 32).
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The solution for the enerEy requirement

utilized in adjusting the plane of the trans-

fer orbit near its apogee for direct launches

aV = _E l-V- 82

mxaznple

L = 40 °

v = 70 a

v + _ = 80':'

nv
_ = 0.73 - 0.71 =0.02
v

4
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VIII. ORBITAL DEPARTURE
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A. INTRODUCTION

Most satellite missions eventually require that

the satellite or a portion thereof be recovered from

orbit. This recovery process has been broken in-

to two phases for presentation in the manual: de-

parture and re-entry. The latter is discussed in

Chapter IX and the former is presented here. The

purpose of the departure discussions is to provide

insight into: the timing limitations for return to

a point on earth, the energy requirements, the

error sensitivities for that portion of the tra-

jectory occurring above the re-entry altitude

(=400,000 ft or 122 km).

In the analysis of the departure of a satellite

from orbit, two general approaches present them-

selves for consideration:

(i)

(2)

Departure at those times necessary to

arrive at a position in the plane of

motion at the same time that the impact

site lies in the plane.

Departure any time that the fuel re-

quired to maneuver onto a collision

trajectory is equal to or less than some

prescribed limit.

However, there are orbits which do not meet the

requirements imposed by either of these approaches

(e. g. some of the 24-hr orbits). Thus, it is

necessary before investigating these approaches

to first analyze the general problem of return

from orbit utilizing an intermediate orbit (i. e.

the reverse rendezvous teci]nique of Chapter

VII). Once this is done departure from the parking

orbit (assumed to be nearly circular) can be dis-

cussed.

It should be noted at this point that the parking

orbit approach is not a firm requirement since

by properly restricting the times of departure

and the descent trajectories, the position of the

re-entry point can be matched to almost any

specified point (L< i) without the use of the park-

ing orbit. However, the only means for pro-

ducing re-entry from an arbitrary orbit at a

prescribed position and at a preselected time

(assuming very limited or no maneuvering during

descent) is the parking orbit. Other significant

advantages wiLl be discussed in turn during the

presentation of the material.

B. THE GENERALIZED RETURN

PROBLEM

I. Return Trajectories

Transfer from the elllpt[cal orbit into a low

altitude circular orbit ls now considered. The

time limitations (i.e., arrival at a given time

over a fixed point) are not considered initially

because time-imposed conditions can be obtained

later by variations of the general return tra-

Jecto_.

The transfer orbit is assumed to be an ellipse

whose major axis I_ inclined at some unknown

angle (@) to the major axts of the original orbit.

Injection into the transfer orbit ls accomplished

tangentially at a departure point r*, e* as shown

in Fig. I. A nonzero flight path angle at de-

parture is specified because:

(I) Limitations may exist on the velocity

pulses given by the rocket booster.

(2) Arrival time and location of the inter-

section with the low altitude orbit can

be adjusted by changes In the departure

angle.

(3) This approach results in a more gener-

alized solution, where perigee departure

is included as a particular case.

In order to ensure the certainty of intersection

with the final low altitude circular orbit, a re-

quirement exists that the perigee radius of the

transfer orbit must be equal to or less than the

radius of the final orbit. This can be given

mathematlca[ly as

rpt <_re/ cr rcl = rpt "___r (I)

where Ar is determined by the probable errors

caused by the guidance limitations at the de-

parture point. In order to avoid the atmospheric

effects distorting the transfer trajectory, the low

altitude orbit should be at least 200 stat mi 322

km above sea level. In any case, the perigee

radius of the transfer orbit has to be fLxed before

the maneuver. This considerably sinnp!i*.ies the

solution for the remaining pro:J_rti_ of th,_

transfer orbit.

Knowing the parameters of the original orbit

and having specified the departure time or the

departure angle (9.), the departure radius is
determined as

, Pf
r = , (2)

1 + ef cos 0

For greater generality, this can also be given

in a nondimenstonal parameter form, using the

perigee distance of the original orbit as a refer-

ence d{stance as

* i +el
r__ . (2b)

rpf 1 + ef cos 0

At the departure point, the two eLlipses are

further assumed to be tangent, as shown in Fig. 1

for efficiency of propellant consumption. This

means that the flight path angles are identical,

i.e.,

where: flight path angle is defined from the

conservation of angular momentum by

V r COS _ z_

ThUS

2 i

COS "Y =' r

,_pp ra r a

(3)
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where the sign of the flight angle is deter-
mined by the quadrant of the original

ellipse.

Using Yt = Y and writing Eq (3) for the radii

of the transfer ellipse and the initial orbit, it
follows that the apogee radius of the transfer

orbit is given by

I - cos

ra___t = r
" (4)

r

r 2 * pt
cos ,/

r

From Eq (4), the sem_major axis of the trans-

fer ellipse is obtained as

(5)

Next, in order to determine the properties of the

transfer orb[t completely, the central angle from

perigee (e t) is obtained. At the departure point,

the following expression holds:

* Pf Pt
r = z •

1 + efcos e I + e t cos e t

.

Solving this for 9 t ,

r

". [( }( "cos Ot rpf i + rpf i - os 0
r raf

i - pt af/

rat

Using Eq (2b),

form as

rpt rat

(6a)

this can be rewritten in a shorter

* r rat /

cos Ot = r (6b)

1. Pt
rat

Assuming that transfer will be initiated near
apogee of the transfer orbit, the quadrant of the

initial central angle in the transfer orbit is
determined by the rule:

If0 <O < 180" then 90 ° <O <180"
-- -- t --

If180"<8 <360" thenl80"<O t <270"

Now from the geometry of the problem, the

angle between the major axes of the transfer and

target orbits is

d_. 180"+0 -o t . (7)

Next, the magnitude of the velocity impulse
$ *

applied at e is determined (direction _ V is
opposite to the directi6n of motion for the as-

sumed tangential transfer). Since the departure

radius and semimajor axes for both ellipses are

already computed, this velocity impulse is found

by the numerical difference of the velocity re-

quired in the original orbit and the velocity
corresponding to the transfer orbit at this

particular point.

_,V = Vf - V t (8)

These velocities may be found from the energy

equation.

Equations (8) and (9) determine the required
velocity impulse as

* u .... (10)
_V " 2 af

Injection into the low altitude circular orbit

is now accomplished at either the intersection

point rlt or point r2t, as shown in Fig. 2.

In a manner similar to that of Eq (6b), the

intersection central angle is given by

r[t rat ]

cos Oit * r " (Ii)

l--P-!
rat

where

i = 1,2

rit = rcl

eli is in the fourth quadrant and 0 2 t

is in the first quadrant for all reason-

able return trajectories.

Now the maneuver angle at the circular orbit

is defined by:

2 1
" (12)

cos Z_,I rc--_'1(1+rpt "rc--_/ )
rpt rat rat
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where the following rules apply:

A_I <_ 0 (negative)

A_2 >_.0 (positive)

and the pulse required is

_V_ = V 2 - 2Vlt cos + 2 (13)it Vll AN1 Vii

or

%-7 Vl, Vl-;/co,
(14)

where

Vlt 2 - at

Thus, the following equation results:

_ - _ AN1\ Vc' / at / (i5)

Now the angle at which the thrust must be applied

with respect to the velocity vector (6) is found by

the law of sines. T

 ]stn %

To avoid the amblguttles tnthe sign of Eq (16)o

the law of cosines can also be applied to the angle

6, resulting in

+ 2 at cos Z_I

cos &l " • (17)

_v__!

At r2t, a similar analysis can be applied

since the drag loss is negligible for half a

revolution and a symmetry about the major axis

exists.

This analysis determines the trajectories and

velocity pulses for a return into a circular orbit.

The flight times and the positioning problems are

considered in Subsection 3.

2. Departure Error Analysis

The problem arises concerning the effect of

small errors of attitude, velocity or flight path

angle on the perigee conditions. Partial deriva-

tives of the perigee radius and velocity, with

respect to initial conditions, are obtained in

terms of eccentricity and central angle. In the
conversion from the usual r, V and ,_ relation-

ships, the following equations are found to be
most useful:

r l+e

r 1 +e cos e (18)
P

#)2 1 + 2 e cos 8 + e 2= i + e cos 0
C

(vV___cl2 I + e cos O
=

1 -e
Ca.'

(19)

(20)

2 (i + e cos 0) 2 (21)
cos y = 2

I + 2 e cos @ + e

The partials of r
P

as follows:

can be nondimensionalized

V arp _ 2 (1 + e cos _) (I - cos 6) (22)

T _ (I + e) 2

a# = (l - e) (i + cos O) (2 - e - e 2

(1 - e2) 2

- cos e + e cos e) (23)

ar

_ = - sin O. (24)

The partials of Vp are derived from the

conservation of angular momentum

Vp rp " V r cos y.

Differentiating,

_}(V 8r aV

_%_ rp) = Vp -_ + rp _-

= r cos ¥. (25)

Using Eqs (18) to (22), the final form of the partial
is obtained.

e - 1 + 2 cos 8

(1 + 2 e cos 8 + e2) lj2 "

(26)
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Using the method of Eq (25), the following equations
are obtained:

_V

r -_r cos e - 1= 1/2 (27)
(1 + 2 e cos +e 2)

1 8V (1 + e) sin e

(1 + e cos e) (1 + 2 e cos 0 + e 2) 1/2

(28)

As seen in Fig. 1, the departure usually occurs
close to the apogee of the transfer ellipse, i.e.,

8: = 180 °. For this case

COS 0._ _ - 1
I

cos e_ _.0.

Therefore, the partial derivatives for the case of
departure point being near to the apogee of the
transfer ellipse reduce to the following:

(1) Errors in perigee radius.

Va 8rD 4 (i - e)

_:a _ = (1 + e) 2 =
1

(29)

ar = (l_e) (3+e) rp /2 r_a)__ +r_a (I + e)2 ra
(30)

(31)

(2) Errors in perigee velocity.

_a ffi T'='-_ ffi - 2+
(32)

_Ta a _ - 1+
(33)

(34)

In Eqs (22) to (34)° it is implied that all the
quantities pertain to the transfer ellipse.

The important point to notice is the insensi-
tivity of the perigee radius and velocity to er-
rors in flight path angle for near-apogee de-
partures, as shown by Eqs (31) and (34).

For small deviations from the required de-
parture conditions, the perigee errors can be
approximated from the given parttals by

8r ar ar

" +_a +_A¥2, rp r_ a A ra A Va (35)

and

aV 8V 8V

AVP" rFAra+F_R pAVa+_-_Ya (36)

By substituting Eqs (29)to (31) into (35), the
radial errors for a near-apogee departure are
obtained:

p= I -e a.4
ra _ (3+e) -_'-a

or in terms of apogee and perigee radii:

(37)

orr[(rp)ora---P- ,, -R 2+
ra ra _a --_a

+ 2 I + _ (38)

Similarly, the velocity error is found by sub-
stituting Eqs (32) to (34) into (36).

Or

+(3 -e)

ra _ A Va

(39)

(40)

3. Timing Considerations

Assume that the trajectory problem of the re-
turn vehicle is defined as follows :

(I) The vehicle must arrive in a low altitude

orbit over a specified impact area at some
predetermined time.

(2) There are possible limitations on the
velocity pulses to be employed during the
maneuver.

immediately, it becomes clear that unless the
orbital plane for the return phase is different
from that of the original orbit, only two times of

VIII-6
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arrival in the low altitude orbit are acceptable

during each day. These times correspond to the

times at which the impact point crosses the or-

bital plane.

The following analysis of the return problem

is quite general. However, because the number .

of variables involved is large, only those cases

for which the orbital plane is unaltered are treated.

The initial location (at time tO ) of the final inter-

section point is determined by using spherical

trigonometry and the symbols defined in Fig. 3a.

sin L 0 " sin i sin _0 " (41)

Equation (41) applies only if L 0 < i. In case the

inclination angle is less than the latitude of the

impact area (note that L 0 m Lx), a change in

orbital inclination must be accomplished before

or during the departure maneuver. The equations

for such a maneuver are presented in Chapter 'vq.

From spherical trigonometry, the first inter-

section of the two planes ts

cos d)0

cos (A0 -n0)- cos--E'E[
(42)

The second intersection is

-i/c°s °0

A_'_0" _" c°s _cOS_x/.
(42a)

Next, the initial angular distance from the inter-

section point (Pi) to the impact point (Px) is

AA =A -A
0 0 x

:(£20 - Ax) +cos-I /c°S_oh
(43)

During each revolution of the earth there
are two intersection points, P. and P:

1 1

Time to intersection for the first day is

AA0 £_0- Ax + I cos-l( c°s _0 _.

51" " \cos%/
(44)

Time to intersection for n days is

nnd

tj : tjl +(n - l)d +_---7-(je = n : 1,2,3 ...)

(45)
where d = sidereal day (86,164 sec)

Or using Eq (44)°

_0 + n{2d/v -A x
t. =
3 n

e

+ (n - 1) d

cos #0

+ _-e c°s-1 _c°s-'_'_'_OJ

(46)

where j = n = l, 2, 3 ....

Equation (46) gives the only possible flight times

for target interception.

By changing the inclination at the original

orbit in inertial space (i.e., changing i and/or

_0 ), a small range of possible intersection times

can be achieved. Large changes in inclination

become prohibitive due to exceedingly high mass

ratios and should not be considered for most

vehicles.

From the geometry of Fig. 3b,

- 180" - (e_ - e*)

and

(47)

ej[ = 360" - _ + d) 0 + 5_' - 8". (48)

Now, after the equation for the necessary

fntercept flight time has been derived and the

angles for the transfer trajectory have been de-
fined, a solution of the departure angle is re-

quired in mathematical form.

O* = f (O0, nO, i, _, pf, ef, r! , Ax,

Lx , it). (49)

To get the exact relationship indicated by Eq

(49), an expression for the total flight time must

be derived in terms of all other pertinent vari-

ables. In such an equation there ia only one un-
known (i.e., O*) and the proper value of the total

flight time, corresponding to some fixed value
determined by Eq (46), can be obtained by varia-
tions of 0".

In general, the total flight time is the sum of

three separate components.

(1) Time in original orbit before departure (tl).

(2) Ttme in transfer orbit (t2).

(3) Time in the final low altitude orbit until

the impact area is reached (t3).

Consider the case where the departure angle from
perigee (e,*) is less than the initial central angle

(Co), or e _ < OO. Then, the components of flight

time will be as foD.ows.

(1) Original orbit

_f [2= + (E* - Z 0) + e (sin Z 0 Sin Z*)]t I "_
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where

E = 2 tan-I I_el - e tan "_j_-[

sinE =_ sin 0
1 + e COS 6

(2) Transfer orbit

(50)

tg. "-_2_'- E:+etslnE;} (51)

(3) Low altitude circular orbit

= T_ r_-( * - e*)
t 3 _ e i = 2_ - _ + _0 + et

(52)

The total flight time is given as

tt = tI (e*) + t2 (e*) + t3 (e*) (53)

where it is desired that tt be one of the character-

istic time values given by Eq (46).

If the departure angle from perigee is greater

than the inRial central angle (e* > e0), then the

transfer orbit is initiated before the next perigee

passage and Eq (50) becomes

T,{tt • _ (E*- E 0) +e (slnE 0 - sinE*)

(54)

Equations (51), (52) and (53) remain identical
$

even for the case of B > 80 .

The transformation of Eq (53) into (49) is obvi-

ously extremely complicated, if not impossible.

Thus, it is necessar T to revert to a trial-and-

error method. One such method is described

below.

4. Iteration Procedure for the Departure An_le

The approach presupposes that either the com-

puter possesses plowing and curve-reading

abilities, or that the first approximation ofthe

departure angle is known.

_ m I I m_m

S°cuti°n

J
t
J•6
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For a particular return mission, the most
obvious method of solution is as follows.

(1) Determine the target point intercept

times with the orbit plane (tj).

(2) Establish the total flight time solution

curve for a whole revolution in orlgl-

nal orbit by the procedure shown in

Table I. Relatively large increments

of central angle (e. g., ZXS* = 30 °) can

be used.

(3) Find the first intersection point (8;) of the

solution curve and target Lutercept
times.

(4) Determine the accurate departure angle
by a linear iteration process.

(a) Use Eq (53) to compute ttl for the

first approximation of B 1 .

* *+1}tj > ttl, assumee 22 8 I
If . , .

tj <ttl, assume 82 81 - 1

(b) Compute tt2 for 8 2 .

NOTE: ttl and tt2 should be on

the oppostte sides of tj. If both

are on the same side, i.e.,

it2 > tj or ttt2 <tj "

(c)

use e 2 as B I and repeat step (4a).

From 01 and e2, compute the

second appruxLmation by the linear

relationship

e 3 = (55)

where

A = ttl -tt------ 2

eI - 82

(56a)

B " it2 el - ttl 02

(d)

(56b)

e I - e2

$

Compute it3 for e 3. As for each

linear approximation, the two points used

must be on opposite sides of ti llne,

the following rules apply.

/
j,

I



F-

t " :1
%3 <tr usem._ e_)_here %: h' e .

(e) Compute the third approxtmation

by using e 3 in connection with the

correct e k.

Thus,

.t_ e4 i= (57)

_J A' ttk - it3 (58a)

I I

<-
f_ /if! , i B, . .
• ;'t2 _t i i 8 k - e 3 (58b)

Departure An_le {o'_

TABLE 1

Return Shuttle Computations

The iteration usually converges very rapidly

because 6 5 and e_ are already within ± 1 ° of the

exact answer desired. The geometrical inter-

pretation of the convergence is shown in the

preceding sketch. The reason for taking e_ as

inltis_l points iS to avoid (e_ - e_) -* 0one of the

as the exact answer Is aoproached. With this

method, the values of (0_ - O;) remain finite for

all approximations.

Table 1 presents the necessary variables

arranged in the order of computation, and the

equations used to aid in the visualization of the
solution procedure.

Variable How Determined I_emarks

o _ _ Eq(41b)._ _ *o

_*_ t.j Eq(46)

Eq(2a) *
First assume 8

t- I

r..,

O
c_

O

O

r*

2
COS Y *

rat ] r*

cos 8 *
t

a t

e t

_" t/2-

T_I2.

t 1

t 2

t 3

t t

M i

8.
1

L

A

Eq(3)

Eq(4)

Eq(6b)

a t = 1/2 (rat + rpt)

rat

e t = at 1

3

v t a t

3

_W- =

Eq(50) or (54)

Eq(51)

Eq(52)

t t " t 1 +t 2 +t 3

M i = -_ t i

by iteration

Eq(59)

Eq(60)

Plot t t vs 8" (Fig. 4a)

For simplicity

assume t I in full hours
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It should be noted that for a first approximation

t 1, t 2, t 3 and 0 t can be found from Keplertan flight

time curves (Chapter III). These curves are ac-

curate to tour significant figures and satisfactory
for slide rule computations. After the flight time

curve is plotted and the first estimate of departure
angle is obtained, the exact equations should be used.

The desired intercept times and the ground

track are computed only once (intercept times

are independent of departure angle, and ground

track is determined for only one final value of

0*).

For the total flight time curve, values of 8" are

assumed at sufficient intervals (e. g., A 8" = 30 °)

and t t is found for each e*. From aplot of t t

versus e*, the intersections with the desired

intercept times are determined.

5. Sample Problem

Assume that the following orbital and target

parameters are specified (target refers to the
specified low altitude orbit).

0 0 ffi 0 o

l " 70 °

ffi 270"

_0 : 135 ° E = + 135 °

A - 80oW - - 80 °
x

L ffi28" N = + 28 °
X

7f ffi 86, 164.09 see (24-hour orbit)

pf = 1.037528 x 108 _ = 31623.9 km

e_ - 0.500000

raf ffi 2.075055 x 108 fl = 63247.7 km

rpf = 0.691885 x 108 R = 21082.6 km

r I ffi rpt _0.224869 x 108 R= 6854.0krn

The angle (_b 0 ) from the ascending node of the

orbital plane to the intercept point of the target
path and orbital plane is from Eq (41).

°_#0 _sln-I _] _sln-I (0.500)

_b0 _, 30 °
dP0 _ 150 °

From Eq (43)°

[ cos 30"
/,A0= 135" - (_o') + cos"l \_]

There is also the possibility of considering the

angleZ_A_ _383.5 °- 360 °= 23.5 °, because
!

A A0 is actually ahead at the target point. Time

to reach the first intersection points is as follows.

226.5

tj , 1 _ 4.18 x 10 -3 " 54,200 sec " 15.06 hr

tj ~ 383.5 ffi 91,800 sec = 25.5hr
= 1 4.18 x 10:3

t}' 23.5

j ffi 1 = 4.18 x 10 -3
= 5620 sec = 1.56 hr

The second set of possible _ight times is derived

from Eq (45).

t°
j=2

!

t.

ffi54,200 + (2 - I) 86,200 ffi140,400 sec =

39.0hr

= 91,800 + (2 - I) 86,200 = 178,000 sec -

49.5hr

This means that during each day there are two

possible arrival times over the target area.

Next, the total flight time is computed for
0" = 0 °, 30 °, 60 ° ... 360 °, using Table i in con-

nection with Chapter III. The sample calculations

are given later for e _ = 137 °.

The results for the departure angle within the
first revolution of the 24-hr orbit are shown in

Fig. 4a. The solid line gives the total flight times

for the ascent crossing at the target latitude during
the first revolution in the low altitude orbit. For

the descent crossing during the first revolution,

and for all crossings during succeeding revolutions
in the low altitude orbit, the solid line retains its

shape but will be displaced along the time axis by

some constant flight time.

The first time the target crosses the orbital

plane (I. 56 hr) it falls short of the necessary trans-

fer time. Therefore, this solution is imaginary.

For the given sample problem, the first pos-

sible departure angle is approximately 0"= 137 _,

corresponding to a flight time of 15 hr.

The important feature of Fig. 4a is the dlscon-

tinuity in the total flight time solution. This irreg-
ularity is caused by the fact that overshooting the

target interception by even a small angle results

in the requirement for another revolution in the
24-hr orbit. For the given case, the third theo-

retically possible target intercept time is seen to

fall into the region of discontinuity, indicating that

this arrival time also represents an imaginary

solution.

Of course, a posslbilRy exists that the target

intercept could be made during a succeeding rev-

olution in the low altitude orbR. The optimum

number of such revolutions will depend primarily

upon the purpose of the return shuttle.
_/
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For example° the target Intercept could be

made at 25.5 hr by leaving at 8* = 236" and staying

for more than one full revolution In the low altitude

orblt.

To explain the discontinuity at 8* flightcritical"

times In the 24-hr orbit, the transfer orbit and

the low altitud_ orbit are given separately in

Fig. 4b. At 8 critical = 312", the overshooting

of the target will require another revolution In
the low orbit.

The determination of the crttlcal departure

angle is best accomplished by plotting 81 versus

e** as shown In Fig. 5. The flight time dlscon-

tinuity exists at 8L ffi 0 °.

Figure 4a indicates that t I = 15 hr is the most

promising total maneuver time. Therefore, this

solution is recomputed with more accuracy than
that afforded by the preliminary slide rule results.

From Eq (41),

0 = 29. 9736 °.

Time to reach the first Intercept point is

a0-A 1 -I / cos,0_X + _ COS

tj . I " _e _e _,

= 54,129. 917 sec - 15. 036088 hr.

The departure angle (8" • 137") iS used to find

ttl by the procedure given in Table I. All the

steps are Indicated for the sample problem in the

following paragraphs.

(1) Departure radius

* mr
P24

1 + e24 cos 8"

ffi 1.635645 x 108 ft

= 49,854.4 krn

(2) Cosine flight path angle

2¢ 1COS =

-- I + - --

rp24 ra24 ra24

• 0.775799

(3) Apogee radius

.(l °2<ra__t_t r* /
r * rptcos2y * _ __

r*

• 1.048287

(4) Central angle

COS E}_ •
l-_-

rat

+ rat ; 8 t = 170.2047"

(5) SemimaJor axis

1

a t •_. (rat +rpt) =0.968747x 108ft
= 29557.8 km

(6} Eccentricity

rat - 1 • 0.768115

et = at

(7) Period of transfer orbit

FT

vt _ at
= -_- = 8048.71 see

(8) Period of low altitude orbit

I"I =2

= _-_-- = 898. 74 sec

As e > _0" from Eq (54),

tI = 20,278.50 sec = 5. 632361 hr.

From Eq 151), the following is obtained.

t2 = 31,796.37 sec = 8. 832325 hr

(9) :Angle in low orbit

* 0"
81 = 360" - w + ¢0 + 8t - = 153. 1783 a

= 2.673465 tad

t 3 =_8/ = 2402.75 sec = 0. 667430 hr

(10) Total flight time

ttl=t 1 +t 2 +t 3 = 15.132112 hr

(11) Error in flight time

At 1 •t t -tI =345.7 sec = 5.76 mIn

As ttl >tj, 62 • 01 - I " 136"and, by the

previous method, tt2 ffi 14.960314 hr.

Using the iteration process given in Eqs (55),
(56a) and (56b)0 the next approximation is ob-

tained.

Ztl " it2

A ffi01--_-=2 " 0. 171802 hr/deg

B = tt2 81 " ttl 82 = - 8. 404758 hr

81 - 8 2
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Finally,

93 = = 136.4411".

Using e 3 = 136.44", tt3 - 15.036515 hr is

obtained for the second approximation.

Since tt3 > tj, by the rules given in subsection 5,

_'(i.e., 62 ) has to be used. Thus, Eqs (57),rain 6k

(58a) and (68b) become

A !
tt2 - tt3

= --W---'W" = 0. 173187 hr/deg

82 - e 3

tt3 92 - tt2 63
B' TM • - 8. 592722 hr

62 - 83

giving the third approximation as

64 = " 136.4376".

Thus, for the present example, the second and

third approximations are almost identical and,

for practical purposes, the convergence to the

exact value is obtained. The following table pre-

sents the convergence of the solutions.

Error in

Total Flight

6 _' Time t

Approximation (deg____) (sec)

First 137 345.7

Second 136.44 1.535

ttt= 54,129.917 sec 136.4376 0.050

Since the shape and inclination of the trans-

fer ellipse (8 t , at, et, etc., ) were determined

during the last iteration, it is relatively simple
to obtain the location of the return shuttle in the

orbit plane. The locations of the return shuttle"

treated here are given in Fig. 6a.

Altitude from sea level is given in Fig. 6b, as

computed from the basic relationships.

r= P andr =R+h
i + • cos _)

where R is the radius of earth at the given

latitude. By neglecting the oblateness pertur-

bation effects of the earth the ground track can

be computed from the following equations.

(I) Latitude

L-sin -1 [sinisin(=+ 9)] (59)

(2) Longitude

A -tan "1 [cos itan(= + 81] +_0 - _et

where (60)

_e = 0. 004178074 deg/sec.

The computed ground track for the sample

problem is given in Fig. 7. Assuming the initial

time to be zero hour, it gives the successive po-

sittons and a service time scale up to the desired
landing point (Florida in the present case).

It should be noted that up to 12 hr, the trans-

fer ground track deviates only slightly from the

basic 24-hr ground track (given in dotted lines).

The reason for this can be seen by comparing

Figs. 6a and 7.

6. Flight Time Error Analysis

The total flight time error per unit departure

angle can be approximated by taking the slopes

of the total flight time curve (Fig. 4b). The solid
line of Fig. 8 presents the slopes of the return

flight time curve. Another approach utilizes

the total flight time equation

t t (0*) = t 1 (6") + t 2 (9") + t 3 (6"),

Thus

dt t dt_ dt 2 dt 3

"de--"+de-"

(61)

(62)

Since the period and eccentricity of the 24-hr

orbit are dependent of 8,, the first derivative in

Eq 62 is found by using Kepler's equation

M=E-esinE

where

(63)

2Trt
M =nt=_.

T

Differentiating with respect to central angle

dM dE
=(I - ecos E)_._ , (64)

but

E =sin-I l+ecos 8/ "

therefore

dE.
_U 1 + • cos 8 "

From Eqs (84) and (66),

_= (1 - e2) 3/2
(1 +e cos 6) z "

(65)

(66)

(67)
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Using the definition of M. the error due to time
spent in the 24-hr section of the return path is
found from Eq (67).

dtI vf (I - e2) 3/2

de (1 + e cos 0")

(68)

Equation (68) is presented as the dotted line
on Fig. 8. It is obviously symmetrical about 180",
as expected.

a. Approximate analysis

The low altitude orbit contribution to Eq (61)
Is approximately constant for the whole revolution

of e* (Fig. 4b). Thus,

r (300 o - e*)
t3_ Lr_

and

dt3 vt
_ -_2"_de

= - 898.74 sec/rad =

- 15. 686 sec/deg. (69)

To obtain the contribution of the transfer orbR,
the following approximation may be used first.
Assuming that the transfer orbit is always entered

at apogee (i.e., r _ rat), the time spent in trans-

fer orbit is one-half of a period.

"rt a t
t2 _'2- = _ (70)

Due to the previous assumptions,

1 (r* + (71)
a t _ _ rpt)

and

.,(p, )at _=8 1 + ef cos e* + rpt
(72)

Substituting Eq (72) into Eq (70) and differentiating

with respect to 0 ,

2

dt 2 3_ ef [lltr*2\/r* + rot \
sin

de 4v_IT
(73)

The slope of the total flight time curve is the
sum of these three components (i. e., the sum of
Eqs (68), (69) and (73)).

b. Exact analysis

Actually, the transfer ormz is not usually en-
tered at apogee, but rather at some small dEs-

placement from apogee. Since the vehicle moves
very slowly in this region, the flight times may
change considerably.

Thus, Eq (73) can be justified only for a pre-
liminary estimate, and an exact analysis is need-
ed. The exact derivative is obtained by differ-

entiating the expression for t2 assuming that

y* is negative

"vt {2_ " Mt} (74)t2 T_"

Differentiating Eq (74) with respect to e ,

dO-'_"_'_dt21 7drt / _12v" Mt) -Tt dMt_2-_"d'_- "

(75)

To evaluate these derivatives it is now necessary
to define

9

A -- rpt

raf rpf

B -=rp-_t + rpt ,

raf rpf

(76a)

(76b)

Thus

cos e t =

* rDt

B+2 r____ (l+A) -2---_
r
pt r

r----(I - A)+B- 2
r

pt (7_)

r___(l_A)+B_2
r

pt (78)• t = .

r---- (I+A)- B
rpt

[a t = _ r* r . (79)

B + r_..._
rpt

Also, from Eqs (77) and (78), it follows that

1 + et COS Ot = _=
r-----(1 +A) - B
rpt

(80)

Using the relationship

7t af_3t
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the first derivative is

% 3,, 1/2/"%

3_r 1/2 (dat _dr *
=-- _ _ •" at _dr )de

From Eq (79) and also from

.2

dr* r ef .

p--7-sin0.

it follows that

(81)

(82)

dat 1 i - B+A

I-B+-- A
rpt

From Eqs (79), (81) and (83),

.2
r

Pf

ef
sin e*.

(83)

!d_" t = V_v r ef r

7 v_ Pf *
B + r_._.

rpt

I( 1 -B+A j e*
1 - B+r* A\ 2_-'7". | sin . (84)

pt /

To obtain the second term in Eq (75), it should

be noted that in this case _'t = constant is implied,
and

7t dMt = 1 dnt =dt = dt de;

The first quantity in Eq (85) follows from Kepler's
Law

.2
dt r

Substituting Eq (80) into Eq (86), (since
p = r(l +e cos O).

r.3/ _ (I +A) - B
rpt (87)

dt

To obtain the second quantity in Eq (85), the
following shorthand notation of Eq (77) is used.

cos Ot = f (r*) (88)

Differentiating Eq (88) with respect to 0*

, dot = df dr*

-'ingt "

From Eq (77), it follows that

df

dr

(89)

= . 2 (2 - B) - 2 (1 - A)
rpt r

÷B-2A --(1 - A)+B- 2
rpt

From Eqs (89), (90) and (82),

(90)

----_ = (2 - B) - 2 -r-_- (1 - A)

dO rpt Pf L\ r / r

• sin e*

Substituting Eqs (87) and (91) into (85),

.31 2
_t dMt r

2. de* _rrp_ (I+A)-B de:

(1 dS*"r* ]
(92)

It should be noted that Eqs (91) and (92) are zero
at the points where

_B-2A2 B (93)
r

The third"error in time, i. e,, the total flight time
error contributed by the low altitude orbit is
simply.

dt 3 _! dO/
= (94)

2 _ dO*

since the period rt is a constant.

As shown previously

* -0*
0! = 360 ° - w +_0 +0t

therefore, Eq (94) becomes

-----_ = ff_ 1
dO dO *

(95)
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Finally, the equations for the flight time error

are given as follows•

(I) Approximate equation

dtt _f (1--e 2) 3/2

( fde I + ef cos 8

( ,)2+ pt sin

4_" Pf / \ 2 (96)

-899

(2) Exact equation 3/2

dtt Tf (1-e 2)

de (I +efcos e

I d_t

where

I) (9,,+ _ de*

d_"t
_-- is given by Eq (84)

de

is given by Eq (92b)

d_
is given by Eq (91).

de

In Fig. 8, the results of Eqs (96) and (97) are

compared to the solid curve obtained from meas-

uring the slopes of curves in Fig. 4b. It is seen

that the approximate equation giver only the gener-
al trends and should not be used where exact

numerical values are needed.

c• Limiting cases for the exact flight-time

error analysis

In the previous material, the error analysis

for the return shuttle flight times was derived•

Due to the geometry of the problem, Eqs (91) and

(92) become indeterminate for 6* = 0° and 180 =.

This is caused by the fact that for the apogee and

perigee departures from orbit, the corresponding

transfer orbits _re entered at apogee. Mathe-
matically, as a--. 0* and 180 °, 6_t -, 180 ° and

sin e* ) 0
(98)

Equation (98) calls for a limiting procedure,

since it is intuitively clear that the ratios must

be finite.

Since

cos e
" e'-"_ -',k'--'r I , (99)

f'/ r'_ _

sin 2 e* I - COS 2 e* i /(---_)

L\r /ef

Next, defining two new constants

u --- rpt (lOla)

raf

r

v _-=---K--
rp_

(101b)

which correspond to the previous constants

as follows.

A = u v (102a)

B = u + v (102b)

From the definition of eccentrlci_v, it follows that

V -U

ef = --v+u (I03)

and

2 v rpf

pf = rpf (I + ef) = u + v (I04)

Therefore, Eq (i00) is shown to become, after sub-

stituting Eqs (I01), (103) and (i04),

uv]I• _v •

From Eqs (77) and (102), it follows that

(10s)

sin 2 e; [ (rpth 2 __" ' - \V-/ + r (u+v+2,
ov(r"V *

- + _ (u+v+ 2uv)

\rpt/ pt
q

2(u +v) - (I + uv) I
J

• I1 -uv) +u+v -

(lO6)
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Now,defining

(107)

the following relationships exist.

8"-. 0" means x-, v

8"_, 180" means x-. u .

(108)

(109)

The problem of deriving the actual limits is

somewhat simplified by the *Aueorem that the square

of the limit is equal to the limit of the square.

From Eqs (I05), (106) and (107),

,I'sin 2 8* (u + v) I (i -uv)+u +v - 1
w

(v - U) 2 I x

(110)

where

I
X

2 iUV
(u+ v + 2 uv)-x +x(u+v+2)---. 1 +-_-

X

2
X UV

U%V U+V

- 2 (u + v) - (I ÷ uv)

+ Z (iii)
X UV

X -
U+V U+V

Since the cases of interest in this investigation

are elliptic orbits, u _v, the behavior ofT- -1
X

alone must be investigated.

Because Eq (111) still gives an indeterminate
0

form _, L, Hospital,s ru!e has to be used and

x-, uorv x-. u, v

2 uv 1 )[
+ "-T - "-'2- (u +v+2uv JX X

FinaIly, from Nqs (109), (110) and (112),

lim / sin 8"_= 1 - v

6". 0" _s-_t ) v-u
(113)

Similarly,

lira / sin e* _ 1 -u (114)

e" t ) v.-, 180"

or simply

llm [ sine*\ . 1_n / sine*
8".18o. " ,___,_,+18 _,0"\slnSt /

(115)

For the sample problem(24-hour orbit)

rpt :=0.2248696854.0kmX 108 _ u = P---_ra24= 0.108368

ra24 = 2.075055 x 108 ft

= 63,247.7 km

rp24 = 0.691685 x 108 _i v " rP----f--t = 0.325103= 21,082.6 km rP 24

and from Eqs (ll3) and (114),

nm ( sin e* \o.=C T)

i_ / sine* \

d. Error analysis by numericsl differentiation

Since the total flight time curve (Fig. 4b) was
computed in the sample problem, a numerical

differentiation method can also be used.

First, assemble a central difference table in

the followlng form.

8- 2 (tt) 2 Al_2 A2_2

8. I (tt)_l AI

80 (tt)0 -I

A_ A2-1

81 (t t) 2
1 1 A0

A 1 ......
8 2 (t t) ......

2
,...,.

,,,,**

3
A

-2

A 3
-I

,°°°o°

.Q....

°.°.°°

where An is the n th difference of the value of it,

when 8 is increased to 8 + AO,

It can be shown that for this central difference

table, Stirling's interpolation formula is

tt "(tt)0+_ (AI+A!I)+2 2.1_8 A-21.82

+:.,..._o..,
3) A83 2 """

(116)
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where

68 ts a small variat/on between 80 and B 1

AB iS the equal Increment O 1 - 00, 00 - 0 1.....

The slope of the total flight time curve is ob-

tained by differentiating Eq (116) and setting 60 • 0

in the result. Thus,

dtt A0 - 1 1 2

= 2 12
dB

)
6O

(117)

(Fig. 4b), the rough values for t t were obtained

from which tlle following table is constructed.

8

(deg)

0

3O

(60) 0

9O

120

t t

(sec)

12,910

15,930

(21,440) 0

30,910

44,010

1
&

3020

5510

(9470) 0

I 13,1 00

I

A 2 _,3

!
2490 !

] _-1470

L

396O

I
(3630)

0

-330

From Eq (117),

9"- 60"
-330 + 1470

12

- 246.5 sec/deg.

The results of numerical differentiation are

also given in Fig. 8, and they fit rather closely
the slopes measured from Fig. 4b. Since
numerical differentiation is extremely simple,

as compared to the exact analysis, it should be

used for all preliminary calculations.

NOTE: In the numerical differentiation method

presented here, the difference columns should
not be carried further than is consistent with the

accuracy of the data. Otherwise, the higher order
approximations could be less accurate than the

lower ones. Thus, the differences should be

carried only to the point where marked irregu-
larities start to appear.

C. PLANAR ANALYSIS OF DEPARTURE
FROM LOW ALTITUDE ORBITS

For high altitude orbits, where all estimates

of atmospheric drag are negligible, orbital life-

time may be measured in terms of years. Thus,

should impact with the earth be desired at a

specific time and location, some device must be
employed to alter the vehicle's velocity and/or

flight path angle an amount sufficient to cause

the vehicle to re-enter. Re-entry as used here

is actually a misnomer due to the fact that there
are finite values of atmospheric pressure for the

entire range of altitudes to be investigated. The

term, however, well be used throughout this

section to refer to an altitude below which atmo-

spheric drag is of such magnitude as to cause the

vehicle's trajectory to degenerate and impact with
the earth in one half of one revolution or less

Previous machine runs and calculations have re-

vealed that for vehicles of ballistic or low lift

design this re-entry altitude may be consic_ered

to be 300,000 ft (91.5 krn). Therefore, for the

purposes of this analysis, since drag is of

negligible magnitude above the re-entry altitude,

the atmosphere will be assumed to terminate at

an altitude of 300,000 ft (91.5 km). The earth

will be assumed to be both spherical and non-

rotating. Thus the vehicle trajectories involved

will be portions of Keplerian ellipses. Special

note should be made at this point that even though

the approaches made here are valid for v_hicles

of high lift design, the altitude at which drag must

be considered may increase to 400,000 ft (122 kin)

or more. Motion within the earth's atmosphere

will not be treated here; it is reported in Chapter

IX. Since Section B resulted in a plane which

continues the impact point at a given time the

analysis of departure can be treated as 2 dimen-

sional. The following paragraphs present this
information both for the impulse and finite burning

cases.

1. Analytic Approach to Orbital Departure

A method of analysiS which neglects the effects

of finite burning times will now be developed to
provide a means of obtaining relatively accurate

approxi_nations of the re-entry parameters and

retrorocket slze requirements.

The velocity increment obtainable from a given

rocket is:

&V=g 0 Isp_n(_ - gt B sin Y. (118)

Isp

"'o'..'n-'

If the assumption is made that the burning time

is extremely short or that the flight path angle

remains very close to 0 ° during burning, Eq (118)
reduces to

Z_ V =go Isp In(T@)" (119)
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This equation is plotted in Chapter VI.

For most cases in which departure is desired

from low altitude orbits, the mass ratio required

is quite small and one further simplification in

this expression may be made by noting that:

_ for small values of _ .

Therefor e:

_v- go Isp _" (120)

This equation may be rewritten to include pro-

pellant characteristics by substituting for _ its

equivalent

= P0 go Vp/W0 •

Thus:

v -g02 ½p 00 Vp/W0.

V_/here

Vp = total propellant volume

P0 ,,bulk density of propellant combination

r +I
rn

rm + 1

Poxidlzer Pfuel

weight of oxidizer

r m = mixture ratio "_ weight of fuel

unit force thrust

Isp weight of propellant flow/sec

Since the assumption has been made that the

burning time is infinitesimal, the velocity tncre -

merit obtained from a given retrorocket may be

treated a_ a pulse and the laws of sines and cosines

can be used to relate the velocity and the direction

before and after the pulse. For the purposes of
this analysis, the thrust vector will be in the plane

of the orbit; therefore, both the change in flight

path angle and the required thrust attitude angle
may be computed.

V 1

;t--

NOTE:
If the thrust vector lies in the orbital plane, kb =

/x y and _bt = 6. ( 6 = the thrust attitude angle

discussed in Section B. )

AV 2 =VI2 +V22 - 2VIV2 cos _y (121)

• - 2W_ 1 cos A¥+ 1

sin 6 sin A y

V 2/V I (122)

sin 6 = A-TT[_ I sin AV.

Equation (121) is also presented in Chapter VI.

Now since the equation of any conic may be

written as

V 2 2
=- + constant (123)

r
) 2

V_ _ V 2 /_

-2 r I = -'2---- P_2 (124)

a means of determining the vehicle velocity at

any radius, if velocity and radius are known at

some other point in the conic, is available.

Point 2 is assumed to be that of re-entry at a

radius of 2. 12029 x 107 ft (6462.64 k.m). Thus,

the velocity at re-entry may be determined once

the velocity at burnout has been obtained. The

energy equation is plotted in Chapter Ill.

The re-entry flight path a_ugle can be obtaLned
from the conservation of angular momentum and

the radtus, velocity and flight path angle at burn-
out of the retrorocket.

r I V 1

cos ¥2 = cos ¥I _ "
(125)

Equation (125) can be used in conjunction with the

energy equation to yield the relationship between

the flight path angle at burnout of the retrorocket

and that at re-entry.

If a tolerance is placed on the entry angle

(e.g. 0 - 2°), the retropulse cannot be selected

independently of other considerations. This fact

may appear obvious, but is rigorously shown by

combining the equations for the conservation of

energy and angular momentum.

r 1 v 1 cos 71 = r 2 v 2 cos ¥2

r I I Vo + AV I cos (YO - _ Y)

I-= rentry }V 0 + AV 12 _ 2__Pr+

f

2p

rentry cos Yentry

In order to determine the values of range and

time of flight required for descent to re-entry,

it is necessary to first consider the ellipse in
question.

J
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gee

hentry

___.J----- -- k_--- r entry

The range attained may be seen to be

X --R_ (126)

R = _Vtie radius of the earth

The problem then is to define the angle _ in terms

of the known quantities of the ellipse. This problem

may be simplified by observing that

- v - @. (127)

W'here

¢ I is negative and • 2 is positive and where

the central angle from a given radius to apogee
is

_ .cos 1 [___] . (128)

Therefore:

r re -Pl -1 [ .___p]= COS-1 ± COS •
tree ]

where:

(129)

r e = rentry

To define the time of flight a procedure similar to

that employed to define the angle /]is used. That

is, the time of flight from one point to another is

equal to the difference between the times from
these points to apogee. The time of flight from a

given point to apogee is defined by Eq (130)

4
Where

is measured in radtans

6' =cos-l[ c°.* "e ]I - • cos _ "
(i31)

The time of flight is thus

tf = tentry- t a

where

6' is evaluated at _b =entry ¢ entry

' is evaluated at ¢> = ¢i or ¢26a

t' is negative if vehicle passes througha
apogee before re-entry

Thus the complete maneuver can be described

analytically under the assumption of impulsive

burning.

This section has shown the results of flight

path corrections and departures for the case in
which instantaneous pulses were considered.

Figure 9 shows the percentage de,.d_tion in the

re-entry parameters obtained using this method

as compared to that which includes the effects of

finite burning time. The horizontal tines drawn
at _ 4% error were arbitrarily selected to show
the minimum mass ratios which could be con-

sidered as pulses in order to maintain this desired

accuracy in all re-entry parameters as a functiu.,l
of initial altitude. A continuation of this analysis

would be necessary to hmit the ma_imum masJ

ratios which could be considered as pulses for

the same accurac_ limitation.

Figure i0 presents the error in the ideal ve-

locity pulse due to finite burning times.

2. Orbital Departure from 100-stat mf (161-kin)

Orbit_ with P'lnite Burning Time

Finite burning tlme will now be included in the

analysis :is a:l additiu_tal variable: bo.vever. ,_i,:ce
no closed solution exists for this problem, the

digital computer and a stepwise trajectory pro-
gram were employed. This program considers

the vehicle to be a point mass and the earth to be

spherical. The trajectory during burning of a
rocket or during travel within the sensible atmo-

sphere is obtained by stepwise integration. The
time interval for each integration is determined

by the accuracy limitation placed on the extrap-

olated values of certain critical quantities. The

equations for this program are presented in the

simplified form required for this effort.

Lift T
Drag _ /

-- _-.,, .
we_h

/ _: _ve,ociry

/ _ Local Horizomal

///_----l_dLtm

/ a = Angle between the missile axis
and the velocity vector _ O"

x | - Angle between themissile axis
and thethrtmt vector

T = thrUlt force

_. = T (a + _ D-- cos -.. ....m m

T _ sin _=A
m

r

- sinY
r

(132)
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_v =! sin_+6)+ U___-_
m m

=- --_ cos Y=B
r

Y

°.

x m

sln¥

COS Y _

where

smV =

COS _ x

sin_ =

COS _ "

=AsinV +Bcos

A cosV- B slnV

sinV cos _ + cosV sin

cosV cos _ -sinV sin

x

V

x f

r

r

cos Y
r

(133)

(134)

(135)

(136)

(137)

T- TsL+A e(PSL - Pa )

TSL = TVac - Ae PSL

m = g-_- 1 - P

_V = constant.
P

(138)

(139)

Once the retrorocket burns out, the trajectory is
assumed to be unperturbed down to the altitude at

which drag becomes appreciable. The equations
for this portion of the trajectory are those of

motion in a Keplerian ellipse.

For the purposes of this analysis two rocket

W

parameters W_0 andS0 (mass ratio and initial

thrust-to-weight ratio) are investigated. In

addition the thrust attitude angle (6) was varied
to show the effects of these quantities on the

conditions at re-entry.

I
I

I Retr othrust

_ _ "_ Velocity

!
!

NOTE:

5 is measured in the plane of the trajectory.

The magnitude of the radial component of

velocity is small, thus work done by the radial

component of thrust will be small. It may,

therefore, appear that a value of _of 180 ° is

optimum for all cases in which departure is

desired; such is not the case. In the case of low

altitude orbits small changes in the burnout

altitude and flight path angle can affect the mass
ratio required for orbital departure and on the

re-entry parameters. This analysis, therefore,

treats departure from a 100-stat mi (161 kin)

orbit separately from similar analysis for orbits
of increased altitude.

There are many possible criteria which might

be considered in the determination of an optimum

retrorocket configuration. The selected con-

figuration might be one for which the re-entry

velocity is minimum, the re-entry flight path

angle is minimum, the mass ratio required for

departure is minimum or one which ensures a

given value of range from the time of initiation

to impact with the earth. The vehicle itself must

also be considered in this process due to the

sensitivity of some vehicles to small changes in

the re-entry parameters.

Minimization of the re-entry flight path angle

is not a realistic constraint for the vehicle con-

figurations discussed due to the fact that the

maximum values of both deceleration and aero-

dynamic heating can be held with allowable

tolerances for manned re-entry for angles up to

approximately -2 °. Thus, this constraint need

not be considered.

Since maneuver, either before initiating re-

entry or sometime thereafter, is anticipated to

assure impact in a given area, the criteria selected

for the evaluation of retrorocket configurations

should provide the maximum degree of flexibility

in this respect. The analysis of maneuvering

showed that the maximum displacement of the

impact point in a plane normal to that of the un-

altered trajectory, for a given amount of pro-

pellant, is obtained if the central angle measured
from the radius at which the correction is made

to that at which the trajectory impacts with the

earth is 90 ° (10, 000-kin range). Thus, the selection
of the retrorocket configuration which is near

optimum for an orbit of this altitude is, determined

by this value of total range and the minimum

amount of propellant required for successful

departure. This criteria must be modified, how-

ever, if the re-entry angle exceeds the allowable
tolerances placed upon it.

Specific impulse will not be included in this

analysis as a variable; however, because the

mass ratios are small, the data presented here

can be converted to obtain approximate answers

corresponding to values of Isp other than the

assumed 300 sec, This can be accomplished by

employing Eq (120).

A V = go Isp _ = C

_I IsPl = _2 IsP2

Figure II shows the variations in range, re-

entry velocity and re-entry flight path angle as

VIII- 20



--\

,-p

functions of 6 and_'_n for one value of mass ratio
v

(0.1). This figure clearly shows that the range

obtained in descent to 300,000 ft (91.5 kin) can be

minimized for a value of 6 less than 180 °. Also

shown is the convergence of the curves of the

higher values of_n implying that little is to be

gained by increasing its magnitude above some

value as yet undetermined (0. 5, see Section 3.

It is interesting to note that re-entry velocity

which is a function of initial velocity, altitude,

and velocity increment of the retrorocket is least

sensitive to changes in thrust-to-weight ratio.
This fact substantiates the assumption made in

the impulse analyses that the velocity increment

loss (a function of_n) due to gravity is negligible

for small values of mass ratio.

Figures 12a, b and c present time of flight

required for descent from 100 stat mi(161 km)
to 300,000 ft (91.5 kin) and the re-entry param-

eters at 300,000 ft (91.5 kin) as functions of

thrust-to-weight ratio, mass ratio, and values

of 6 of 180, -135, and -90 °, respectively. It is

interesting to note that the hand computed in-

stantaneous pulse points fared into the digital

results for the 6 = 180° case. The sensitivity

of both range and time of flight to small changes
in mass ratio may be observed to decrease as
mass ratio increases; this portion of the analysis,

however, will be discussed later.

If now a curve such as the one shown in Fig.

13 is employed to determine values of total range

attained in descending to sea level Figs. 14a, b,

and c may be obtained. These curves point up

most effectively the proper combination of 6,
T

_0 and mass ratio required to accomplish a

minimum energy orbital departure for a given
range. Examination of these figures reveals

that the minimum propellant requirement for a

given value of total range is obtained for this

special case for a value of _ of approximately
-135 ° . Further examination indicates that both

re-entry flight path angle and the required mass

ratio are minimum for the higher thrust-to-weight
ratio (0.5), again for a given value of total range.

Since the results obtained thus far pertain to

only one set of initial conditions and since it is
desired to show the effects of small variations

in the conditions prior to initiation of the retro-

rocket on the re-entry parameters, another series

of runs has been made. However, due to the scope

of the program involved only one retrorocket con-
figuration has been investigated. This particular

configuration was selected to provide a minimum

energy orbital departure for a total range of 5000

naut mior 9270 km (6 = -135°, T/W = 0.5, _ =
0. 042, L/D = 0.5). The results of this series

of runs are presented in Fig. 15.

3. Orbital Departure from Nearly Circular

Orbits (I00< h _.500 stat mi i.e. 161 to 805
krn) with Finite Burning Times

This section treats departure from orbits

whose altitudes vary from 100 to 500 star mi

(161 to 805 kin), whose velocities at the firing

of the retrorocket vary between 100 ft/sec
more than and 100 ft/sec less than the velocity

of circularity (v c + 30.5 m/sec) at the orbital

altitude, and whose flight path angles will be
between +4 ° .

As was discussed in the previous paragraphs,

the work done by the radial component of thrust
is smalls therefore, as the orbital altitude in-

creases, the value of 6 which provides for a

minimum energy orbital departure rapidly changes
from -90 to 180% The value of 5 to be used for

the remainder of this study dealing with orbits of
100-stat mi (161-kin) altitude and more will be

180 °. The initial thrust-to-weight ratio will also

be assigned a value to restrict the scope of the

program which must be undertaken to provide the

data for this report. Figure 16, a plot of the re-

entry parameters as functions of orbital altitude

and thrust-to-weight ratio, shows the reduced

sensitivity of all of the re-entry quantities to
T

thrust-to-weight ratio as_n increases. This

figure indicates that no improvement in the re-

entry parameters or reductions in the required

mass ratio are to be realized by increasing

T

_0 to more than,,,l.5 and little above 0.5; there-

fore, a value of_n of 0.5 is used for the re-

mainder of this analysis.

F_gure 17 presents re-entry velocity, flight

path angle, time of flight required for descent

and the range attained in descent to 300,000 ft
(91.5 kin) as functions of the initial altitude and

retrorocket mass ratio for several initially

circular orbits. This figure clearly defines the

minimum mass ratio required for departure from

several initially circular orbits. Any mass ratio

less than that which produces 0 ° as a re-entry angle

would produce an elliptical orbit, the initial

perigee of which would be above the nominally

selected re-entry altitude, and the initial apogee
of which would be approximately the altitude at

burnout. This orbit would decay, possibly quite

rapidly due to the existence of an atmosphere
above the re-entry altitude, and the vehicle would

eventually re-enter; these figures, however, are
for those applications in which the vehicle would

re-enter the sensible atmosphere, as defined, in
one-haLf of one revolution or less. The time of

flight for a vehicle traveling in a trajectory which

did not initially pass within the atmosphere would

be determined approximately by its closest ap-

CDA

proach to the earth and the quantity _ .

Figures 18a, b, c, d, and e present the re-

entry parameters as functions of orbital altitude,

orbital velocity and retrorocket mass ratio (Vl =

0°). Conclusions pertaining to the minimum mass

ratios acceptable for orbital departure for veloci-
ties other than that of circularity can be obtained

from these figures in the manner discussed for

Fig. 17.

Figures 19a, b, c, d, and e present the re-

entry parameters as functions of retrorocket mass

ratio, orbital altitude and flight path angle prior

to firing the retrorocket. Several of these fig-
ures show discontinuities and bulges which at

first glance may appear to be in error; however,
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it must be noted that these irregularities occur

for mass ratios which are marginal from the

standpoint of energy required for successful

orbital exit and only in the range of flight path

angles from approximately -2 ° to +2 °. This sit-

uation can best be explained by stating that a var-

iation in the value of Y1 (either positive or negative)

produces an elliptical orbit one portion of which

lies below the altitude at which the retrorocket is

fired. The net result of this displacement of the

perigee is to reduce the amount of propellant re-

quired for a successful departure from orbit or

to make exit less marginal for a given amount of

propellant.

Small thrust-to-initial-weight ratios (_ --

0.01 ) for orbital departure have also been con-

sidered. This device burned for the major portion

of the time required for descent, thus, providing

a force which could also be employed for minor

maneuver or flight path corrections during descent.
It was thought that significant reduction in the re-

entry flight path angle could be realized with this

approach; however, the results indicated little

margin of superiority in this respect and showed

an increase in the amount of propellant required.

4. Error Sensitivities for Departure from Nearly

Circular Orbits Assuming Finite Burning
Times

Generally, since the orbital velocity, altitude

and flight path angle at any given time are not

known exactly, it is desired to show the effects
of errors in each of these orbital parameters

prior to initiation of a retrorocket and in the

retrorocket burning time on the re-entry param-

eters being evaluated. Due to the fact that no
purely analytical expressions can be obtained

which include the effects of retrorocket burning
time on these errors, each error was evaluated

manually by determining the slopes of the curves

presented in the previous sections. An extension

of this analysis to include such things as variations

in the peak values of deceleration and vehicle skin

temperatures due to the atmosphere, in the i/n-

pact angle and velocity, and in impact dispersion,
will not be made here due to the fact that each of

these quantities is a complex function of the con-

figuration of the re-entrgr vehicle.

The error in a given re-entry parameter re-

sulting from any of the errors being investigated

can be evaluated from the data presented here in

the following manner.

= [ _X (140)AX 1 At B /

zXX

&X2 =Z_VI (:_I) (141)

AX 3 = _h I ( AX 1142)

Z_X4 = _¥I ( AX

where

X can be any of the four re-entry quantities

considered (range, flight time, velocity,

and flight path angle).

The resultant error in any of the re-entry param-

eters due to an error in more than one of the

quantities tB, V I, h I and ¥1 can now be evaluated

through the utilization of the chain rule, i.e.,

AXtota 1 = AX 1 + AX 2 + AX 3 + z_X 4. (144)

This assumption is permissible only because the

independent error terms are small for most cases;
if a higher degree of accuracy is desired or if

these independent errors are large, the method

of successive approximations must be employed

to improve the accuracy of the estimate. Once

the resultant error has been determined, the

actual value of the re-entry parameter may be

obtained by adding the resultant error to the

nominal value of quantity as defined LR previous
sections.

It is noted at this point that this procedure

will not yield the most probable value of the error

if the maximum errors in each parameter are

substituted into the chain. To obtain this prob-

able error, it is necessary to refer to statistical

discussions similar to that presented in Chapter

VI.

Due to the fact that it is at present impossible

to place a vehicle in an exact predetermined

orbit, it is necessary to provide the vehicle with

a retrorocket large enough to remove the vehicle

from the major portion of orbits into which in-

jection is likely. This fact makes it necessary

to physically control the burning time (and con-

sequently the mass ratio) of the retrorocket in

order to prevent the vehicle from assuming a

trajectory which would produce maximum values

of skin temperature and/or deceleration which

exceed the limits placed on the trajectory by

structural and personnel considerations.

Figures 20a, b, c, d and e present the errors

in the re-entry parameters due to an error in tB

(assumed to be 1 sec) as functions of the orbital

conditions prior to firing the retro-rocket and of

the retrorocket mass ratio. The selection of this

value of At B is not intended to reflect the accuracy

anticipated in controlling this quantity but rather

is intended to make the data more readily applicable

for all values of z_tB. Actually, this error can be

limited to approximately 0.05 sec barring malfunc-

tion for most motors of the size necessary for this

maneuver.

Figure 21 presents the changes in the re-entry

quantities due to an error of 1 ft/sec (0.3 mps)

in V 1 as a function of the retrorocket mass ratio

and the orbital conditions prior to firing the retro-

rocket. Very little data is available pertaining to

the accuracies obtainable from the various velocity

sensing schemes and mechanisms, but it is felt

that vehicle velocity should be known within a
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range of I to I0 parts in I00,000. These inaccu-

racies correspond to errors in V 1 from approxi-

mately 0.2 to 1.0 fps (•0.06 to • 0.3 mps).

Figures 22a, b and c present the variations in

the re-entry parameters due to a l-stat mi (i. 61

km) error in hi. The accuracies obtainable even

with present radar indicate that it would be un-

reasonable to assume an error in h I greater than

approximately 300 ft {_ stat mi or 91.5 m)

w'u/ exist. Since all of the errors being evaluated

are small even for an error in h I of 1.6 kin, the

effects of an error in h I of only 91 m are neg-

ligible. As may be observed from the energy

equation, variations in altitude h I will have a

definite effect on the re-entry velocity, an ef-

fect which is not reflected here. This apparent

discrepancy is due to the fact that the assumed

error in h I is so small that actual variations in

the value of the re-entry velocity could not be

obtained in this manner from the data.

Figures 23a, b, c, d and e present the errors
in the re-entry parameters due to a 1" error in

the t2ight path angle. This error can be the result

of the fact that the flight path angle prior to the
maneuver was not known correctly or to the fact

that the impulse from the retrorocket was not ap-

plied in the proper cilrection. In either case very

little data is available pertaining to the accuracy
to which this quantity can be obtained; however, it

is felt that if sufficiently accurate data is avail-

able this angle should be known to the order of

0.0i to 0.1 degree.

The data presented in this section indicates

that the resultant errors in all of the re-entry

parameters with the exception of range attained
in descent will be quite small for the estimated

errors in t B, V 1, h 1 and ,q. Range, however,

is quite sensitive to errors in each of these quanti-

ties thus pointing up the probability of a marked

impact dispersion pattern. The determination of
this pattern, however, wilt not be attempted due

to the necessity of including the vehicle ballistic
coefficient and aerodynamic lift in such analysis.

In ar W event, the presence of an atmosphere

below the re-entry altitude will magnify the dis-

persion pattern existing at re-entry due to the

aerodynamic uncertainties and the fact that

and V were also affected by the previous errors.

D. THREE-DIMENSIONAL IMPULSE
ANALYSIS FOR THE CASE OF

CIRCULAR ORBITS

The approach in the previous sections has been

to reduce the recovery problem to one of two

dimensions by utilizing an intermediate orbit. The

philosophy for this approach is governed by the

consideration of the energy required for maneuver-

ing. However, because timing errors can resuR,

and because under some circumstances it may be

desirable to recover promptly, it is also necessary
to consider the three-dimensional nature of the

problem (see following sketches).

Y

X

V
4/

V

This particular problem has been analyzed by

Fosdick and Anthony (Ref. I). For this reason

the complete solution will not be repeated here.
However, it is noted that the problem is not un-

like those discussed in Chapter VI (Maneuvers).

The referenced paper gives the following:

(I) The direction cosines of the impulse

in vehicle centered coordinates

! - - ( v cos a cos _-I)/D*
Z_V

m = _ = (acos ,_sin a)/D*

n

where

D*

AV
- (_sin v)/D*

=(1 - 2v cos a cos y+ v2) 1"2/

= The angle in the horizontal plane at
the initial radius through which the

velocity vector is rotated

ffi The flight path angle of the velocity

vector following the impulse

V
=_T"

C
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,- 3c,-°o, [oo,'°
- cos 8T + _r_

+tana sin eTI'I II/2

(2) Turn angle and impulse magnitude

sin d

sin_ = st-_-_T

(1

AV =v2
+ I - 2 v cos _cos a

C

(3) Flight path angle.

To this point only the initialand final
radii and the angle between have been
fixed. Thus, the transfer ellipse is
not unique and y cannot be,fixed. This
condition is altered if the time of Night
(or flight path angle or velocity at a
point in the ellipse) is specified since
then the ellipse is unique. The reason
that this was not done was to leave an
area for possible optimization of the
impulsive correction.

Ref. 1 also reports some results obtained for
the analytic optimization of the position of deorbit.
The solution is, ho_vever, fairly lengthy. Gedeon
(Ref. 2) took this work and developed some inter-
esting results by numerical optimization of the
following equation obtainable from Ref. 1.

2 '
sin d K 2AK = 1 - 2 Kcos ¥ sin2 -_ +

I

sin%/z 2

Vwhere: K- cos 7. _ r0 cos {ST- X)
f

rI cos V

r0 = initialradius

rI = radius at which the displacement
Occurs

A K = The change in the quantity 2-_

= a measure of _V since a = r

2u-rl + l 2

r V. AV J.h.Y.l2
=-2 g . [V12

<<I

I /

The results of these procedures are presented in
Figures _4 through 27. One important factor
should be noted. These figures have the param-

eter r0/rl: thus, they can be utUtzed for gen-

erating data down the re-entry altitude {or to
impact if the effects of the atmosphere on the

trajectory can be assumed negligible in the case
of interest).

This being the case, the angle ¥, takes on
special value since it is the re-entry angle dis-
cussed previously and in Chapter IX.

This material completes this portion of the
3-D recovery discussion. As was noted pre-
viously, however, addRional material on this
problem and on maneuvers can be found in
Chapter VI.

E. ANALYSIS OF ORBITAL
DEPARTURE FREQUENCY

1. Definin_ Ecluations

For the purpose of defining the acceptable
times of orbital departure from the low altitude
orbit, a model of the earth and of the satellite
orbit have been selected. The earth is assumed

to be spherical and rotating at a uniform rate
(see the following sketch). In order to partiaUy
compensate for errors involved in assuming a
spherical earth, the orbital plane is assumed to
be regressing about the equator at a uniform
rate. The orbit of the satellitewill be considered

to be affected by drag forces; however, all other
accelerations (such as second order oblateness
effects, sun, moon, etc.)are neglected.

Fixed refe

dlrectlon

Rotating reference
direction

_, X arc

" R-_-,"ra_---d1-_--

Utilizing this sketch and the assumptions listed
above, it is now possible to solve for the sidereal
time at which the impact point lies in a prescribed
plane.

_0 +n_-(A + AA maneuver)

texit = fZ
e

+ flmpact(L, i)+ 2 m
n
e

where: ,xA maneuver = angular displacement
corresponding to thrust
or aerodynamic maneuver-
abi/ity.

_/
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2

_=-3_J 2 (-_) cosi 0°< i< 180 o

m = positive integer for number of days; selected

sufficiently large that t _> 0

-i tan L L
f (L, i) = sin

tan i

northerly launches or

southerly approach

-i tan L L northerly approach
= T¢ - sin southerly launches

tan i 0 ° .._ i < 90 °

-I tan L L northerly approach
= _ + sin southerly launch

tan i 90 ° < i < 180 °

= number of revolutions in orbit (non-

integer)

Similarly there is an expression for the time

at which the launch point crosses the plane

tlaunch = ( _0- Alaunch" _ Alaunch

maneuver

)+ fiaunch (L, i) ae

Thus, the time duration for the satellite in orbit

is texit - tlaunch or

[ ,, -(A + ,"tin orbit = (A + -A )impact _\ )launch

+ n_ + 2mTr + fimpact (L, i)

- flaunch (L, i)] _2e-1

It is noted at this point that though fimpact and

flaunch have the same functional form, the

numerical values of L L, L i, i and i i need not be

the same. Thus, this equation can reflect the

effects of maneuvering in orbit in the interim

between launch and recovery.

A second equation for the time in orbit may

be written as

n

tin orbit -- n7 0+ _ _v i+tAD

i=l

where

n = the number of revolutions in the orbit

(noninteger)

TO = the period of the initial orbit over an
oblate earth

e_'i = change in the i th period due to drag
shown in the next sketch

tAD = the time required for ascent and descent.

Now, the two equations for tin orbit can be equated

and solved for the unknown "n" which will be re-

quired to place the satellite and the impact point
in the desired positions for recovery.

n =[(A + _A)impact - (A + _' A)launch

+ 2m= +fimpact (L, i) - flaunch (L, i)

n

 Ti+tAD)
i=l

-I
T S

where

_v - oblateness correction for orbital

Vs period, see Chapter IV

Vs = the orbital period over a spherical
earth.

2. Dra_ Correction

Since the corrective term (i.e., the series) is

a function of n (shown in the following sketch), the

solution requires iteration.

t = n

n

i= 1

This process, however, is greatly simplified due
to the fact that the size of the correction is small.

Thus n can be estimated neglecting the correction
and then refined. This refinement can be obtained

in the following fashion.

r +r
a p

a = -----2---

m a + hp)
/_a = T

secular 2

3 _- (LaD + _a0)/_ Vsecular = _
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=_3 r 2
-_- [G1 (z)+G2 (z)][1

i/2

- e] 2Bpp _'Tp

where

Aa D

/_a 0 =

G 1 (z), G 2 (z) =

the drag correction for

secular changes in the semi-

major axis

the oblateness correction

for secular changes in the

semimajor axis = 0

drag parameters for elliptic

orbits, discussed in Chapter

V

pp = atmosphere density at perigee

CDA
B 2-_

Thus, as the elements are defined as a function

of the revolution number, the correction cor-

responding to that revolution can be computed.

The approach above is vigorous but is some-

what more involved than desirable because it is

necessary to compute a correction on each revolu-

tion. In view of the fact that the corrections are

in general small and that the atmospheric uncer-

tainties preclude high accuracies, an alternative

solution is available for the case of circular and

near circular orbits. This approach makes use

of the fact that in a restricted range of altitudes

the following approximations are valid.

'_-p 13 .[_)A7 : (4vpB ) _|_ At : -6_Ba/_t

But

t =_n70

At _ _0 An

Now replacinga by (a 0 - 4 _Pa02 Bn) yields:

AT _ - 6_BT 0 (a0 - 4_rPa02 Bn) 9 &n

and for nearly circular orbits

p _ Poexp K(ao - a)_.Poexp K(47rPOaO2Bn)

AT :{-6vB_0_a0-4_P0 a02 Bn

exp K (4 _P0a02 Bn_

" PO exp K (4=P0a02 Bn) An}

Now adopting a shorthand notation to prevent book-

keeping problems with the constants, the equation
for IxT becomes

A 3 n) cA3 n
AT = (A 1 + A 2 ne _n

A 1 = -6 rrB_-0a 0 P0

A2 : +24v2 B2 T0a02 P0

2
A 3 : 4TrP0a 0 BK

If, at this point it is further assumed that the series

n

± i can be approximated by the integral, a

i=l

simple expression c_n be obtained.

n n

-i AT. _ A3n eA3n)
i=l 0

dn

A l A3n A 2 (2A3n - i) 2A3n

= _ e +
(2 A 3 )2

This expression should be utilized for the

evaluation of the series for most of the cases of

interest. However, for special cases where

_2A3n]< l, it is of interest to look at the series

expansion of the right-hand side of the previous

equation.

(A3n)2 (A3n)2

1 + A3n +---2--- + ---g----

n

:A,(
i:l _Ti _3 ...)

A 2 (2A3n - i) /

I + 2 A3n
(2A3)2

(2A3n)2 (2A3n) 3 )+---g---- +...

= 4

(© A2+n 2 +-2-) +n 3

2A 2 A 3 )+ _ + other terms.

This form of the series is preferable for the
previously noted special cases because of the

simple form.
/

J
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It is noted at this point that either form for

the correction will be more accurate if the al-

titude range is small. Thus, a logical extension

could be obtained by breaking the decay range

into regions which the assumptions were valid.

This approach would entail the computation of

several sets of constants A i (i = i, 2, 3).

3. Launch Maneuver Correction

To this point each factor in the definition of

the quantity n has been discussed except the

quantities -_Alaunch and _ Aimpact. The first

maneuver (_A L) is _he direct resulz of launching

into a plane other than the orbital plane and

utilizing a portion of the propellant for the pur-

pose of turning the vehicle into the desired

plane. The magnitude of this maneuver thus

depends on the amount of surplus propulsion

available, the type of trajectory to be flown and

the type of guidance law which is utilized. Al-

though no detailed discussions of powered flight

are presented in this volume, the related dis-

cussions for the case where the plane is altered

impulsively can be presented. Consider the

following sketch and the spherical relationships

derivable therefrom:

Launch

I I / '
LL .

Desired

:rajectory

sin L
sin ¢ - sm z

,]1 = _binj - d)L

n2

'13 = BL

1
sin- I

sm t /

= ascent rani_e
Earth, s radius

sin L L.

-sin-I (s--_)

(i.e. , the plane

change is assumed

to occur at point of

injection into orbit

but prior to injection

for fuel economy)

= sin-I/ cos i

Now the determination of /_A can proceed based

on Eqs (65) and (68) of Chapter xrrr.

sin a sin
sin (A - A 0) = cos L

sin L = sin L 0 cos a+ cos L 0 sin acos

or

COS _ =

sin L - sinL 0 cos a

cos L 0 sm

These equations are the parametric equations for

a polar cap with center at L0, A 0 and of radius of

_. The azimuth angle flis then the independent

variable for generating the locus of points L, A.

These two equations can be utilized as follows:

Let

= H I

= _3

A : 0
0

then

sin ql sin ,13

sin :\! : cos L. .
tnj

Now let

t_ = _2

and

L 0 = Lin j and L = L L

sin L L- sin Lin i cos _2

cos fl = cos Lin j sm _2

sin n2 sin 13

sin (A 2 - A1 ) - cos L L

At this point it is noted that the quantity of interest

A L may be obtained to be:

_XA L = A 2 -A 0 = A 2

This derivation tacitly assumed that the launch

site would cross the orbital plane, thus as a

consequence this value of AA L is valid only for

the cases for which

i > ILLI

By varying the formulation above other cases

can, however, be included.

4. Landing Maneuver Correction

The second maneuver to be discussed

(_Aimpact) is, as was noted, the result of either
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aerodynamic maneuverability or thrust. In either

case, however, _Aimpact is highly dependent

on the guidance philosophy. This being the case,
only the simplest of the possible maneuvers can

be considered. The following sketch illustrates

this problem for a lateral maneuver distance D m

and a descent range R.

Lexit

"_3

r_' 4

.J

pact

mlpact

COS

E 1 = Cos -I
D

COS

where

_I = sin- 1 ( SinsinLexiti )

9 2 sin-1 ( sin LLmpact= _I-KI )

g3 = sin-I ( c°si )
cos Limpact

L* = sin -l ( sin i sin (_2 + ¢_2))

_4 = sin-1 [_)cos i %

Now, as before, the spherical segment equations

can be utilized to yield _ A.
impact"

let

a = gl

L 0 = Limpact

sin A
sin gl sin _3

=
1 cos L*

Now let

D
m

ot - 1T

= _3

A0= A 1

L 0 = L*

W--) sin _4sin ( Dm

sin (A 2 - A1 ) - cos L.
impact

and finally

--AAimpact = A2 - A0 = A2

No stipulation has been made as to the restric-

tion on the validity of this value of A2; however,

in the derivation an assumption has been made

nonetheless. This assumption is that

D

' I mi "_ I Limpact + _----

While this assumption is somewhat restrictive,
it provides information for most of the orbits of "

practical value. Those orbits which are ex-

cluded will be discussed later.

Attention may now be turned to the descrip-
tion of the parameters assumed in this final

discussion, R and D m. The first quantity must

be estimated from the combination of the free

flight trajectory down to a re-entry altitude, the
aerodynamic characteristics of the body and the

re-entry conditions. This material is found in

Chapters HI and IX. The second quantity (Dm),

however, must be handled in a slightly different
fashion. If the maneuver is the result of a small

impulsive correction, the lateral rnaneuverabflity
is approximately

Z_V

Dm = r0 "_0 sin (O - O0) (see Chapter VI)

where

r 0 = initial radius

V 0 = initial velocity

8 - O0 = central angle from point of
maneuver to impact

Whereas, if the maneuver results from aero-

dynamic forces

VIII-28



Dm
1. 875

, L

_ km

<I.0

D
m

 oio(#)  utmi1 0.75 < <2.0

_ 1688(DL-_) km D

where

D
in

= maximum distance normal to the

orbital plane that is obtainable in
descent from 300,000 ft (91.4kin).

L/D* = component of the L/D ratio normal

to the plane of motion.

These latter relations were suggested by numeri-

cal integration of actual motions, although it is

notedthatthe formerrelation(_. < 1 )has

some theoretical basis. (The theoretical con-

stants are different. )

5. The Form of n

Now since each term in the definition of n

is a known quantity, the number of revolutions

having occurred at any time that the impact point

is in or near the plane of motion can be evaluated.

The attention must, therefore, be turned to those

values of n which are acceptable for a particular

problem. Consider the following sketch:

From this sketch, it is apparent that the num-
ber of revolutions must be of this form:

n = P + _r+sin-I s-_

sin L i ) ] southerly launches+ sin-1 ( s-i-d [ approach from the
south

= p + sin-I{
sinL L, _i • sin L i

southerly launches

approach from north

n' = p - sin-l( SinsmlLL]I sin_l(. _)sin L i
+

northerly launch
approach from

north

where

= p+sin-l(sinLL)

sin L i

northerly launch
approach from
south

p is a positive integer
T

n is related to n in following paragraph

But portions of these distances will be required

for ascent and descent. Since those distances are

not explicitly in the equations for time in orbit

(the times required are included), a correction

to the value of n' must be made and the resultant

form for n must be

, Rascent Rdescent

n = n ---R_ 9 R(9

The procedure is now to generate values of n

for the various passes of the impact point through

the pl2ne of motion and compare these numbers

to those required for successful return. In this

comparison if ± D m allows the computation of the

required n, then a suitable maneuver can result

in sucessful return. This process is sufficiently

simple in that it can be performed manually if

necessary; however, digital computers prove to
be a definite asset. Once n is known, it can be

determined whether the approach was from the

north or south, what maneuverability is required,

and even the time at which deorbit should occur.

6. Alternative Methods

As was noted in previous paragraphs, there
have been assumptions made which restrict the

applicability of the approach to orbits for which
D

m

i > [Limpact [ + _ • Though this assumption

may not be too restrictive for some orbits, it

proves troublesome for others. One approach
around this impasse is to compute the ground

swath defined by the maneuverability of the ve-
hicle. (Ground swaths are discussed in Chapter

XIII. ) When the ground swath contains the impact

site then recovery is possible. If several of these

ground swaths are then computed in the vicinity of
the positions which yielded satisfactory call-downs,

the amount of maneuverability and the direction
and the time for deorbit can be found. The ap-

proach is very simple and is not restricted as to

applicability; however, the number of computations
required even for relatively short durations in

orbit is large and automatic computation is almost
essential.
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Athirdpurelygraphicalapproachinvolves
theplottingofthegroundtrack(seeChapterXVIII)
for theorbit onvellumfor a suitablemap. (This
trackwill beapproximatelyconstantfor theentire
durationinorbit undertheassumptionthatlarge
maneuvers or large changes resulting from drag

do not occur. ) Then the positions of the ascending
nodes can be plotted on the map including the ef-

fects of drag, oblateness, etc. After this step, the

maneuver envelope is superimposed on the ground

track as the track is laid alternately on each of
the ascending nodes and the possible call-downs

are recorded. This final approach thus combines

the advantages of both of the previous approachs
in that it is not restricted to latitudes, can be

performed manually and readily exhibits the in-
formation desired. Much work is still required,

however, in order to develop the data.

Each of these three methods has its merits,

and each has been utilized for analyses of this
type. The selection of a method should be based

on the method of computation, the information

required in the analysis, and the availability of
data in various forms.

F. CONCLUSIONS

In this chapter the geometry and the landing

sRe intercept timing considerations for a

generalized return trajectory from an elliptical

orbit into a low altitude circular orbit are pre-

sented mathematically. An error analysis of
the final low altitude orbit characteristics is

derived for small errors in the departure velocl-

ty, altitude and flight path angle. The following
conclusions are reached.

(1) The return trajectory is extremely

sensitive to errors in departure ve-

locity. A vernier correction of the

velocity vector seems mandatory

immediately after the initial departure

injection for certain classes of or-

bits.

(2) Errors in departure radius cause an

error of roughly the same order of

magnitude at the perigee arrival.

(3) In case of departure cloJe to the apogee
of the trar,sfer ellipse., the errors

caused by deviations in flight path

angle are extremely small and can be

neglected for engineering purposes.

In the timing analysis of the return shuttle,

it is shown that two possible target arrival times

exist for each day. The solution for the exact

departure angle required for a target intercept

is best accomplished by an iteratlve method.

For the sample problem the convergence of the

iteration method is very rapid. The second

approximation gives an answer within two

decimal places and within I. 5 sec of total

flight time (t t = 54, 129.92 sec).

Three flight time _rror analyses are investi-

gated. First, the approximate analytical method

is seen to give only an order of magnitude result.
Second, the exact analytical method is seen to be

somewhat cumbersome algebraically, so far as

manual computations are concerned (on the other

hand, a digital computer can handle the exact

equations easily). Third, the numerical differ-

entiation method is found to be simple, fast and

sufficiently accurate.

Call-down from an intermediate altitude circu-

lar orbit or from low altitude circular orbits in

general is shown to be extremely sensitive to all

error sources. Indeed, if a given landing point

is selected with a very small allowable error,

the only means of achieving a satisfactory landing

at a prescribed time is with a maneuverable re-

entry vehicle. Lateral maneuverabfllty seems to

afford the most rewarding avenue of investigation

from this point of view.

The anlaysls of orbital departure with finite

burning times shows the effect of thrust attitude

and magnitude on the re-entry parameters. The

analysis also shows that the optimum thrust vector

is not always opposite in direction from that of

the velocity vector and that thrust levels above

approximately 1/2 mg alter the descent trajectory

very little.
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IX. SATELLITE RE-ENTRY

SYMBOLS

U

normalized velocity component, v--
e

v

v
c

velocity magnitude

circular orbit velocity magnitude

a acceleration

A reference area

CDA
B ballistic coefficient,

C D drag coefficient

C L lift coefficient

D drag force= _ p v 2 C D A

g gravitational acceleration

G resultant acceleration magnitude experienced

in addition to that due to gravity

h altitude; also, enthalpy

k conductivity

°K degrees Kelvin

1 0
L lift force=_ p v" C LA

Le Lewis number

characteristic length

m vehicle mass

N load factor, G
g

ht
Nu Nusselt number = _--

Pr Prandtl number

qs Heating rate at the stagnation region

r geocentric radius vector

H earth radius

*R degrees Ranktne

Re Reynolds number = p v {

R body radius of curvature at the stagnation
s point

t time

T temperature at the vehicle wall
w

u component of velocity normal to the radius

vector tn the trajectory plane

v

V normalized velocity.
c

w radial component of velocity

W vehicle '.','eight

x longitudinal range

y altitude

Y side force

z drag parameter = PO B_]_
e-_YE

logarithmic slope of the exponential

atmospheric density function

,_ flight path angle with respect to the local
horizontal

E emissivity

0 flow inclination angle with respect to the
free stream

k lateral range

U viscosity

v kinematic viscosity

p density of the atmosphere

P0 sea-level or reference density of the
atmosphere

P®

normalized density = p--_

a radiation constant

¢ bank angle

Subscripts

e entry condition

s value at the stagnation point

0 initial value

ambient value
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A. INTRODUCTION

For missions involving manned satellites and

recovery of scientific instrument payloads, re-

entry of the vehicle into the atmosphere is an

important problem area. The principal considera-

tions involved are (1) protection of the vehicle

structure and payload against the deceleration

and loading encountered in entry, (2) protection

of the vehicle structure and payload against the

thermal environment, (3) assurance of dynamic

stability of the entering vehicle, and (4) achieving
sufficiently accurate trajectory control and land-

ing point prediction. An investigation of any of

these factors must rely on an analysis of the

vehicle trajectory. This chapter, therefore,

presents an entry trajectory analysis and sub-

sequently considers the four previously noted
mission considerations. Design information

given is in the form of both analytic solutions

and data generated by numerical methods.

B. RE-ENTRY TRAJECTORIES

During the re-entry phase of the satellite

mission, aerodynamic forces become necessarily

more important, and the relatively simple per-

turbed Keplerian orbit relationships can no longer
be used. The equations of motion involve non-

linear drag terms, since air drag is a function

of V 2 and atmospheric density, p, and p is a

complicated function of altitude.

These nonlinear differential equations cannot
be reduced to an exact closed form solution with

present mathematical methods. Thus, two pos-

sible solution procedures must be investigated.

(I)

(2)

Closed form solutions of approximate

differential equations.

Numerical parametric solutions of the

exact differential equations using a high

speed digital computer.

I. Approximate Analytic Solutions

A multitude of approximate analytic solutions

to the equations of motion has appeared in the

literature during the past few years. Many of

these solutions differ somewhat in their simplify-

ing assumptions as well as in mathematical ap-
proach. Therefore, in an attempt to consider

the problem with both depth and scope, two some-

what different approximate analyses are presented
in detail in Subsections a and b, following; and a

rather comprehensive itemization of other solu-

tions existing in the literature, together with

pertinent assumptions and limitations, is given
in Subsection c.

a. First approximate method (Ref. I)

Chapman (Ref. i) presents an interesting ap-

proximate solution as well as a convenient approach

to numerical solution of the equations of motion.

Assumptions include (1) spherically symmetric

planet and atmosphere, (2) exponentially varying

atmospheric density, (3) negligible peripheral

velocity of the planet compared to the velocity of

the entering vehicle, (4) small fractional change

in radial distance compared to the fractional

change in velocity in a given increment of time

dr du
(i.e., I-}-'-I<< I--d- I), (5) small component of

lift in the horizontal direction compared to the

drag (i.e., !_stan ,_ [<< 1) and (6) apoint mass

vehicle. The derivation proceeds as follows : in

the absence of forces normal to the trajectory

plane, the motion may be described in two dimen-

sions by the vector acceleration.

a= iiF-7-- _iH-+--r - (i)

where e r and are unit vectors in the r and 5

directions, r is the radius vector from the planet

center to the entering body, and w and u are

velocity components along and normal to the
instantaneous radius vector, respectively. The

L D

_ _Flight

path

u

, -w

flight path angle with respect to local horizontal,

V (negative for descent) is

-lw
,_ = tan --_ (2)

The vector force is

f = (-rag + L cos y - D sin y) e
r

- (D cos Y + L sin _) e b , (3)

so that two component equations of motion may

be written from Eqs (i), (2) and (3):

d2y 2
dw u L cos y + D sin

- dt-_ =--_- =g-T-_

(4)

du _ uw D (cos "Y + _ sin Y) (5)iY/-= T -_

Ref. (1) neglects the term u....wwin Eq (5), which is
r

equivalent to assumption (4),

u-d-d-- --

[a-_l r I_-I l_I
<< 1.

'I
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This situation is realistic only when drag is large,
so that the solutions will not apply to orbit motion
above the sensible atmosphere. Then, using the
exponential approximation to atmospheric density,

P = PO e-13y' (6)

and assumption (5),

[_ tan ?1 << 1,

Eq (5) yields

-;3y
du P0 e
HI- m

2
U

COS Y
(7)

since

D=_pV2CDA (8)

whe re

V

C D

A

= velocity magnitude = _u-
+

--drag coefficient

= reference cross-section area of entry
vehicle

The variable u may be normal[zed by setting

E- u _ a (9)

Then

du d ( g_r u) - g_r du (10)

since, from approximation (4) and the differential

of Newton's law of gravitation, g =-_ ,
r

dg = -2 dr •
g r

derivatives of g and r may be neglected relative
to derivatives of u or u. From Eq (10), Eq (7)
for the normalized variable becomes

-2
du e-By u _ (11)= -B P0 cos Y

CDA
where B is the ballistic coefficient, B = _ •

Similarly, rewriting Eq (4) using Eqs (8) and (9)

gives

1 dw _ 1 d2y = 1 E2 rE2 e-By

g _ g_ - +P0 B _-cos Y (sin Y

. L cos Y) (12)
D

Reference (1) reduces the transformed pair of motion
equations, Eqs (11) and (12), to a single equation

by transforming to a dimensionless dependent
variable z defined by

_- e -_]yz-=P0B u

Then, with assumption (4),

(13)

1 dz z _-_ __= - P0 B e -3y dy
u du u du

z dv dt .

till

(14)

But, from Eq (i1),

dG _z
= E-d-s ,_

and

(15)

f= w = u gr tan "Y

so that Eq (14) becomes

dG _ g E Hi- sin ','.
(16)

Then

and

,)

cos _ _ aT 5-_

V_ sin 2 7 d-x (17_
+

2
cos y d_

-d2 z _ d.zz +z

= u d--_- du u
(18)

d 2 Z

- _r sin Y.

From the first form of Eq (18), Eq (15) and Eq
(17),

I dw i da2y - d2z

m- --- dr--r-= cos y d-_-2_-

+tan2 Y [u d (dzdu d-_ -z)] 1

and from Eqs (12), (13) and (16),

1 dw 1 d2y=l _2 Ucos-_(dz-_:-_dt--r - +

(19)

E D- cos Y
(20)
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A comparison of Eqs (19) and (20) gives the final
equation to be solved.

-2

 (dz z) l u 4U -- COS "{

dJ J 5z

_cos _ = 0 (21)

where

(_-_ sin Y = -d___z_.z z_
dJ

Consequently, the pair of component motion equa-

tions, Eqs (4) and (5), has been reduced to a single

second order differential equation by transform-

ing to the dependent variable z and the independent

variable J, subject to the assumptions noted.

The nonlinear differential Eq (21) may be solved

by numerical integration; since Eq (21) depends

only on the ratio of lift and dra B coefficients,

numerical solution of this equation has certain

advantages over straightforward integration of the

two component equations of motion, which depend

on both coefficients. Alternatively, Eq (21) may

be used to generate various approximate solutions.

(I) Approximation for straight line trajectories
and ballistic vehicles

For the case of entry of a ballistic vehicle along

a spirai path characterized by a constant flight path

angle with respect to local horizontal V, Eq (18)
gives

d (sin

dJ

where z is
1

this special

(22) yields°

(entry from

and

7) = 0 = UZl" - ]-'_sin _ (22)

z I
! =

the z function defined by Eq (13) for

case. Successive integration of Eq

for initial conditions _1" = II 0, z -- 0

high altitudes),

13r sin _-lnJ + costant

Zl - In __ --B _00e-By

J _'_ sin 9" Uo _ sin_-

(23)

This solution is applicable in either of two circum-

stances: (I) the rather impractical case in which

lift is programmed to maintain a constant flight
path angle, or (2) the case of ballistic vehicles

entering at such steep flight path angles that the

difference of gravitational and centrifugal forces

is small compared to the vertical component of

drag force, so that the trajectory is essentially

a straight line. This latter situation is that con-

sidered in Ref. 2, and Eq (23) is the solution
obtained in that reference.

(2) Approximation for gliding vehicles

For the case of small entry angles ( lain _/j =

IYI < andcos --1)withlargeandgliding
hypersonic flight (_ = I), the basic differential

equation, Eq (21), gives the approximate solution

1 _j2

z2 - L (24)

which is the same as the gilding flight solution
given by Nef. 3 and considered in Ref. 4.

(3) Approximation for a skipping vehicle

For the case in which the difference in gravi-
tational and centrifugal forces, i.e. , the term

-2
i - u cos47

7z

of the basic equation, Eq (21), is relattvelv small,

as for a skipping vehicle, Her. 1 provides an ap-
proximate solution.

z 3 z 0 _ [-- =--+ _ sin'_01n u---

u u0 u 0

c°S3Yav L _ ]-----2--- _ ln2

u 0

with

sin 5' : sin "_0 -_c°s3\ '¢av)DL In --J
J 0

L
For _ = 0 these equations reduce to Eq (23).

b. Second approximate method (Ref. 5)

(25)

(26)

Wang and Ting (Ref. 5) derive approximate

solutions from the equations of motion expressed
in the form of tangential and normal components.

dv D
_- : -_ - g sin_ (27)

vd y L 2

;-) cos (28)

r D
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where

v -- vehicle velocity magnitude

1 2 CD AD =,£pv

= drag force

L = ½ 0v 2 CLA

: lift force

g

r

m

't

(29)

: acceleration due to gravity

= radial distance of vehicle fromthe center

of the earth

: mass of vehicle

: local flight path angle, positive for ascent

Since this formulation differs from that of Ref. 1

and provides somewhat more accurate approximate

solutions, the derivation will be presented in some

detail for reference. Assumptions, although noted

in the derivation, are collected for convenience in

the following list.

(1) The earth and its atmosphere are spheri-
cally symmetric.

(2) The atmospheric density varies exponen-
tiaily.

(3) The atmosphere does not rotate.

(4)
cos y = 7 e. For grazing entry, the local

flight path angle [s always small so that

cos "_ = 1 and can be approximated by

cos "_e" For steep entry, the flight path

angle does not change greatly from the

entry value, and the approximation is

again valid.

(5)
The aerodynamic coefficients C L and C D

are assumed constant in the given solu-

tions. (An extension does not require this
assumption. )

(6) Although _ is not assumed to be very small,

accuracy deteriorates because of series

truncation assuming I > ._3. For rea-

sonable accuracies, _-60 °.

(7) The vehicle is considered as a point mass.

With the assumption of exponential atmospheric

density, Eq (6) takes the form

-_h
P=P0 e

dp -- dh -/]p vsin Y

and from Eqs (8) and (29)° Eqs (27) and (28) be-
come

dv C D A

-_ = '2m_ sin _¢do + _ do (30)

CLA (1 g) c°SYesin "_d¥ = - _d O - r- V _ do

(31)

where the approximation cos "Y = cos _e has been

made in Eq (31). The limitations imposed by this

approximation are noted in the previous list of
assumptions, Assumption (4). The quantities in

parenthesis in Eq (31) represent the centrifugal
and gravitational forces and are sometimes neg-

lected in approximate solutions if entry velocities

may be assumed close to circular orbit velocity.

Refet-ence 5 obtains a higher order solution by

appr.,ximating the velocity in the centrifugal force

term uy the velocity-_i,msity relation given in
Ref. 6,

v B

in _ = _ (p - %) (:_2)

where

C DA

B=-2- _

Then, expanding the centrifugal force term in
series°

4r v ]-'2"g -- 1 +el inu'-+C2 in2_--+ "'"
v v e e

e

_ g C1B

- v--- 2 [I +_(O - 0 e)
- e

e

]+ C 2 _ (0 - Oe )2
(33)

where C 1 and C 2 are constant coefficients which

can be determined by collocation. Substitution of

Eq (33) in Eq (31) and integration gives, for con-

stant C L ,

cos Y = cos "_ + B
e

+ B3 fl (O)

where

B
1

p
(p - pe ) + B 2 in1

Pe

(34)

CLA cos _¢e gcos _¢e

= E"m--_" B2 = --_' B3 = 2
_v e

[ : ±fl(O) = (1 + B4C 1 + B C 2) in 0e

0 Oe2
- (B4C 1 + 2B4C 2)

1 2 P - Pe

Oe

BP e

B4 =- _sin'/e

For constant C D integration of Eq (30) proceeds as
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Cd0in"v'=- _ -_ . --2-
pv

Pe Pe

(35)

Evaluation of the integrals is facilitated by the fol-

lowing expansions.

or

I I I Y 4

s-[-6-V = --T---'/= -_ + _" 1 > > y (36)

Y -_Y

1 I 1

= sin lye-(Ye -y)] -sin '_e - (Ye - "0 cos "Te

COS Y

=--!-'+wTa(%-_>'sin
e sm ye

(37)
W

y> _, 1 > > (,_ - ye )

2

Also, cos _ = I - _2- in Eq 34. Then integration

of Eq (35) gives the following solutions:

Case I. K 2 positive. Ye < 45°

v e = B 3 B.

In _- cos Y------_fl (p) +--_ f2 (p) + f3(p)cG
where

4K2_ 2 - K12B 5 = _- 1 + 48K2

f2(p) =pln_K 1 +.2 (1 - a) K 2 + 2 [K2_2

+(K 1 +K 2 - o'K 2) (1 - o')K 2 ] 1/2_

__.o _ qp.

+K,(,- o,+K.(I- o,'l "'

-2 2 2C1B3B4

"_ -- Ne - [2B1 Pe

(38)

+C2 B3B42 _] (P -Pe )

Pe J

-2 [B3 + B2 +C 1 B3 B4 + C2 B3 B.2]ln-_- 0J Pe

K 1 = 2 [B 1 p + B 3 + B 2

(p - pe ) 2(P-Pe )2]- C1B3B4 Pe +C2B3B4 -'--2--
P

e

Pe

P

K 2

Case II.

V

in e
V

= B 3 +B2+CIB3B 4 -

2 (p2-pe2)

C2 B3B4 --_2_

Pe

K 2 negative, Ye < 45°

B 3 B 5

fl(p) + __ f4(p) + f3 (P)

cos "_e _[-K2

(39)

where

f4(p) = p [sin -1 K1
_2

L _K12_4K2 "¢

Case HI.

_ s[n-I K1 +2(l-a) K2 ]

K 2 positive, "_e >45°

Ve = -I + . 2 (P-Pe)

in -_- sm -_--e sm Ye

B 6

- -- f2(p) - 6 f3(p)

where

B cos ,te (4K 2 42 - K12)

B 6 -
8 _ sin 2

"_e K2

Case IV. K 2 negative, Ye >45°

(40)

Ye cos Ye )
Ve -I + (p _ Pe )

In V- = sin _-------e-- sin2 Ye

B 6

_"2 f4(p) - 6 f3(o) (41)

These solutions can be used to determine the

velocity at any point between entry and minimum

y.

c. Other approximate analytic solutions

The following list of approximate analytic

solutions has been collected, along with perti-

nent assumptions and limitations for reference

conventenc e.

(I) Reference (7)

Assumptions. (I) spherically symmetric

earth and atmosphere, (2) exponential atmo-

spheric density, (3) nonrotating atmosphere, (4)

constant gravitational attraction, (5) ballistic entry i
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thequa  t, cosY _,)isoons 0eredT
constant in integration over p or y, and (7) point

mass

Solution.

COS Y

cos _ = e (42)

Qe

2

e

_ 4 R F

e

-R CDA (v e - _/)p

[m cos'_ gR -1

exp

(43)

where

o

1 ] eC1Y " (CI_')'_
Tff (CI Y)3 + L720C_I

(CI _)2 i 1

240 C 1

12 C 1_r- (for "(stoat1)

or

F(_) _ -C 2 [C 1 sin N+COS _/]

+C 4 sin 2 y (C I sin ¥+ 3 cos "V)

(for _ large)

cos Ym

m

where m designates a reference point

1 + 1C2 =_ cos Ye _e (C12 + 9)

6 1 (C 2

Special Cases.

(i) For _R >200 and "_ <45 ° (_R_900for earth)

--"e×p R _;_
(44)

(it) For constant "_(from Eq (42), this

occurs for p small or close to Pe or

for v large or close to gR). Then,

cos _/ : cos _ (45)
e

v 2 [CDA (P- Oe) 1(_e) =exp _ _'-t-ri_e (46)

(Compare with Eq (23).)

(2) Reference (8)

Assumptions. (I) spherically symmetric earth

and--atmosphere, (2) exponential atmospheric den-

sity, (31 nonromting atmosphere, (4) small '_
(sin ¥ _ "¢ and cos "¢ _' 1) and the component of g

along the flight path angle is small, (5) constant

C L and C D, (6) constant gravity and constant

1 over range of re-entry, (7) point mass.
r

Solution.

2 _2v = v - 2 (h - h e ) (47)

where

V1 ve e

v 1
= exp

V
e

-- = exp

V 1

- 'E--
, I5

i[v-4geq_e {iv: -¢e

2 /L% 2 _[gr e

k2 ] [ k +qb -,n k -_0 ]

_1 ! k-qb
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k 2 8KD I flrYe2 ]e -fl he
= + .--E--_-..

z -_l_ 0

2Y
= - _L--

I5

CDA P0 r

KD= 2m

(3) Reference (9)

Assumptions. (1) spherically symmetric earth
and atmosp-h-er--_,-, (2) exponential atmospheric den-

sity, (3) nonrotating atmosphere, (4) y is small,

(5) constant aerodynamic coefficients C L and C D

(6) v _ v in the gravitation term of the force
e 2

equation v__ cos _, (7) constant r over the range
r

of integration, (8) constant g, (9) point mass.

Solution.

2CLA C2./2 = _e " m"--_-r['['[_- (p - Pe ) - r_ fl Pe

(48)

v CDA i _a+bPm+CPJ+ _C"Pm+_I
_n e _ t n .....

Vm 2 mfl VC- _a {C'-Pe i 2_CJL +bPe +Cpe2 +

where

- g 2
a =Ye

b-- ÷
c----_ r--'B"

Om e

and the subscripts e and m signify values at

entry and at peak acceleration or mimmum flight

path angle, respectively.

(49)

'nPm 3i CLAPe " + _ Pe

(4) Reference (2)

See Eq (23).

(5) Reference (I0)

See Eq (46) or (23).

(6) Reference (II)

Assumptions. (1) spherically symmetric
earth and atmosphere, (2) exponential atmospheric

2
V

density, (3) point mass, (4) 1 - _-_ ~ 0 in the
2

pv CDA

equations of motion, (5) sin y < < -- m_-g--- (i. e.,

the component of gravity along the flight path is

negligible compared to the aerodynamic drag

C L
load, (6) constant _.

_D

Solution.

[ co ]= exp - (y - ye ) (50)
% _L

or

m CD

(p - pe ) = 2 _ _ -_L (cos 7 - cos ye )

m CD 2 3

P--Pe+_ C_ _ (_e _ 2) I>>_

2. Numerical Solutions and Graphical Presents-
tlons

Since the equations of motion for entry

(Eqs (4,) and (5), or Eq (21)0 or Eqs (27) and

(28)) cannot be solved analytically without use

of simplifying assumptions, numerical integra-

tion offers the only means of highly accurate

computation of general trajectories. Many
techniques are possible in numerical solution,

depending on the chosen formulation of the

equations of motion and on the method of numeri-

cal integration used. Three formulations of the

equations of motion are given in Eqs (4) and (5),

Eq (21), and Eqs (27) and (28), and various

numerical integration techniques are discussed

in Chapter IV. In general, selection of a

formulation and integration technique must be

based upon the nature of the particular entry

mission. However, it should be noted that

Eq (21), although not completely exact, has an

advantage in that only ratios of lift and drag
coefficients are involved.

Consideration of numerical entry analyses
will be limited to presentation of the solutions

and will not consider the methods. The solutions
are of interest for two reasons:

(1)

(2)

Comparison of the numerical solutions

with the results of approximate analytic

analyses provides a check on the validity

of these analytic solutions.

The numerical solutions, presented in

the form of parametric graphs, are

useful in making preliminary design
estimates.
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Reference 1 provides various solutions deter-

mined numerically from the entry problem form-
ulatlon of Section B. 1.a. For entry of ballistic

vehicle from a decaying orbit (V e = 0 °, E 0 - 1),

Eq (2) reduces to

,,- + _ 5 -- 0 (52)
dE L dE _z

' =0
z 0 = O, z 0

The solution of this equation, which has to be

V -rLevaluated only once for each value of

is plotted in Fig. la for nonliftmg vehicles and in

Fig. lb for lifting vehicles. It should be noted

that in the case of circular deca_ the lifting ve-
hicle does not "skip," but follows a smooth equi-

librium glide trajectory. For nonltfttng vehicles

entering from circular velocities and nonzero

entry angles (E 0 = 1, v 0 < 0), Eq (21) reduces to

-- - cos 4 V = 0 (53)

_L d_ _

The z functions for this case are plotted in Fig. 2a.

With lift and E 0 = 1, _0 < 0, Eq (52) applies with

' = ¢flrv 0. Solutions for this casez 0 = 0 and Z 0

are plotted in Figs. 2b through 2e. All exhibit

severe skips except when _0 = 0.

In Fig. 3 the theoretical solutions for the

atmospheric braking of ballistic vehicles entering

at escape speeds are shown for different values

of maximum deceleration during the first pass.

The parameters used are (30uz)first max. which

correspond to the altitudes of deepest penetration

during the first pass. Figure 3 shows, for exam-

ple, that if (30-u z )first max. = 0.46, then entry is

completed on the seventh pass.

Figure 4 represents a numerical integration
run on the IBM 704 digital computer, considering

natural decay from a near-circular orbit. Veloc-

ity and flight path angle variations are given as

functions of geometrical altitude above the sea
level. Superimposed are the results obtained

from the analytical solution given in Fig. la and

the correspondLag flight path angles given in

Table 1. Correlation is seen to be good, justi-

fying the approximations made in Ref. 1. [Table

1 also gives the ranges in terms of earth radfl

and the flight times from the initial re-entry

altitude.]

Figures 5a to 5e show the velocity-altitude
profiles for ballistic re-entry, as obtained by

numerical integrations of the exact equations of
motion. Using the ballistic coefficient (B) as a

constant parameter, parametric trajectory curves

are given for initial flight path angles of -1 °, -2 °,

-3", -5* and -10 ° for an initial velocity of

25,000 fps (7620 rnps) and an initial altitude of
300,000 ft (91.4 kin). It should be noted that these

results also apply to any altitudes higher than

300,000 ft (91.4 km), since the drag effects above

this altitude are extremely small for conventional
ballistic coefficients. Interpolations between the

curves can be accomplished.

In Fig. 5a the comparison with the analytical
methods of Ref. 3 is presented, showing that for

B = 0.5 to 5.0 ft2/slug (0.00318 to 0.0318 m2/kg)

relatively good agreement exists.

The corresponding local flight path angle
versus altitude histories is shown in Figs. 6a

to 6e. In Fig. 6a the comparison of analytical
and numerical results is seen once more to be

satisfactory for a first approximation.

Characteristic re-entry altitude-velocity pro-
files for lifting vehicles with L]D = 1 and L/D =

3 are indicated in Fig. 7 for an initial re-entry

flight path angle of - 10%

Figures 8a, 8b and 8c present the peak alti-

tudes of first skip for lifting re-entry vehicles

in parametric form for L/D = 0.5 to 3.0.

Figure 9a compares the velocity-altitude pro-

files for various re-entry vehicles, both ballistic

and lifting type. The severity of skips increases
with increasing lift-to-drag ratios and atmo-

spheric effects become significant at much higher
altitudes in the case of lifting bodies, as compared

to simple ballistic vehicles.

Figure 9b investigates the effects of variable

entry velocities on the velocity-altitude profiles
of a lifting body with L/D = 0.5. it should be

noticed that a definite "skip envelope" exists for

all entries regardless of the initial velocity and

basically the same trajectories are reached at
100,000 ft (30.48 kin) altitude.

The initial flight path angle produces some-
what larger deviations between the members of

the same trajectory family as indicated in Fig.
9c.

The effects of programmed C L on velocity-

altitude profile are shown in Fig. 9d. The corre-

sponding programs of C L as functions of Mach

number are given in Fig. 9e.

It should be noted that considerable variations

in the lift coefficient are required for a relatively

smooth trajectory and even small deviations from
the desired lift coefficent program result in a

pronounced phugoid motion of the vehicle.

Figure 10a presents the terminal velocities

as a function of L/D for various parametric

values A While Fig. 10b gives terminal

_D,_ ,

flight path angles for lifting vchicles.

A comparison between the trajectories of

ballistic, lifting and winged bodies is given in

Fig. fla. Further comparisons of velocities,

flight path angles, dynamic pressures, accelera-

tions and nose temperatures for the above three
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TABLE I

L

Vah_es of z Functions and Related (._uantities for O- = 0 and ['0

• 00 DEGo
¥

z G otG, E s
• 999 ,0000_ ,00 *,15 ,000 oO00

.995 o00058 ,02 -*33 ,275 .716
• 990 o00163 ,05 -,47 o431 ,886
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• 960 .01301 .37 -,96 .828

• 950 ,01817 *52 -leO7 ,903
• 900 .05116 1.38 -1.56 1,154
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*995 ,00137
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Y
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1_258 1100,0
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,990 ,00576 *16 -1,07 ,187 ,146 118,5
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types of re-entry bodies are given in Fig. llb as

functions of time. Finally, Fig.llc represents
the effects of the rotating atmosphere on the entry

W

of a lifting body with L/D = 0.5 and _LLA = 155 lb/ft 2

m

note that for entry from 300,000 ft (91.4 kin) the

range for a rotating air mass is 72.5 naut mi

(135 kin) longer than the vaIue for a stationary air
mass.

C. DECELERATION

Deceleration magnitude is one of the several

factors to be considered in safeguarding the pay-

load of an entering vehicle. External loading on
the vehicle, due to air pressure created by motion

of the vehicle through the atmosphere, varies di-

rectly with deceleration and ballistic coefficient.
Another consideration involving deceleration is
that of human tolerance to stress, which is a

function not only of peak deceleration and rate of
onset of deceleration, but of orientation of the body
and duration of the stress.

I. Analytic Solutions

From the force equation for an entering body

(for example Eq (3)) the total acceleration magni-

tude is

2

a = [( -g+L c°sY-m ---mD sin'¢)

L \2 ]I12I D
+ , cos _ +-- sin _| (54)

Jm !

and the resultant acceleration magnitude experi-

enced in addition to that due to gravity can be writ-

ten as

or

G =

2

[(L_mco.,--mO.,n,)
Ls n')

+ cos "_ + _ -" (55)

CDA [ L+ta n _)2G =-_-_--- pV2cos Y (-9

I/2

+ l+_tan (56)

This acceleration G is that actually experienced by
a pilot or instrument package, i.e., the accelera-

tion due to external forces (lift and drag) alone.

Expressed in units of g, this quantity is sometimes

referred to as the load factor, N =G . Two simple
g

cases are of interest.

(I) Ballistic entry

For L = 0, Eq (55) reduces to

(57)

L=0

(2) lifting entry at small entry angles

From Eq (56)

[G _pV2cos'_ 1

For small entry angles

2 1/2

(581

coA[ icL 2j,,2G _ _ pV 2 I + _DD (59)

COS y _ 1, _DD >>

The maximum deceleration experienced can be

determined from the previous equations by setting

dG =0
_Y

For the case of Eq (59). small entry angles, or

Eq (57). ballistic entry, this condition gives

d V
2dP+2pv =0

From Eqs (29) and (27),

or

C D A Pm1 + --_] sin v = (60)

_v m j m m

sin Ym _ - m T > >

In the notation of Ref. 1, or Section B. 1.a. o

(61)

[,,, oo.,.,](62)

2. Numerical Solutions and Graphical Presentations

Fig. 12a from (Ref. I) gives horizontal decel-
du

eration, _, for entry into the earth's atmosphere

from decaying orbits. From Eqs (I0) and (15),

du _ _z
- - g ff_r (63)

c_'_[

30_z , (g), i>>

Consequently° Fig. 2 is useful in generating Fig.

12a.
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In Fig. 12b are shown the results of numer-

ical integrations of the exact equations of motion

by an IBM 704 digital computer for a zero lift decay

trajectory from a near-circular orbit. From

Fig. IRb it can be seen that below approximately
50,000 ft, the deceleration approaches zero be-

cause in this range terminal velocity is reached
(drag - weight). On the same figure, the re-

entry load factors

G
N s_

g

are also indicated. At least for small re-entry

angles, both curves coincide (for practical pur-

poses) in the region where really significant g
loads are encountered. It should also be noted that

the analytical values are considerably higher than
the actual decelerations {theoretical max - 8.35 g

and actual max = 6.9 g).

Furthermore, maximum deceleration is also

a function of the ballistic coefficient, as indicated

by Fig. 12c. For different entry angles the shapes

of the curves presented [n Fig. 12c are essentially

maintained; only the region of maximum decelera-

tion shifts out with decreasing _0"

The variations In maximum decelerations are

given in Fig. 13a, which also gives the corre-

sponding altitudes where they occur. Given a

certain re-entry angle (e.g. , '_0 = 0 deg) and the

ballistic coefficient of the satellite (e.g. , B =
9

2 it'/slug), 0.0127 m2/kg), the magnitude of the

maximum acceleration and its point of occurrence

(for the given example; ({p/gmax) = 6.65 and hma x ace

= 185, 000 it) (56.4 kin) can be determined, From

Fig. 13a it can also be seen that for a fixed ballistic

coefficient, optimum re-entry decelerations are

always connected with a zero initial angle. How-

ever, for a fixed re-entry angle, there exists a

variable optimum ballistic coefficient which

minimizes the decelerations. These optimum

ballistic coefficients are given as functions of

_/0 in Fig. 13b. The corresponding values of

maximum deceleration are also given. It can

be seen that the design values for ballistic co-

efficients in the range 1.0 < B < 1.5 ft2/slug

(0. 00637 to 0. 00956 m2/kg) are desirable.

Drag decelerations may be controlled by vary-

ing the configuration parameters. Figure 14a

shows the effects of variations in the configura-

tion parameters for normalized altitude variations

(Ref. 12). The normalized altitude represents

distances on either side of the original altitude

for maximum deceleration. Figure 14b indicates

the acceleration profiles for these programmed

configuration changes. Taking the most drastic

deceleration reduction (namely 60% of the max-

imum uncontrolled deceleration) only 4 g's are

encountered if the configuration parameter is

changed roughly by a factor of 8.

For manned satellite re-entry, the critical

parameter is not the magnitude of maximum ac-

celeration, but time spent at a given accelera-

tion. Figure 15a compares the effects of re-entry

angles on cumulative deceleration times (for B

= I. 0 ft2/slug 0. 00637 m2/kg) with human tolerance

as given in Ref. 13. It should be noted that the

tolerance curves seem to be the maximum per-

missible values and blackouts can possibly occur,

even if the dotted lines are not reached. Although

the interpretation of the curves for human tolerance

is not clear, it appears that for a pilot in a sitting

position (with a g suit), the re-entry angles must

be less than 2°. preferably less than I°. For a

pilot in a prone position, re-entry must be less

than 4°.

Figure 15b compares the effects of ballistic

coefficients on deceleration times for NO = "1°"

It indicates that, for smalI re-entry angles, a

relatively large range of ballistic coefficients
permissible for manned re-entry exists. With

the given data, the permissible range would be

0.5 < B < 5.0 ft2/slug (0.00318 to 0.031 ° m2/kg)

for a pilot with a g suit in a sitting position. For a

pilot in the prone [>osition, 0. I < B < 25.0 ft2/slug

(0.000637 to 0.16 m2/kg) seems to be safe.

The material presented for the ballistic entry

was extended to show the effects of aerodynamic

lift during re-entry. The data presented were

obtained from an iterative solution by the 704

digital computer of a point mass moving in an

inverse-square force field. Because the aero-

dynamic forces at 300,000 ft (91.4 km) are sut_i-

ciently high to cause an immediate _kipping of d_e

vehicle a¢ the higher lift-to-drag ratio, the re-entry
altitude was increased to 400,000 ft (122 kin).

Figure 16 presents the effects of re-entry
conditions on the maximum total deceleration for

a lifting body. This is a specific example for a
9

vehicle with W/CLA = 146.9 psi (7040 newton/m"

and L/D = 0.5. It also indicates a trend that for

small re-entry angles decelerations decrease as

orbital velocity is approached.

Figure 17a shows the effects of increasing
L/D ratios on the decrease of total deceleration

for a fixed re-entry angle and velocity. For

example, in case of _0 = -1°' maximum decelera'-

[ion is decreased roughly by a factor of 1/5 as L/D
increases from 0 to 0.5. Similar curves are

presented in Figs. 17b and c.

Maximum load factors for a variation of bal-

listic coefficients with lift-to-drag ratios from

zero to three are shown in Figs. 18a, b and c for

initial re-entry flight path angles of -1 °, -5 ° and
-10 _.

For the initial flight path angles considered,

a re-entry vehicle with an L/D - 1 reduces in-

tolerable or excessive accelerations experienced

in a ballistic re=entry to within comfortable limits.

It should be pointed out that the modest reductions

achieved by increasing lift-to-drag ratios greater
than 1 can lead to an excessive increase in the

amplitude and number of cycles of a moderate

skipping trajectory.
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To facilitate interpolations between the curves,
load factors are given as functions of the initial

flight path angle _0" in Figs. 19a, b and c. Fig-

ures 20a, b and c show that for a ballistic re-

entry the magnitude of the acceleration peaks

between initial velocities of 10,000 and 25,000

fps (3048 and 7820 raps), but decreases throughout

the complete velocity range for a lifting re-entry.

Figure 21 gives the maximum entry load

factors as a function of L/D ratio for Y0 = -1°

and W/CDA = 5 psi considering initial velocities

between 10,000 and 25,000 fps (3048 and 7620 raps).

Figure 22 indicates the peak decelerations for

the constant altitude--equilibrium glide entry

program (Ref. 14) as a function of initial entry
flight path angle. For a suggested operational

limit it is seen that Y0 > - 7° is advisable for
L/D = 2.

A parametric set of curves, similar to the

deceleration presentation, is given for maximum

re-entry dynamic pressures (dynamic pressure =

1
pV 2) in Figs. 23a to 27c. A comprehensive

curve, expressing the effects of lift, drag and
wing loading on the maximum re-entry dynamic

pressure is presented in Fig. 28 for _0 :- 1°'

v 0 = 25,000 fps and h 0 = 300,000 ft (7620 mps and

9 I. 4 kin).

Figures 23a to c show that maximum entry
dynamic pressures are essentially linear functions

of ballistic coefficients throughout the initial flight
path angles investigated.

In Figs. 25a to c the decrease of dynamic pres-

sure with increase of initial entry velocity is an
effect of the centrifugal force acting on the vehicle

in earth' s gravitational field during the hypersonic

portion of the trajectory where the maximum values

of the dynamic pressure are occurring.

D. RE-ENTRY HEATING

Two modes of heat transfer to an entry vehicle

exist during the entry phase of flight. These are

the laminar and turbulent aerodynamic boundary
layer heat transfer and the radiant transfer of en-

ergy to the vehicle surface from the hot gas be-
tween the shock wave and the vehicle. The relative

magnitude of these two modes of heat transfer are

functions of vehicle shape and entry velocity. In

general, the blunter the vehicle and the higher the

entry velocity, the greater the radiation heat trans-

fer rate relative to the aerodynamic rate. The
radiation heat transfer rate is the earliest to reach

its maximum during the entry trajectory; next is

the laminar rate and finally the turbulent rate. As
the entry angle is decreased, both the rate and

total radiant heat transfer decrease; whereas, for

aerodynamic heat transfer, only the rate decreases
while the total increases.

Protection against this thermal environment may
be accomplished in a number of ways, and the

methods chosen are dependent primarily upon the

magnitudes of both the total and the rate of heat

transfer. If both rate and total are sufficiently low,

a simple heat sink made of copper or beryllium
may be adequate. The simple heat sink is heat rate
limited only to prevent the outer surface from melt-

ing. If the total heat that must be absorbed is large,
the weight of the heat sink becomes excessive. For

rates that are relatively low, it is possible to ab-

sorb the heat in a thin skin and reradiate it to the

external environment. For example, if a thin skin
can withstand a temperature of 5000 ° R it can re-

radiate up to 300 Btu/ft2-sec so that the heat pro-

tection system now becomes a matter of insulating

the remainder of the vehicle from this high temper-
ature skin. On the other hand, at low heat rates it

is also possible to use low temperature ablating ma-
terials for heat absorption. This alleviates the in-

sulation problem, but weight is now required as

ablating material rather than insulation. At high

heat transfer rates and for high total heating, the
use of high surface temperature ablating materials
is required.

Analysis of aerodynamic heating of re-entry
vehicles becomes much more complicated than the

trajectory analysis since heat transfer terms intro-

duce new nonlinearities into the differential equa-
tions. The main difficulty with an exact skin tem-

perature history calculation is the necessity of
knowing all the characteristics of a particular re-

entry body shape, its heat shield thickness, heat

conductivittes and related heat transfer parameters,

surface interactions with the air-flow ([onizat:,on,

melting, ablation, etc. ) and certain further import-
ant heat transfer characteristics. The number of

variables involved makes a parametric represen-
tation necessarily rather involved.

I. Analytic Solutions

During entry, intense heating occurs at the stag-

nation region of the entering body. It is customary
to relate the heating rate at any point on the body,

q, to the heating rate at the stagnation point, qs"

In hypersonic flow the heating rate at a stagnation
point can be written (Ref. i) as

n m

qs __.__C

where the constants C, n and m depend on the type
of boundary layer flow, and

R s = body radius of curvature at the stagna-
tion point

p : density of the ambient atmosphere

P0 -- sea-level atmospheric density

v = vehicle velocity

v = _ = circular orbit velocity at altitude.c

For laminar flow n =0.5 and m_, 3.1. As inthe

case of analytic trajectory solutions (Section B. 1.c},

more than a few methods have been developed for

computing the laminar heating rates at a stagna-

tion region. A collection of these methods appears
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in Ref. 15 and is presented in the following list.

Laminar Heating Rate at Stagnation Region

(1) Ref. 16

Nu _ -T] (65)qs---O -'k Tw

where

Nu = Nusselt number
0.5

a sphere (k 1 = 1.696 x 10 -3for in

English units, ft-
lb -see ;

= 5. 169 x lg -4 hi inks)

D drag

k = conductivity

T = temperature at the wall
w

T = temperature of the free stream
o$

v = free stream velocity

Pr --Prandtl number = 0.71

(2) Ref. 17

-kw (T s - T w)

qs (Vw

where

Nu dvs_ 0"5

f -<i x -Js
(66)

Nu
= ratio of Nusselt number to

Re w the square root of the Reynolds
number (=0.62 for Pr =0.71,

T
W

small T'- and axially sym-
s

metric heating)

dv 5
= stagnation point, velocity

gradient

= flow inclination angle with

respect to the free stream

= subscript denoting value at

stagnation point

W - subscript denoting value at
the wall

u = kinematic viscosity, _--
P

(3) Ref. 18
T

(extreme cooling, small _ )
8

q =I(0.5)20"5n I/2

S I prZ/3 [Os_sV= 1

(continued)

(4)

(5)

(6)

• hsL<- jsFdv' l 0.5 1(67)

when

n = (J for a planar body (two-dimen-
sional flow)

n = 1 for a body of revolution (axially
symmetric flow)

= =- +0.1R
Rsh shock radius R s

h = enthalpy

= viscosity

dv 5

go

= dimensionless stagnation point

velocity gradiant (= 0. 408 for
spherical body, Ne,_rtonian flow

and a 1.2 ratio of specific
heats)

Ref. 19

26, 0.5 _3" t5

qs=l._s [_._0 ]300 P" [ _a'a Jv

i hs - h w 6 I kcal" - 3 2 x 10 U m 2h s - sec

(GS)

Ref. 20

I0.54x2 n/2 Pw"w 1

(O susv )0.5 (hs - hw )

• _1 + (Le m - 1)1_ s

where

0.1

0.5

dv5 l

[
S

(69)

Le = Lewis number4, 1 (Le _ 1.4)

m • 0.52for equilibrium boundary

layer flow

= 0.63 for _ozen boundary layer

flow

n --0 or 1 as incase (3)

Ref. 21

qs

h
W

1- E-

=K' s 20.5n (p)0.5 (u=)3

Cs
(7o)

where u is the component of ambient

flow velocity parallel to the surface
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and K' -- 15.5 x 10 -9 Btu/sec-(slug) 1]2

_ _ft_ 3 = 36.1 x 10 -9 kcal/sec-(kg) 112-

(m) 3.

The previous solutions apply for the case of

laminar stagnation point heating, which generally
applies for the nose and leading edge of gliding

vehicles. However, Ref. 15 provides the following
solution for turbulent flow.

q{E0o000 Tp]
3

_i_-Sj I kcal/m2-sec (71)

where

- L _-_a_j
S

P
p -- altitude density ratio, Z

P0

During entry the gas behind the shock wave

in the stagnation region becomes very hot, and

radiation from this hot gas is a source of heat
transmission in addition to the convective heat

[nput. Reference 21 provides the following

empirical equation for the radiative heating rate:

2.

q = 11.2 R s kcal/m2-sec

(72)

Numerical Solutions and Graphical Presen-
tations

The equations for heat transfer rates pre-

sented in the previous section obviously vary

somewhat in complexity and in degree of approx-

imation. For generation of graphical data to be

used in preliminary design work, a very simple

solution has the advantages of involving fewer

parameters to be varied and necessitating fewer

calculations. For this reason, the solution

chosen for generation of graphical data is that

of Eq (64)

. , .ooor Btu/ft2_secqs L  vcj

: R---.IV-,X-L_ J _ kcal[ m2-sec
s (hypersonic

flight)

Furthermore, maximum stagnation point wall

temperatures are presented in the parametric
form

118 I/4
T .R .t

ws s

to make the results independent of the nose

radius at the stagnation point, R s, and skin

ii , °
emissivity, i. The values of the radtus-emts-

1/8 1/4
sivity parameter" R s • t are plotted in

Fig. 29. The radiation heat loss is given by

4
qrad =! a Tws (73)

where a -- radiatlonconstant = 0.482 x 10 -12

Btu]ft2-sec-(°R) 4 = 1.372 x 10 -11 kcal/m2-sec -

(°K)4. At equilibrium, all of the heat flo_ from

the boundary layer is radiated back into the

atmosphere (i.e. , the heat flux to the interior of

the structure is negligible), and the maximum

temperature attained by the stagnation region of
the body is determined by equating the two heat
flows:

Tws _

(°R-ft 1/8 or 2.092 ° K-kin 1/8)

(7_)

The maximum aerodynamic heating at the stag-
nation region of the nose can then be computed
as"

118 1]41 4
- O"

qs Tw Rs _s
1275)

The graphical information on re-entry heating

presented in Figs. 30 through 47 is based pri-
marily on Eqs (74) and (75), together with the
related trajectory equations (Section B).

Figure 30a (Ref. 22) presents the approximate

heat transfer rates for a blunt body of 1-ft (0.3 m)
nose radius traveling at satellite velocities both for

free molecule and for continuous flow. The defini-

tions and ranges of flow regimes are given in
Chapter 5. Figure 30b shows the ratios of heat

input rates with respect to rate of energy dissipa-

tion by drag (1/2 0v3).

The effects of entry angles on maximum heat
flux are given in Fig. 31a (Ref. 14). For example,

as the re-entry angle is increased from -1 ° to -4 °,

the maximum heat flux is increased roughly by a

factor of 4. Assuming radiation equilibrium tem-

peratures of the satellite skin, Fig. 3 lb gives skin
temperatures as a function of heat transfer rates

for different values of the constant of emissivity, ,.

The assumption of radiation equilibrium becomes

inadequate .for steep ballistic entries or large heat
shields. Figure 32 (Ref. 23) shows a sample his-

tory of aerodynamic heating, comparing the radia-

tion equilibrium method with an exact skin temper-

ature computation for a vertical entry. Temper-
ature histories of the outer and inner surface of a

0.25-tn. pyrex skin are shown for free fall from

1,000, 000 ft (304.8 km).

V _ Tou t _in
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The estimated maximum temperatures are
seen to be as follows:

Tra d = 2480 ° R -- 1380 ° K

Tou t = 1660 °R = 920 ° K

Tin -- 1080 °R -- 600 ° K

Thus, for the case considered, radiation

equilibrium gives unrealistically high estimates,

as the most important parameter for recovery

programs is usually the temperature at the inner

surface of the heat shield. In connection with Fig.
32, it should be further noted that below 100,000

ft (30. 5 kin) it would be advantageous to jettison

the hot heat shield for the case investigated.

Figure 33a shows the trajectories for a family

of re-entry vehicles, indicating the stagnation

point radiation temperatures in dotted lines.

Following a solid line of velocity-altitude vari-

ation, the corresponding skin temperature param-
eters can be read from the intersections with

the dotted lines. Figure 33b presents the corre-

sponding temperature profiles as a function of al-
titude. From theoretical considerations it can be

shown that the maximum temperature occurs at
V
_-- = 0.81, which agrees with the numerical re-

c

sults of the machine computations.

A family of curves similar to Fig. 33a is
plotted for the initial altitude at ,101L 000 ft (122

knO in Fi x . 33c.

Fig. 34a shows tile maximum equilibrium

nose temperatures as a function of the lift char-
acteristics for equilibrium glides. It can be seen

that the maximum equilibrium temperatures can

be reduced by increasing the L/D ratios. The

corresponding altitudes for maximum tempera-
tures are expressed in Fig. 34b. The effects

of the initial flight path angle on the altitude for

maximum stagnation nose temperature are given

in Fig. 34c.

In Figs. 35 thcough 41 the results of all the

important Martin Company numerical integration
results are collected. Maximum re-entry stag-

nation point nose temperatures are presented

successively versus the ballistic coefficient,

B, the initial entry angle, _/0' the initial velocity,

v 0, and lift-to-drag ratios, L/D.

Figures 35a through 36c show the maximum
radiation-equilibrium temperature at the laminar

stagnation point as a function of ballistic coef-
ficient, lift-to-drag ratio and initial re-entry

angles.

It can be seen that though aerodynamic lift re-

duces the higher temperatures experienced during

a ballistic re-entry, the magnitude of the re-
duction is reduced as the initial flight path angle

decreases. The effects of initial re-entryve-

loctty are shown in Fig. 37 for L/D = 0.5 and in

Figs. 38a through 40d for three ballistic coef-
ficients and various values of L/D and entry

angle.

The effect of considering a rotating air mass

is presented in Fig. 42 for the equilibrium tem-

perature history.
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A comparison of the maximum temperature

parameters for ballistic entry is shown in Fig.
43a for various initial flight path angles. Also

shown is a comparison between the stagnation

point and spherical nose solutions.

Figure 43b presents the maximum tempera-

ture parameters for various L]D ratios (Ref. 1).

It can be used for various planetary atmosphere,

if the proper logarithmic atmospheric densitys
slope, b, is inserted in connection with the radial

distance, r.

Obviously the preliminary design estimates

baaed on the stagnation point soluKon ma) b_:
considerably altered, if the particular shape of
the vehicle nose is known An indication of the

dependency on body shape is given by Fig. 44
[rom Ref. 1.

Parametric temperature histories versus

density ra_,ios are given in Fig. 45a (Ref. 22) :or

simple drag bodies. Figures 45b and c present

lift parameter requirements for constant heat
transfer trajectories (Ref. 22).

The slopes of the stagnation point temperature
parameter are given in Figs. 46a through 46c for
three ballistic coefficients.

FinaLly the effects of lift-drag ratios on the

maximum surface temperature parameter for entry
into various planetary atmospheres is given in

Fig. 47 (Hef. i). It should be noted that optir,',am

conditions _re encountered at L/ D fro:u roughly
0.8 to 1.0 for most planets.

E. RANGE AND TIME TO IMPACT

Range to impact for ballistic vehicles is given

as a function of the initial flight path angle in Fig.

48 for il0 : 300,000 ft (91.4 kin) ancl v0 : 25,000

fps (7620 mps).

Figures 49a through e present the data obtained

from a series of computer runs, giving the values

of range attained in descent from 300,000 ft to

sea level. Data are plotted as functions of re-

entry velocity, re-entry flight path angle and

ballistic coefficient for a zero-lift re-entry.

Figures 50a through c show range from

400,000 ft (122 kin) for different ballistic coef-

ficients, lift-to-drag ratios and re-entry angles.

It is interesting to note that for a constant re-entry

angle, range i's rather insensitive to ballistic
coefficient for the higher lift-to-drag ratios.

Figures 5 la through 52g show the range to

impact versus initial velocity for various para-
metric values of lift-drag ratios, LiD, and initial

flight path angles, N0"

Further parametric studies of impact ranges

are compiled in Figs. 53 through 54c, as func-

tions of initial flight path angles and lift-drag
ratios.

Equilibrium glide range variations as a func-
tion of initial velocities are indicated in Fig. 55.

The range characteristics of a high-drag, low
variable lift vehicle (flat plate at almost 90 ° angles

of attack) are treated in Figs. 56a to 56c (Ref. 25).

Figure 56a expresses the variation in range as a



functionofangleofattackandentry f_ight path

angles. Figure 56b analyzes the range variations
for ballistic vehicles as functions of initial veloc-

itie's and entry angles, while Fig. 56c gives the
range as a function of angle of attack and initial
entry velocity.

Figure 57 shows times to impact for various

ballistic coefficients, lift-drag ratios and re-entry

angles. It should be observed that for high lift-
drag ratios the flight time is rather sensitive to

entry angles and ballistic coefficients.

Parametric curves of range versus flight
time for" lifting bodies are shown for three values

of B in Figs. 58a to 58c, using ¥0 = -1, -5" and

-10 °. The effects of initial entry velocity are

expressed for L/D = 0.5, 1.25 and 2.0 in Figs.
59a to 59c. In Fig. 60 time to impact is ex-

pressed as a function of L/D, using as param-

eters the initial flight path angles and initial
veloc [ties.

Range is shown as a function of velocity at
apogee for lifting vehicles traveling at sub-satel-

lite speeds in Fig. 61, cross-plotting flight times

as additional parameters.

For fast estimates of ballistic vehicle range

and time to impact, a comprehensive parametric
family of curves is presented in Fig. 62 for a

large number of ballistic coefficients and initial
flight path angles.

F. MANEUVERABILITY

Even if deceleration and heating are adequately

controlled during entry, recovery of the vehicle

is not assured unless it is capable of landing in

a predesignated area. The size of the landing

area could range from a very large region for

parachute recovery by a large search group to an

area comparable to that of an airport for glide-

landing vehicles. It is apparent, in the latter

case, that the vehicle must be capable of fairly

extensive maneuvers during the entry phase if

recovery is to be possible without long periods

of waiting in orbit for a favorable landing site

approach. Consequently, vehicle maneuverability

is another problem in the area of entry requiring

investigation.

As a first consideration in the problem of

maneuvering a vehicle from certain initial con-

ditions to a successful landing, the possibility

that a landing, or even an impact, on the earth

might not be possible for the given initial con-

ditions, should be noted. Trajectories which are

too high overshoot because they encounter too

little atmospheric drag to slow the vehicle for

entry; on the other hand, trajectories which are

too low result in the vehicle experiencing too

much deceleration for safe recovery.

Figures 63a and 63b show the range of values

for both re-entry velocity and flight path angle

necessary to ensure ballistic vehicle and lifting

body impact with the earth in one revolution or

less. Results apply for two initial altitudes,

300,000 and 400,000 ft (91.4 and 122 km). Sev-

eral values of the ballistic coefficient from 0 to

1.07 are included.

s
I

f

Overshoot I.
(too little /

drag) _ cE:;[Yor

/ E,_" / _(tOo much ,

I\

Figure 63c (Ref. 14) indicates the limitations

on the mimmum entry angles for capture of vehicles
traveling at escape velocities.

Example:

W/CLA = 50 lb/ft 2 (2390 newtons/m2),

V 0 = V e = _C2-Vc

For positive lift, vehicle is captured, if

"fO < -5.05 °

For negative lift, vehicle is captured, if

_0 < -4.50 °

Entry corridor conditions are considered in

greater detail in Ref. 26.

Within certain bounds, the longitudinal and

lateral range to the landing site may be varied
by modifying the vehicle area or orientation

(i. e., modifying the effective drag or lift).

Figure 64 illustrates the correction of longitudinal
range by varying the ballistic coefficient. This

figure presents two graphs showing the ballistic
coefficient increments needed to compensate for

errors in entry angle if a fixed longitudinal range
is to be attained.

Example:

2 _ h Range =

B 0 = 1.0 ft /slug(0.00637 mZ/kg)[ 530 star

{ mi (Fig.

Programmed re-entry angle _/0 = -2 deg ) 62) (853 km)

!

Actual re-entry angle "_0 = -3 deg

Thus, error = -1 deg (new range = 416 star mi
(670 km), Fig. 62).

&B 1

From Fig. 64 --_0 = -0.8

Therefore, approximately 80% of B (_. drag
area) should be discarded in order to reach the

predetermined range of 530 stat mi (853 kin).
/r
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Forthe high-drag, low-lift vehicle already

treated in Figs. 56a to 56c (a,,90 °, see Ref. 25).

the variation of range as a function of angle of

attack and initial flight path angle is shown for

two azimuth angles in Fig. 65a. These changes

in design range, created by the rotation of the

earth, must be counteracted for a particular

heading by proper changes in the angle of attack

(i.e. , changing the L/D ratio).

Figure 65b gives for the same type of entry

vehicles the whole spectrum of variation of range
as a function of heading for initial latitudes of 0 °

and 45 ° . Maneuver capabilities compensating

these effects may be mandatory where exact

impact at the point of destination is desired,

Reference 27 provides approximate analytic

solutions for the lateral maneuverability avail-

able from banking the vehicle. These solutions,

together with pertinent assumptions, are pre-
sented here for convenience in reference. They

are based on equations of motion expressed in

the following form (see Eqs (27) and (28)

dv =

mv_]-_ - D-mgsin _ (76)

9

my _-_ : U - m cos _ (g - V-)r (77)

v2_m = y (78)

where

Y = side force normal to L and D.

If the side force Y is produced by banking the

vehicle, and _f the vehicle exhibits a constant

of , then a bank

0

angle _ results _n

L __ [__L] coso (79)

D _D/ 0

DY =(L) 0 sin¢p (80)

1. Equilibrium-Glide Solution

Assumptions: vehicle weight is balanced by

lift plus centrifugal force in the vertical direc-

tion (small "¢).

sin 0 cos
N 2-4 0

i ]L dp << 1, v 0 =v c, vf = 0

or, more generally

N _ D -g0+_. - _0

+ fl - 3 +5 _ 41Y_. _o_ _.. o ]D\

(81)

2

+(3

+(1 + ®3

5 4 5 ]

J

%+

2
4 3

4 3 l 4 I

.9

--2

1 L _ Y= 2 ]5 £n for D = _O = 0 (84)
1 - v 0

where

X = lateral range

x = longitudinal range

R = radius of earth

_ _" (;n v--)n d_= = _o 1 __2
in the difference be-

tween initial and final

values tabulated as

function of _ in Table 2.

_0

%

= normalized velocity at initiation of

maneuver

2. Orbit Deca_, at Large Bank Angles (4, = 90 °)

AssurRptions: zero lift in vertical plane

= •.(_)0 , entry in decay from a satellite

orbit.

1_ =

Figure 66a expresses the effects of roll angles

on the lateral range for the study conducted in
Ref. 27. It is seen roll angles equal to approxi-

mately 45 ° result in a maximum lateral range.
Figure 66b represents the lateral range capabili-

ties for increasing L/D ratios. The following

empirical approximate equations can be fitted to
these curves as follows, assuming the initial al-
titudes of 300,000 ft: (91.4 km)
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TABLE 2

Values of the Function _n

i.oo = o 0 o o o 0.49 o.1373 0•2492 -0.0773 o.o341 -o.o175 0•0097

•99 1.9985 .0050 .0000 .0000 .CO00 .0000 .48 .1309 .2538 -.0806 .0366 -.0192 .0109

.98 1.61£5 .OlO0 -.0001 .0000 .0090 .0000 .47 .1248 .2584 -.0840 .0391 -.0211 .0123

•97 I.4143 .0150 -.0002 .0000 .0000 •0000 ._6 .1-189 .2629 -.0873 .0417 -.0231 .O139

.96 1.273o .0200 -.ooo4 .oooo .oooo .oooo .45 .1131 .2674 -•o91o .o4/_5 -.o253 •o156

•95 1.16hO ,0250 -.0006 .COO0 .0000 .0000 .4-4 .1076 .2719 -.0947 .0475 -.0277 .0176

•9_ 1.0754 .0300 -.0009 .0000 .0000 .0000 .43 .1022 .2764 -.O984 .0506 -.0303 .0197

•93 1.0009 .0350 -.0012 .0001 .o000 .00OO .42 .O97O .28O8 -.1022 .0538 -.0331 .022!

.92 •9367 .0400 -.0016 .COO1 .0000 .0000 .41 .0920 .2852 -. i061 .0572 -.0361 .0247

.91 .8804 .0450 -.002!I .0001 .0000 .0000 .40 .0872 .2896 -.Iloo .060_ -.o393 .0274

.90 .8301, .05oo -.0o26 .0o02 .oooo .0000 .39 .0825 .29&0 -.l!hO .0646 - .0428 .0309

.89 .7893 .0550 -.0031 .OOO2 .00OO .0000 .38 .0780 .2983 - .lIB2 .0685 -.O466 .03_5

.88 .7_/_5 .0600 -.0038 .0003 .0000 .0000 .37 .0736 .3026 -•122_ .0726 -.0506 .0384

.87 .7071 .0649 -.O04A .00O4 .O000 .0000 .36 .0694 .3068 -.1266 .0769 - .0549 .0428

.86 .6728 .0699 -.0051 .0005 -.0001 .OO00 .35 .0653 .3110 -.1310 .0@14 -.0596 .O477

.85 .6410 .0749 -.0059 .0006 -.0001 .0000 .34 .0614 .3152 -.1354 .0862 -.0646 .0530

.SL .6114 .0799 -.0068 .0008 -.0001 .0000 .33 .0576 .3193 -.lhO0 •0911 -.C7OO .05_9

.83 .5838 .0848 -.0076 .O0O9 -.O001 .0000 .32 .05_0 .3234 -.14A5 .0963 -.0758 .0654

.82 .5580 .0898 -.0086 .0011 -.0002 .0000 .31 .0505 .3274 -.1492 .1016 -.08211 .0726

.81 .5337 .0943 -.OO96 .0013 -.0002 .OC0O .30 .0472 .3314 -.1540 .1073 -.0888 .0_0_

.80 .5108 .0997 -.0107 .0016 -•0003 .C_ .29 .0439 .3?54 -.i_8,,_ .L132 .C9_9 .C._93

•79 .4892: •1047 -•0118 .001_ -.0007 ._001 .28 .04C_ .3393 -.1636 .]-2-'93 -.103_ .¢9_0

•78 .468_ .lO96 -.o13o .oo21 -.ooo4 .CCCl .27 .0378 •3431 -.1686 .1257 -.1119 .lO97

•77 .4493 .1146 -.o143 .oo24 -.0005 .ooOl .26 .o35o .346_ -.1736 .1324 -.!2o7 .1214

.76 .4309 .1195 -.o156 .oo28 -.0o06 •o001 .25 .0323 .3506 -.1787 .1393 -.13o3 .1344

•75 .4133 .1245 -.017o .0032 -.0o07 .ooo2 .24 .0297 .3943 -.1539 .1466 -.14o5 .1488

.74 .3966 .1294 -.0185 .oo36 -.oo08 .00o21 .23 .o272 .3579 -.!_91 .1541 -.1514 .1647

•73 .38o6 .1343 -.02oo .0041 -.o009 .ooo2 _ .22 .o248 .3614 -•1944 .1620 -.1632 .1822

.72 .3653 .1392 -.o216 .0046 -.OOli .0003 .21 .o226 .3649 -.1997 .1702 -.1757 .2015

.71 .3507 .I_I -.0232 .oo51 -.0o13 .occ4 .20 .0204 .3683 -.2o51 .1787 -.1892 .2229

•70 .3367 .1490 -.0249 .0057 -.oo15 .0004 .19 .0184 .3716 -.21o5 .1876 -.2037 .2466

.69 .3232 .1539 -.0267 .0064 -.0017 .0005 .18 .0165 .3743 -.2160 .1968 -.2192 .2726

.68 .31o3 .1588 -.o285 .0071 -.0o20 .OOO6 .17 .0147 .3780 -.2214 .2063 -.2359 .3o19

.67 .2979 .1637 -.0304 .oo78 -.0023 .00o7 .16 .o130 .3810 -.2269 .2162 -.2538 .3341

.66 .286o .1686 -.0324 .oo86 -.oo26 .0009 .15 .o]/4 .38ho -.2325 .2265 -.2730 .3699

•65 .2745 .1734 -.o345 .0099 -.0030 .oolO .14 .0099 .3868 -•238o .2372 -.2936 .4o97

.64 .2635 .1782 -.o366 .01o4 -.oo34 .oo12 .13 .o085 .3896 -.2435 .2482 -.3157 .45&o

•63 .2528 .1831 -.0388 .0114 -.0039 .0014 .12 .0073 .3922 -.2490 .2597 -.3394 .5034

.62 .2426 .1879 -.o411 .0125 -.00hA .0o16 .ii .0o61 .3948 -.254& .2715 -.3650 .5585

.61 .2327 .1927 -.0_34 .0136 -.0049 .0019 .i0 .o050 .3972 -.2598 .2836 1 -.3924 .6023

.60 .2231 .1975 -.0_58 .o148 -.oo55 .o022 .09 .00&i ._994 -.2651 .2961 -.4218 .6896

•59 .2139 .2023 -.0_3 .0161 -.0062 .oo26 .08 .0032 ._015 -.2703 .3089 -.4534 .7676

.58 .2050 .2071 -.o9o9 .017") -.oo69 .0030 ._ .0025 .4035 -.275& .3220 -.4874 .8556
•57 .1964 .2]/8 -.0535 .0190 -.0077 .0034 .00181 .4053 -.2803 .3354 -.5238 .9553

•56 .1881 .2166 -.0562 .0205 -.0086 .OO39 .O5 .0013 .4O69 -.2849 .3488 -.5628 1 1.0686
•55 .1801 .2213 -.0590 .0222 -.0096 .0045 .04 .0008 .4083 -.2892 .3623 -.6o46 1.!981

.54 .172_ .2260 -.o618 .0239 -.01o6 .0091 .03 .0005 ._4 -.2932 .3794 -.6488 1.3466

•53 .1649 .23071 -.o648 .0@97 -.oi18 .oo98 .o2 .o002 .4104 -.2966 .3880 -.6950 1.5176

.52 .1576 .2353 -.o678 .0276 -.0130 .0066 .01 .0001 .4110 -.2992 "_9 -.7415 1.7134.51 .!506 .24OO -.0709 .0297 -.0144 .OO79 .00 .OO00 .4112 -.3005 . -.7777 1.9079

.50 .1438 .2k_6 -.o7_o .o319 -.o159 .o085
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I. 875

forL/D< 1. 0 (due east): A = 623 (_)

1. 875(naut rot) = 1155 (kin)

for 0. 75<_. < 2.0 (due east): k = 910 15

- 300 (naut mi) = 1688 (_) - 556 (kin)

The effects of the entry angle on the maximum
lateral range are shown in Fig. 66c for rollangle
of 45 ° and (L/D) = 1.0, while the effects of initial

velocity are indicated in Fig. 66d.

In Ref. 14, the maneuvering performance of

a re-entry vehicle is considered for a trajectory
consisting of three parts:

_ /----Range to maximum

(i) Initial pull-out at (_Imax

-- max

(3) Equilibrium glideat (_) '
max

Range to maximum deflection point and the cor-

responding azimuth angle, 0., are defined as

shown in the above sketch.

The effects of re-entry angle on 0* and range
W

are presented in Fig. 67a for _ = 20 psf
JL.J

(958 newtons/m 2 and L ratios of 0.5, 1 and 2. It

can be seen that the range capabilities are greatly

reduced by large re-entry angles, the resulting

ranges for -10_ Y0 being almost independent of
L
]5 " The reverse is true for azimuth angles.

Figures 67b and c give the effects of wing load-

ing on the range to maximum deflection point and
L

the maximum azimuth angle for y0 = -2 ° and ]5

ratios 0. 5, 1 and 2.

Figure 68a shows a typical maneuverability en-
W

velope for _ = 20 p6f (958 newtons--Ira 2) and

v 0 = v c (entry at circular orbit speeds). North pole

is considered as the initial point of the trajectory

calculations. For an initial flight path angle of -2",

the maneuver envelopes for the lift-drag ratios of

0.5, 1 and 2 are plotted. A comparison for ¥0 =
T

_ 4 _ and = 2 is shown in dotted lines.
13

Similar maneuver envelopes are also shown

W

in Fig. 68b for _ = i00 psf (4787 newtons/m 2)-

and Y0 = -6° for an entry at escape speeds.

Finally, Fig. 69 shows the maneuverability

(that is the locus of impact points) of a lifting

body as computed on the Martin Marietta powered

trajectory program, using a maximum L/D = 0.5;

the minimum which could be trimmed is 0. 3.

Bank angles varied from 0° for the fore and aft

case to 60 _ for the maximum lateral deviation.

Initial conditions were h 0 = 300,000 ft (91.4 kin)

,[ = o.v 0 = 25,500 fps (7770 raps) and 0 -i An ad-

ditional variable on the plot is the altitude at which

initial deviation from the basic approach is ef-

fected (300,000, < 250,000, 225,000, 200,000 or

150,000 ft;(91.4 < 76.2, 68.6, 61.0, 45. 7 krn).

Essentially, no maneuverability is afforded for

initial altitude below 150,000 ft (45. 7 kin).

G. REFERENCES

i.

2.

Chapman, D. R., "An Approximate Analyti-

cal Method for Studying Entry into Planetary
Atmospheres. '_ NACA YN '_-" Ma_ _

Allen H. J., and Eggers, A..l., Jr., "A

Study of the Motion and Aerodynamm Heating

of Missiles Entering the Earth's Atmosphere

at High Supersonic Speeds, " NACA TN 4047,
October 1957.

3. S_inger, E., "Raketen-Flu_echnik," R.

Oldenbourg, Berlin, 1933.

4.

5.

6.

7o

Eggers, A. J., Jr., Allen, H. J., and
Neice, S. E. , "A Comparative Analysis of

the Performance of Long-Range Hyperveloc-

ity Vehicles, " NACA TN 4046, 1957.

Wang. K., and Ting, Lu, "Approximate So-

lutions for Reentry 'Trajectories with Aero-

dynamic Forces, "Astronautics Acta, Fasc

8, pp 28 to 41. 1962.

Allen, H. J., and Eggers, A. J., Jr., "A

Study of the Motion and Aerodynamic Heating
of Ballistic Missiles Entering the Earth's

Atmosphere at High Supersonic Speed, "

NACA Report 1381 1958.

Loh, W. H. T., "Ballistic Re-entry at Small

Angles of Inclination, " ARS Journal, Vol. 32,

No. 5, May 1962, pp 718 to 721.

8. Bendor, E., Krenkel, A. R., and Kottler,

C., "Trajectories of Lifting Bodies Enter-

ing Planetary Atmospheres at Shallow An-
gles, " Fifth Symposium on Ballistic Missile

and Space Technology, Academic Press, New

York, 1960, pp 89 to 112.

9. Wang, K., and Ting, L., "An Approximate

Analytic Solution of Re-entry Trajectory with

IX-21



Aerodynamic Forces, " AIRS Journal, Vol. 30,

No. 6, June 1960, pp 565 to 566.

10. Phillips, R. L., and Cohen, C. B., "Use of

Drag Modulation to Reduce Deceleration Loads

During Atmospheric Entry, " ARS Journal,

Vol. 29, No. 6, June 1959, pp 414 to 422.

II. Lees, L., Hartwig, F. W., and Cohen, C. B.,

"Use of Aerodynamic Lift During Entry into

the Earth's Atmosphere, " ARS Journal, Vol.

29, No. 9, September 1959, pp633 to 641.

12. Robinson, A. C., Wolarer, L. E., and

Besonis, A. J. , "A Study of Nonlifting Satel-

lites Re-entering the Earth's Atmosphere, "

WADC Aero Research Lab Working Paper,
March 1958.

13 White, C., and Benson, O., "Physics and

Medicine of the Upper Atmosphere, " The

University of New Mexico Press, Albuquerque,
1952.

D ,i14. Mandell, . S., Maneuvering Performance

of Lifting Re-entry Vehicles, " ARS Journal,

Vol. 32, No. 3, March 1962, pp 346 to 354.

15. Hankey, W. L., Jr., Neumann, R. D., and

Flinn, E. H. , "Design Procedures for Com-

puting Aerodynamic Heating at Hypersonic

Speeds, " WADC Technical Report 59-610,
June 1960.

16. Sibulkin, M. J., "Heat Transfer Near the

Forward Stagnation Point of a Body of Revo-
lution, " Journal of Aeronautical Sciences

Vol. 19, No. 8, August 1952, pp 580 to 581.

17. Cohen, C. B., and Reshotko, E., "Heat

Transfer at the Forward Stagnation of Blunt
Bodies,"NACA TN 3513, July 1955.

18. Lees, L., "Laminar Heat Transfer over Blunt

Bodies at Hypersonic Flight Speeds, " Jet Pro-

pulsion, Vol. 26, No. 4, April 1956, pp 259
to 269, 274.

19. Detra, R. W., Kemp, N. H., and Riddell,

F. R., "Addendum to 'Heat Transfer to Satel-

lite Vehicles Re-entering the Atmosphere, '"
Jet Propulsion, Vol. 27, No. 4, December
1957, pp 1256 to 1257.

20. Fay, J. A., and Riddell, F. R., "Theory of
Stagnation Point Heat Transfer in Dissociated

Air, " Journal of Aeronautical Sciences, Vol.

25, No. 2, February 1958, pp 73 to 86.

21. Lees, L., "Recovery Dynamics--Heat Trans-

fer at Hypersonic Speed in a Planetary At-

mosphere, " Space Technology, John Wiley

and Sons, Inc., 1958.

22.

23,

Kemp, N. H., and Riddell, F. R. "Heat

Transfer to Satellite Vehicles Re-entering

the Atmosphere, " Jet Propulsion, Vol. 27,
No. 2, February 1957, pp 132 to 137.

Kork, J., "A Practical Calculation Method of

Aerodynamic Heating at the Stagnation Point,"

Master's Thesis, University of Maryland, May
1958.

24.

25.

26.

27.

Gazley, C., Jr., and Masson, D. J., "A
Recoverable Scientific Satellite, " Rand Re-

port RM-1844, 1956,

Cheatham, D. C., Young, J. W., and

Eggleston, John, "The Variation and Con-

trol of Range Traveled in the Atmosphere
by a High-Drag Variable-Lift Entry Vehicle,"
NASA TN D-230, March 1960.

Chapman, D. R. , "An Analysis of the Cor-

ridor and Guidance Requirements for Super-

circular Entry into Planetary Atmospheres,"

NASA Technical Report R-55, 1960.

Slye, R. E., "An Analytical Method for

Studying the Lateral Motion of Atmosphere

Entry Vehicles," NASA TN D-325, Septem-
ber 1960.

H. BIBLIOGRAPHY

Adler, A. A., "Calculation of Re-entry Velocity
Profile, " Jet Propulsion. Vol. 28, No. 12,

December 1958, pp 827 to 828.

Allen, H. J., "Motion of a Ballistic Missile An-

gularly Misaligned with the Flight Path upon

Entering the Atmosphere and Its Effect upon
Aerodynamic Heating, Aerodynamic Loads and
Miss Distance,"NACA TN 4048, October 1957.

Allen. H. J., and Eggers, A. J., Jr,, "A Study

of the Motion and Aerodynamic Heating of Mis-
siles Entering the Earth's Atmosphere at Su-
personic Speeds, " NACA TN 4047, October
1957.

Ambrosio, A., "A General Atmospheric Entry
Function and Its Characteristics, " ARS Journal,

Vol. 32, No. 6, June 1962, p 906.

Austin, R. W., "Trajectory Control of Lifting

Re-entry Vehicles, '' IAS National Aerospace
Support and Operations Meeting, Orlando,
Florida, 4 December 1961.

Baker, R. M. L., Jr.,

"Encke's Method and Variation of Parameters

as Applied to Re-entry Trajectories, " Ad-

vances in Astronautical Sciences, New York,

Plenum Press, Vol. 3, August 1958.

"Variation of Parameters as Applied to Re-
entry Trajectories, " American Astronauti-

cal Society Western Regional Meeting, 18
to 19 August 1958.

"Application of Astronomical Perturbation

Techniques to the Return of Space Vehicles,"
ARSJournal, Vol. 29. No. 3, March 1959,
pp 207 to 211.

"3-Dimensional Drag Perturbation Technique,"

ARS Journal, Vol. 30, No. 8, August 1960,
pp 748 to 753.

Becker, J. , "Re-entry from Space, " Scientific

American, Vol. 204, No. 1, January 1961,
pp 49 to 57.

Berman, L. J., "Optimum Soft Landing Trajec-

tories: Part I--Analysis" (U), Massachusetts

Institute of Technology, Department of Aero-

nautics and Astronautics, Cambridge, Massa-

chusetts, Report No. AFOSR 519, March 1961.

IX-22



Bidwell,J. M., andSkulsky,R. S., "Maneuver-
ingRe-entryfor MaximumLateralRange,"The
MartinCompany,Denver,Colorado,ReportNo.
M160-36.

Blum,R., "Re-entryTrajectories--FlatEarth
Approximation," ARSJournal,Vol. 32,No.4,
April 1962,p616.

Boissevain,A. G., "The Effect of Lateral- and

Longitudinal-Range Control on Allowable Entry
Conditions for a Point Return from Space, "

NASA TN D-1087, July 1961.

Bowersox, R. B., et al., "Trajectory of aVehi-

cle Departing from a Circular Orbit, Lockheed

Aircraft Corporation, Sunnyvale, California,

Report No. LMSD-703049, July 1960.

Bressler, D. C., "Effects of Initial Re-entry

Flight Conditions on a Recoverable Space Ve-

hicle, " The Martin Company, Baltimore, Mary-
land, Engineering Report No. ER 10625M, 1959.

Bull, G. V., Enkenhus, K. R., andTiddy, G. H.,

"Exit and Re-entry Problems, " Aero/Space En-

gineering, Vol. 17, No. 6, June 1958.

Bush, L. R, , "A Study of the Accurate Re-entry

and Precision Landing of an Orbital Earth Satel-

lite, Part I, " Cornell Aeronautical Laboratory,

CAL Report No. VF-1351-H-1, 30 June 1959.
(Also, ASTIA No. AD 245, 153.)

Brunner, M. J., "The Aerodynamic and Radiant

Heat Input to Space Vehicles Which Re-enter

at Satellite and Escape Velocity, " American
Rocket Society, Preprint No. 1558-60,
December 1960.

Bryson, A. E., Denham, W. F., Carroll, F.J.,
and Mikand, K. , "Determination of the Lift or

Drag Program that Minimizes Re-entry Heating

with Acceleration or Range Constraints Using
a Steepest Descent Computation Procedure, "

Institute of the Aeronautical Sciences, Paper

No. 61-6, 1961.

Cappellari, J. O., "The Effect of Drag Modu-
lation on the Maximum Deceleration Encoun-

tered by a Re-entering Ballistic Missile, "

Purdue University, School of Aeronautical

Engineering, Lafayette, Indiana, Report No.
A-59-6, June 1959.

Chapman, D. R.,

"An Approximate Analytical Method for Studying
Entry into Planetary Atmospheres, " NASA

TR R-11, 1959. (Also, NACA TN 4276, May
1958.)

"An Analysis of the Corridor and Guidance Re-

quirements for Supercircular Entry into

Planetary Atmospheres, " NASA TR R-55.

Chapman, D. R., and Kapphahn, A. K., "Tables
of Z Functions for Atmosphere Entry Analyses,"

NASATR R-106, 1961.

Cheatham, D. C., Young, J. W., and Eggleston,
J., "The Variation and Control of Range Trav-

eled in the Atmosphere by a High-Drag Vari-
" S D 0able-Lift Entry Vehicle, NA A TN -23 ,

March 1960.

Cross, D. B.,

"A Study of Entry into the Earth's Atmosphere,"

American Astronautical Society, Preprint No.

58-48, December 1958.

"Re-entry Trajectory Analysis, " The Martin

Company, Denver, Colorado, Martin-Denver

Course in Space Flight Dynamics, Lecture

No. 13, 1960.

"Flight Dynamics and Heating Problems for

Atmospheric Entry, " The Martin Company,

Denver, Colorado, Report No. R-60-12,

May 1960.

Czarnecki, E. G., "Lifting Re-entry Vehicles,"

Astronautics, Vol. 6, No. 6, June 19_1. pp 27
to 31, 50, 52.

Daskin, W., et al.. "The Use of Lift for Re-

entry from Satellite Trajectories, " Jet Pro-

pulsion, Vol. 27, No. 11, November 1957,

pp 1184 to 1189.

Detra, R. W., "Controlled Recovery of Non-
lifting Satellites, " ARS Journal, Vol. 30, No.

9, September 1960.

Detra, R. W., and Hidalgo, H., "Generalized

Heat Transfer Formulas and Graphs for ,Nose

Cone Re-entry into the Atmosphere, " ARS

Journal, Vol. 31, No. 3, March 1961, p 318.

Detra, R. W., Kemp, N. H., and Riddell. F. R.,
"Addendum to Heat Transfer to Satellite Vehi-

cles Re-entering the Atmosphere, " Jet Pro-

pulsion. Vol. 27, No. 12, December 1957.

Detra, R. W., and Riddell, F. R., "Controlled

Recovery of NonlLfting Satellites, " AVCC) Re-
search Laboratory and Advanced Development

Division, Report No. RR 54, May 1959.

DiChristina, V., "Re-entry Performance of a
High-Altitude Probe, " Inst. Aerospace Sci. ,

Paper 62-31, January 1962.

Dryer, M., "Propulsive Control of Atmospheric

Entry Lifting Trajectories" (U), The Martin

Company, Denver, Colorado, Report No. R-
60-9, May 1960, 27 pp.

Edwards, R. H., and Campbell, G. S., "Predic-

tion of Peak Temperature for Satellite Entries

with Lift, " AIRS Journal, Vol. 30, No. 5, May

1960, p 496.

Eggers, A. J., Jr., Allen, H. J., and Neice,

S. E., "A Comparative Analysis of the Per-

formance of Long-Range Hypervelocity Vehi-

cles, " NASA TN 4046, October 1957.

Eggers, A. J., Jr., Hansen, C. F., and

Cunningham, B. E., "Stagnation-Point Heat

Transfer to Blunt Shapes in Hypersonic Flight,

Including Effects of Yaw, " NACA TN 4229,

April 1958.

IX-23



Eggleston, J. M., and Cheatham, D. C., "Pi-
loted Entries into the Earth's Atmosphere, "

Institute of Aeronautical Sciences, Preprint
No. 59-98, June 1959.

Ehricke, K. A.,

"On the Descent of Winged Orbital Vehicles, "

Astronautics Acts, Vol. 1, Fasc 3, 1955,

pp 137 to 155.

"On Mechanics of Descent to Celestial Body, "
Journal of Astronautics, Vol. 2, No. 4,

1955, pp 137 to 144.

"Re-entry of Spherical Bodies into the At-

mosphere at Very High Speeds, " American

Rocket Society, Spring Meeting, Washington,

D. C., Reprint No. 428-57, April 1957.
"The Satelloid, "Astronautica Acta, Vol. II,

Fasc 2, 1956, pp 64 to 100.

Etkin, B. , "The Entry of Manned Maneuverable

Space Craft into Planetary Atmospheres, "

Toronto University, Inst. Aerophys., UTIA
Rev. 20, October 1961.

Fay, J. A., and Riddell, F. R., "Theory of
Stagnation-Point Heat Transfer in Dissociated

Air, " J. Aeronautical Science, Vol. 25, Febru.-

ary 1958, pp 73 to 85.

Fay, J. A., "Hypersonic Heat Transfer in the

Air Laminar Boundary Layer, " AVCO Report
AMP 71, March 1962.

Ferri, A., and Ting. L., "Practical Aspects of

Re-entry Problems" (U), Polytechnic institute

of Brooklyn, Department of Aerospace Engineer-

ing, New York, Report No. PIBAL 705, July
1961.

Ferri, A., Feldman, L., and Daskin, W., "The

Use of Lift for Re-entry from Satellite Trajec-
tories,"Jet Propulsion, Vol. 27, No. 11,
November 1957.

Fine, J. H., "Stability of Flight Paths of Lifting

Vehicles During Entry into Planetary Atmos-
pheres, " Toronto University, Inst. Aerophys.,
July 1961.

Fisher, L., "Landing Energy Dissipation for

Manned Re-entry Vehicles, " NASA TN D-453,
1960.

Gaines, L. M., and Surber, T. E., "Prediction

of Optimum Approach and Landing Techniques
for Manned Re-entry Gliders, " North American

Aviation, Inc., presented at the National IAS -

AIRS Joint Meeting, 13 to 16 June 1961, Ambas-

sador Hotel, Los Angeles, California, IAS
Paper 61-115-1809.

Galman, B. A.,

"Direct Re-entry at Escape Velocity, " Ameri-

can Astronautical Society, Preprint No. 60-
86, April 1960.

"Some Fundamental Considerations for Lifting
Vehicles in Return from Satellite Orbit, "

General Electric Company, Philadelphia,
Pennsylvania, Report No. GE-MSVD TIS

R595D355, May 1959.

IX-24

Garber, T. B.,

"Effects of Aerodynamic Forces upon the

ICBM Re-entry Trajectory, " The Rand

Corporation, Santa Monica, California,

Report No. RM 1782, August 1956.
"On the Rotational Motion of a Body Re-enter-

ing the Atmosphere, " Journal of Aerospace

Science, Vol. 28, No. 7, July 1959, p 443.

Gazley, C., Jr.,
"Recovery of a Circum-Lunar Instrument

Carrier, " The Rand Corporation, Santa

Monica, California, Report No. P-l19,

19 August 1957.

"The Penetration of Planetary Atmosphere, "

The Rand Corporation, Report No. P-1322,

Santa Monica, California, February 1958.

"Deceleration and Heating of a Body Entering
a Planetary Atmosphere from Space, "

Report No, P-955, The Rand Corporation,

Santa Monica, California, 18 February 1957.

(Also, Vistas in Astronautics, New York,

Pergamon Press, Inc., 1958, Vol. I, pp
8 to 32. )

"Atmospheric Entry of Manned Vehicles, "

The Rand Corporation, Research Memo-

randum RM-2579, Santa Monica, California,

January 1960, p 42. (Also, Institute of

Aerospace Sciences Space Stations Sympo-
sium, April 1960. )

"Atmospheric Entry, " Handbook of Astro-

nautical Engineering, McGraw-Hill Book

Company, New York, 1961 (Koelle, ed. )

Gazley, C., Jr., and Masson, D. J., A Re-

coverable Scientific Satellite, " Report .No.

RM-1844, The Rand Corporation, Santa
Monica, California, 1956.

Grant, F. C.,

"Analysis of Low-Acceleration Lifting Entry

from Escape Speed, " NASA TN D-249,

June 1960.

"Dynamic Analysis of a Simple Re-entry

Maneuver for a Lifting Satellite, " NASA

TN D-47, September 1959.

'_mportance of the Variation of Drag with

Lift in Minimization.of Satellite Entry
Acceleration, " NASA TN D-120, October
1959.

"Modulated Re-entry, " Joint Conference on

Lifting Manned Hypervelocity and Re-entry

Vehicles, Langley Field, Virginia, April
1960.

Groves, G. V. , "Velocity of a Body Falling

Through the Atmosphere and the Propagation
of Its Shock Wave to Earth, " Journal of Atmos-

pheric and Terrestrial Physics, Vol. 10,

No. 2, February 1957, pp 73 to 83.

Guess, A. L., and Peline, V. P., "The Sensi-

sitivity of Ballistic Satellite Re-entry Tra-
jectory Prediction to Differences in the

Geophysical Properties, " The Martin Com-

pany, Baltimore, Maryland, Report No.
AP TN 60-3. (Also, Lockheed Aircraft

Corporation, Sunnyvale, California, Report
No. LMSD-447470. )

Hendrix, C. E., "Proposal for a Simple System

for Achieving Soft Landing of a Rocket Vehicle, "
Naval Ordnance Test Station, China Lake,

California, NOTS TP 2495, NavWEPS Report
7084.



\,.

Jackson, C. M., Jr., "Estimates of Minimum

Energy Requirements for Range-Controlled

Return of a Non-Lifting Satellite from a
Circular Orbit, " NASA Technical Note D-980,

November 1961.

Hermann, R. , "Ascent and Re-entry, " Space
Trajectories, Academic Press, New York,
1960.

Hilderbrand, R. B., "Aerodynamic Fundamen-

tals, ,tHandbook of Astronautical Engineering,

McGraw-Hill Book Company, New York, 1961
(Koelle, ed. ).

Hill, F. A. F., "Satellite Re-entry with Lightly

Loaded Lifting Vehicles, " Massachusetts In-

stitute of Technology., Naval Supersonic Labo-
ratory, Cambridge, Massachusetts, Tech-

nical Report No. 429, December 1959.

Hoglund, R., andThale, J., "Recovery from a
Satellitic Orbit, " American Rocket Society,

Preprint 650-58, 1958.

Hoshizaki, H., "Heat Transfer in Planetary

Atmospheres at Super-Satellite Speeds, ARS
Journal, Vol. 32, No. 10, p 1544.

Hunziker, R. R., "Re-entry Trajectories for

Impact Prediction and Radar Acquisition, " ARS

Journal, Vol. 32, No. 8. August 1962, p 1261.

Kaeppel.er, H. J., and Kubler. M. E., "Die

R_ickkehr yon Geflugelten Geriten yon
Aussenstationsbahnen, " Bericht uber den V.

Internationalen Astronautischen Kongress.

Vienna, Springer Publication,-1955 (F Hecht,
ed. ).

Katzen, E. D., "Terminal Phase of Satellite

Entry into the Earth's Atmosphere, " ARS

Journal, Vol. 29, No. 2, February 1959,

pp 147 to 148.

Katzen, E. D., and Levy, L. L., Jr., "Atmos-

phere Entries with Vehicle Lift-Drag Ratio
Modulated to Limit Deceleration and Rate of

Deceleration - Vehicles with Maximum Lift-

Drag Ratio of 0.5, " NASA Technical Note
D-1145, December 1961,

Kemp, N. H., and Riddell, F. R., "Heat Transfer

to Satellite Vehicles Re-entering the Atmos-

phere, " Jet Propulsion, Vol. 27, No. 2, Feb-

ruary 1957, pp 132 to 137.

Kemp, N. H., Rose, P. H., and Detra, R. W.,
"Laminar Heat Transfer Around Blunt Bodies

in Dissociated Air, " Journal of the Aerospace

Sciences, Vol. 26, 1959, pp424 to 450.

Kennet, H., and Strack, S. L., "Stagnation Point
Radiative Transfer, " ARS Journal, Vol. 31,

No. 3, March 1961, p 370.

Kepler, D. I. , "Concepts Influencing the Selection

of a Configuration for Atmospheric Re-entry, "

American Rocket Society, Paper No. 786-59,
April 1959.

King-Hele, D. G., "The Descent of an Earth-

Satellite Through the Upper Atmosphere, "

Journal of the British Interplanetary Society,

Vol. 15, December 1956, pp 314 to 323.

Kork, J. , "Satellite Re-entry," Design Guide

to Orbital Flight, McGraw-Hill Book Com-

pany, New York, Chapter X, 1962.

Lees, L.,

Ablation in Hypersonic Flow, New York,

Seventh Anglo-American Aeronautical Con-
ference, October 5to 7, 1959.

"Laminar Heat Transfer Over Blunt-Nosed

Bodies at Hypersonic Flight Speeds, " Jet

Propulsion, Vol. 26, No. 4. 1956, pp 259
to 269, 274.

"Recent Developments in Hypersonic Flow, "

Jet Propulsion, Vol. 27, No !!, Novembpr

1957, pp 1162 to 1178.

"Recovery Dynamics--Heat Transfer at Hyper-

sonic Speeds in a Planetary Atmosphere,

Space Technology, New York, John Wiley

and Sons, 1959.

Lees, L., Hartwig, F. _¥., and Cohen, C. B.,

"The Use of Lift During Entry into the Earth's

Atmosphere, :' American Rocket Society,

Preprint No. 785-59, April 1959. (Also,

ARS Journal, Vol. 29, No. 9, September

1959).

Legalley, D. P., ed., "Re-entry and Vehicle

Design. " Ballistic Missile and Space Tech-

nology, Academic Press, New York, Vol. 4,

1960, p 422.

Levin. A. D., and Hopkins. E. J . "Re-entry

Glide Maneuvers for Recovery of a Winged

First-Stage Rocket Booster. ,r

Levinsky, E. S. , "Application of Inequality

Constraints to Variational Problems of Lifting

Re-entry, " Institute of Aerospace Sciences,

Report No. 61-21, January 1961.

Levy, L. L., Jr., "Atmosphere Entries with

Spacecraft Lift-Drag Ratios N Iodulated to
Limit Decelerations, " NASA Technical Note

D-1427, October 1962.

Lew, H. G. , "Re-entry Physics, " Genera]

Electric Company, Missile and Space Vehicle

Department, Philadelphia, Pennsylvania,

Contract No. DA 36-034-ORD-3187 (R/D),

December 1960. (Martin Library No. 6173-

S-19,)

Linnell, R. I). , "Vertical Re-entry into the

Earth's Atmosphere for Both Light and Heavy

Bodies, " Jet Propulsion, Vol. 28, No. 5,

pp 329-331, May 1958.

Loh, W. H. T.,

"Mechanics of Re-entry, " 4th Symposium on

Ballistic Missiles and Space Technology,

Los Angeles, California, August 1959.

"Dynamics and Thermodynamics of Re-entry, "

Journal of the Aerospace Sciences, October

1960, pp 748 to 762.

"A Second Order Theory of Entry Mechanics

into a Planetary Atmosphere, " Institute of

Aerospace Sciences, June 1961, Preprint

No. 61-116-1810.

"Supereircular Gliding Entry, " ARS Journal,

Vol. 32, No. 9, September 1962, p 1398.

"Ballistic Re-entry at Small Angles of Inclina-

ation," ARS Journal, Vol, 32, No. 5, May

1962, p 718.

IX-25



Luidens, R. W., "Approximate Analysis of

G-Loads and Heating During Atmospheric

Entries and Passes with Constant Aero-

dynamic Coefficients, " NASA TN D1280,

July 1962.

Mandell, D. S.

"A Study of the Maneuvering Performance

of Lifting Re-entry Vehicles, Part I, Initial
Atmospheric Re-entry, " General Electric

Company, Missile and Space Vehicle De-

partment, Philadelphia. Pennsylvania.

Flight Mechanics Data Memo No. 2:23.
October 1960. (Also, American Hocker

Society, Preprint No. 1555-60. December
1960. )

"Maneuvering Trajectory Program, " General

Electric Company, Missile and Space Vehicle

Department, Philadelphia, Pennsylvania,

Report No. TIS R50SD398, November 1960.

"Maneuvering Performance of Lifting Re-entry
Vehicles, " Vol. 32, No. 3, ARS Journal.

March 1962, p 346.

Marshall. F. J., "Optimum Re-entry via a
Variable Control Force. " American Rocket

Society, Preprint No. 956-59, 1959.

Miele, A., and Cavort, C. R., "Variational

Approach to the Re-entry of a Ballistic Missile,
Parts I and II, " Purdue University, School of

Aeronautical Engineering, Lafayette, Indiana,

Reports Nos. A-59-I and A-59-3.

Miercort, F. A.. "Re-entry into an Exponential

Atmosphere. Ignoring Gravity, " Martin-Denver.

SR 1420-5, 30 November 1961, p 6.

Miller, B. P.. "Approximate Velocity, Position

and Time Relationship for Ballistic Re-entry, "

Vol. 31, No. 3. ARS Journal, %'larch 1961.

p 437.

Moe, M. M., "An Approximation to the Re-entry

Trajectory, " ARS Journal, Vol. 30, No. l,

AIRS Journal, 1960, pp 50 to 53.

Morth, R. and Speyer. J. L., "Divergence from

Equilibrium Glide Path at Supersateltite Ve

locities, " ARS Journal, Vol. 31, No. 3, p 448.

Nielson, J, N., "Three-Dimensional Satellite

Orbits with Emphasis on Re-entry Dynamics
and Oblateness Effects, " Aero/Space Engineering,

Vol. 18, No. 4, April 1959, pp 60 to 66.

Nonweiler, T. R. F.,

"Problems of Interplanetary Navigation and

Atmospheric Re-entry, " Journal of the

Royal Aeronautical Society, Vol. 64, 1960,

pp 155 to 160.
"The Motion of an Earth Satellite on Re-entry

to the Atmosphere, " IXth International

Astronautical Congress, Amsterdam, Vol.

1I, 1958, p 842. (Al_o, Astronautica Acta,
Vol. 5, 1959.)

Norling, R. A., "Normal Dispersion of a Re-entry

Body, " ARS Journal, Vol. 30, No. 7, July 1960,

p 652.

Offenhartz, E., Weisblatt, H., and Flagg, R. F.,

"Stagnation Point Heat Transfer Measurement

at Super-Satellite Speeds, " J. Royal Aeronautical

Soc. Vol. 66, January 1962, p 53.

Olstad, W. B., "A Study of the Feasibility of In-

flatable Re-entry Gliders, " NASA TN D-538,
1960,

Phillips, R. L., and Cohen, C. B., "Use of Drag
Modulation to Reduce Deceleration Loads

During Atmospheric Entry, " ARS Journal,
Vol. 29, No. 6, June 1959.

Plascott, R. H., "The Re-entry of Manned Earth

Satellites, " Royal AeropLane Establishment,

Farnborough, England, Technical Note No.

2640, August 1959.

Probstein, R. F., "Methods of Calculating the

Equilibrium Laminar Heat Transfer Rate at

IIypersonic Flight Speeds," Jet Pr_)pul_ion,

Vol. 26, 1956, pp 497 to 499.

Quillinan, J. It., London, J. and Aston, B. A.,

"Configuration Selection of Re-entry Vehicles, "
Institute of Aeronautical Sciences, Preprint

No. 59-97, June !959.

Remmler, K. L., "Tumbling Bodies Entering

the Atmosphere,"ARS J. 32, 92-94, 1962.

bleshotko, E., "Simplified Method fat" E_timating
Compressible Laminar Heat Transfer with
Pressure Gradient," NACA TN 3888, December

1956.

Reshotko, E. and Cohen, C. B., "Heat Transfer

at the Forward Stagnation Point of Blunt

Bodies," NACA TN 3513, July t955.

Rasamond, D. L., "Satellite Recovery Techniques

for Optimization of Touchdown Accuracy, "

Institute of Aeronautical Sciences, Preprint
No. 59-92, June 1959.

Riddell, F. R. and Detra, R. W., "Returning
Alive from Space, " American Astronautical

Society, January 1958.

Riddell, F. R., and Winkler, H. B,, "Meteorites

and Re-entry of Space Vehicles at Meteor

Velocities, ARS Journal, Vol. 32, No, i0,

October 1962, p 1523.

Robinson, A. C., and Besonis, A. J., "On the

Problems of Re-entry into the Earth' s Atmos-

phere," USAF WADC TR 58-408, August 1958.

(Also ASTIA No. AD 203790. ) (Also, Journal

of the Astronautical Sciences, No. 7, 1960,

pp 7 to 21. )

Robinson, A. C., and Poli, C. R., "Development

of Normalized Six-Degree-of-Freedom Equations

for Analog Simulation of Atmospheric Re-entry, "

Synthesis and Analysis Division, Directorate

of Systems Dynamic Analysis, Aeronautical

Systems Division, Wright-Patterson Air Force

Base, Ohio. (Task No. 70958) (ASD TR 61-448),

November 1981.

IX-26



Robinson, A. C., Wolaver, L. E. and Besonis,

A. J., "A Study of Nonlifting Satellites Re-

entering the Earth' s Atmosphere, " WADC Aero

Research Laboratory Working Paper, March

1958.

Rogallo, F. M., and Lowry, J. G., "Flexible

Re-entry Gliders, " Society of Automotive

Engineers, Inc., New York, Preprint No.

175C, 1960.

Rose, P. H., "Re-entry from Lunar Missions,"

AVCO Rpt AMP 69, December 1961.

Rute, L., "A Study of Aerodynamic Effects of

Isothermal and Temperature Gradient Atmos-

pheres on Re-entry Trajectories, " Polytechnic

Institute of Brooklyn, Department of Aerospace

Eng and Applied Mechanics, AFOSR 241 I,

March 1962.

Scala, S., "Heating Problems of Entry into

Planetary Atmospheres from Super Circular

Orbiting Velocities, " Proceedings of Symposium

on Aerothermoelasticity, Aeronautieal

Systems Division, Wright-Patterson AFB, Ohio
TR 61-645, October 1961.

Scherberg, M. G. and Rubin, T., "Decelerations

of Ballistic T_,pe Missile on Re-entry into
Atmosphere, WADC TN WCRR53-2, February

1953.

_ulsk_y, R. S. and Summers, L. J., '_Parametric

Studies on Ballistic }%e-entry Trajectories,"

The Martin Company, Denver, Colorado, Report

i%III-60-36, May 1960.

Slye, R. E., "An Analytical Method for Studying the

Lateral Motion of Atmosphere Entry Vehicles, "

NASA TND-325, September 1960.

Smith, R. H., "Supercircular Entry and Recovery
with Maneuverable Manned Vehicles, " Institute

of Aerospace Sciences, Preprint No. 61-114-

1808, June 1961.

Strack, S. L., "Radiant }{eat Transfer Around Re-

entry Bodies, " ARS Journal, Vol. 32, No. 5,

May 1962, p 744.

Surber, T. E. and Gaines, L. M., "Prediction of

Optimum Approach and Landing Techniques

for Manned Lifting Re-entry Gliders, " Institute

of Aerospace Sciences, Preprint No. 61-115-

1809, June 1961.

Swanson, B. L.,

"A Study of Methods for Simulating the Atmos-

phere Entry of Vehicles with Small-Scale

Models"

"Appendix A, B--Turbulent Heating Rates"

"Appendix C--Simulation of Highly Elliptic,

Parabolic, and Hyperbolic Entries," NASA

TND-90, 1960, 51 pp.

Townsend, G. and Kork, J., "Satellite Recovery, "

Design Guide to Orbital Flight, McGraw-Hill

Book Company, New York, Chapter 9, 1962.

Turnacliff, R. D. and Hartnett, J. P., "General-

ized Trajectories for Free-Falling Bodies of

High Drag, " American Rocket Society, Preprint

No. 543-57, December 1957.

Fargo, L. G., "Criteria for Orbital Re-entry, "

Jet Propulsion, Vol. 28, No. I January 1958,

p 54.

Wang, K, and Ting, L., "An Approximate Analytic

Solution of Re-entry Trajectory with Aero-

dynamic Forces, " ARS Journal Vol. 30, No. 6,

June 1960, p 565.

"Approximate Solutions for Re-entry Trajectories

with Aerodynamic Forces, " Astronaut Acta,

8, 28-41, 1962.

Warden, R. V., "Ballistic Re-entries with a

Varying W/CDA,"ARS Journal, Vol. 31, No. 2,

pp 208 to 213, February 1961.

Wick, B. H., "Radiative Heating of Vehicles

Entering the Earth's Atmosphere, " presented

to the Fluid Mechanics Panel of Advisory Group

for Ae_',)nautfual Research and Deveh)pm_nt,

Brussels, Belgium, 3 to 6 April 1962.

Wong, T. J., et al., "_Iotion and Heating During

Atmosphere Re-entry of Space Vehicles,"

NASA TN D-334, 1960.

"The Use of Aerodynamic Lift During Entry into

The Earth's Atmosphere, " Space Teclu_ology,

Inc,, Los Angeles, Cal., 20 November 1958.

"Trajectory Control for Vehicles Entering th_

b;arth' s Atmosphere at Small Flight-Pnth Angh,_, "

Langley Research Center, L_ng_ey }.'_eld, V:_.,

February 1959.

"Variational Procedure for _{inimizing IIeating

Effects During the Re-entry of a Lifting Vehicle:

Heat Transfer to Slender Hypersonic Delta

Wings Near 90 ° Incidence, "Aeronautical Sys-

tems Division, Dir ]Aeromechanics, Flight

Dynamics Lab, Wright-l_atterson AFB, Ohio,

WADD TR 60-369, Vol. LI, Final Report,

April 1962.

"On the Mechanics of Descent to a Celestial Body, "

American Rocket Society, Report No. 146 A-54.

"Proceedings of the Recovery of Space Vehicles

Symposium, " Los A_geles, Cal., 31 August

to 1 September 1960.

New York, Institute of the Aeronautical Sciences,

1960

"Recovery Technology and Space Operations, "

Evans, H. L.

"A Guided Parachute System, " Kane, M. T.

"A Minimum Weight Landing,System for
Interplanetary Spacecraft, ' Ewing, E. G.

'_[ntroduction to Dyna-Soar Recovery Session, "

Moore, W. L.

"The Effect of Search and Retrieval on Escape

System Performance and Space Crew

Safety, " Edwards, H. H. and Garnett,

R. J.

"Re-entry of Spherical Bodies into the Atmosphere

at Very High Speed, " American Rocket Society,

Report No. 22128-57.

IX-27





ILLUSTRATIONS

Precedingpageblank

IX -29



J



:-:.-t--J

LL

r_

}l,]|;i'_

Z-G :z;-".t-_: t_-,-

_n

4; "

Iqx]i HI[ I]II[

_ d

!_/z£

_r_

t_

_i I_' _i
. _._ _ "__ .

I: iiiiiii ::_:
:11 i: ! !_il_li I',::

!ii',;_iiii::
il;[ ',ii_i,',i

zn

_i;_.:-_

-]i_iiii_g!

_,eN =

_ °m

.....r_.,_._Tiii

•i! [i-_ ::;'i_'_-_

0

-7 _!:

I!

f.., m
II I_}

_. _1_ °

Ii

n

_ -_-
0

. _

W

¢.

.,-4

II

t_

,.9,o >

> ._

c_ _ o
.o

o

e- ,._

Precedingpageblank

IX-31



O

° E

>l_° _
0, _

o

t_

k,

c-
O

§
c_

N

0

t_

IX-32



, ..y_ .....

T_ F--_. ' '

;"_ _i _;

!if! !,.._h

_ ii,,ii
iii iii:i

) i:i

_IIT =%.1%: r--_'':l II

'.i:_ _ .ii!_

zn 0£

0

=!

(

m

iii_ N

IX-33



t_T

I

I

=z

z_ o_

zn 0£

&

Q

u

0

o

c_

J

IX-34



0
0

I
0

I I I

-20 -40 -60

Flight Path Angle, y (deg)

Fig. 4. Velocity Profile and Flight Path Angle Variation for Satellite Re-Entz7

IX-35



0
Velocity (raps x 103)

2 3 4 5 6 7

320
-100

280

9O

240

8O

7O

_-4

200

160

120

60 _"
0

v

50

4O

8O

3O

2O

4O

10

4 8 12 16 20 24

Velocity (fps x 103)

(a) _0 = - 1°

Fig. 5.
Velocity Variation with Altitude (h 0, 300,000 ft - 91,440 m s v 0 . 25,000 fps -

7,620 mps, L/D - 0)

IX-36



Oo 8

Velocity (mps x 103)"

3 4

20

IOO

i',J_,_ 9o

r "2+'r,T _--

_. 4_12_

_ _o
=It-_N

60
_- x

:i?i !:: - "_
_ r-4

_ 40

_ 30

=

_ 20
4-4-+-M,4-_

_:_ -

_ 10

21,

Fig. 5. (continued)

DC-37



0
0 4 8

Velocity (fl_ x I0_)

(c) YO = - S"

Flg. 5. (continued)

20 21,

IOO

=

oj

_J

IX-38



o

v

Velocity (mps x 103)L

3 4

l_ 16

Velocity (_l_s x lO_)

(d) 70 " " i0°

x

v

Fig. S. (continued)

IX-39



&

Velocity (mps x 103)

3 4

12 16

Velocity (fps x 103)

(e) Y - -I0"
0

Fig. 5. (continued)

IX-40

2O 2_

I00

9o

8o

7o

60 .-.

v

50

_J

_.J

4O

3O

2O

10

)
/



f -

0
,-4

_D

43

4.3
e-4
<

32O

28O

2h.o

2OO

160

120

80

ttO

0

!!!llllf

iljlill i
i:

jii_iill..!!!

::::::::

!!!!!!!=

!!!iiii!
ill,ill;

!!!! !!! ![[[_[{!!

iiii i!! !!i!iiii!
!!!! !i! i!!!!!!!!
ii;] ;]i iiii;_iii

:::!!!:!!!ii_ii!
iili i_, iiiiiiiii
'"' ]" ;i;::::;i

IJ,

e Analytical results (Ref. I)--

_iiljlll

_uii!

iii
l!i_]i[
i!!! ::_

ii! !{!

i111 ]il

;vvTti

!! ii_!!!
!_:i i:i

r',ig ill

.... III I ;,iiii

.... ll_lll _

ii;i ii! !!i!i_
i_ii ill !iiii:iii
i_ll iii i,lii ! ¸

!!!! _!! ::_!!!,!!

iiil iii_i!il_iii
_;!! i

!iii i_''_!;_i'i.... i::_ii!i!
, II

II;[ iii_ :i:;i

• " r , i ! ,:!;! _[ii

:,.,,.

iiii

i[[ _ :,, !,!!

,ill Iii ;ii,_,iii

B = 25 ft2/slug ] ii_'i
=L.=-:wv

! [i

[tl k!i

_i! i: i _ .
l[ii ,i_ ii

ii!, !_i tli!

.... ill
i: iiii i

iii iiiii

1111 !_ __;ill
_r _

_ lilt0. I "![ '11tl

!!!T" =''z _ !!!!!

.... -i-J4 _

2:ii li,,,

,,,, [i! [!!!+

-_.z iil iiii!

[Ill Ill I [ i i[ I I i t
III I

T7 T_i!ii!

..... _4 ....

i11111!I
Crr-l!:ii

i!i ::!!_Ii!!
ill ili_,iii
!!! iii!!!!!!
iii iiiiiiiil
,,i iiiiiiiil

21' IIIi,!I!!i ;;ilillJl

ililr,_kll
[ll_lif'l'llk_

[... !!!!_.:,,

!!!! !!!!!!:::::_
iiii iiiiiiiii
_., !!!!i iii
_i iiiiiii'i

_ ... II_i:i TM

'_ _i I

o -3o -60 -9o
Local Flight Path Angle (deg)

(a) _0 = - i°

i00

90

)4

E
V

"4

-,-4

,--4

Fig. 6. Flight Path Angle Variation with Altitude (h0 = 300,000 ft = 91,440 m; v 0 = 25,000 £ps = 7620 mps)

IX-41



_R 0
co $

(t_0 Z z m) apn_T:l:l V

o o o 0

(£0I x m) epn3T_lY

8

Z

v

IX-42



!iii!!_!_!!

__ : 7_i

-i :i

:W

!ill _i

Li_J +L'L!

+4 .......

C'}
m

IL

0

0 0 0 0

',IiI ; ..... llil

+r++++1 _ .:++:-i

_ai_ ++.+-+++ _+-:

= ii =
+'+24+-_:+,:_+++: ::"-'::

(£01 x ll) apnl!llV

i !;':i.+
i++i;_: i',_,iJ';iJ o_

- _+.,:t_ i ++

_ ._. _ _-+..o
:: .... _0 _T, i::" i 0

-":++-+;+i+iih:jLd .,-+++..

0

&
l

!l

O_

v

i

u

3

8

IX-43



Velocity (raps x 103)
1 2 3 4

230

210

200

600

150

=

<

30O

Ii0

100

8O

7O

6O

5O

I00

40

30

2O

I0

Fig. 7.

•_ 10 15 20

Velocity (fps x 103)

Characteristic Re-Entry Altitude-Velocity Profiles for Lifting
Vehicles

IX-44

25



{_+t/gm) tug/v<2O = _t

?

7

_i; iii
_II III

"' Iii

,i p_,

_+--+--+--+--+--+--+--+--+--+++--+=

:=
+i'-

+!: ?+!
::[:ItP

i+_++

:i!i

iii:!:_III_II
iJll

illiill

? ti

IIS [5',

:=+, _+
,[, +;]

;L--+_

_Jll ]
itl
TTr -_,.-.
• +_- +4--

IX-45



-2
10

_M
"-,...,.

C"]

v

c'q

<
C2

L)
II

-3
10

i

J
I

:!

:i

I f

]

105

(c) Yo = -ioo

Altitude (m)

Fig. 8. (continued)

IX-46

'!! i!i! !!: i,!l !!,

iii ii!! !!! _!!!ii_
}il :::' :_: !iii _::
iii ] ; !i 'it

,i
: : !i; :I !

!!] iiii ;[_ ....

[ili !]I ._: :-:

_ ' _r ' J L :' i _ _ _ _ _ _ : _ _' L

: _ ! ;I '11,'

L _ L2 -L2

!ii I_i, 2._£-2-'i LLL

,-_-

[:: i I ,_i; ,[!: !!1;

;7 i: i_i

r;_...........!iti c _, I_,

_i,: ':i' _. !i;
_: I!_! :;11 !!: T!:

i;i i!]i ',iiiili I;;

ii]_i! :,iiFi
T, iii ill

iil []ii iiE', ,_,1__ :

_i:!!!!!ill_?_T
,,;iiiiii;liii}ii

liT[
liT;
i[i!
!rl:

i;i!

I1!i

i!ii
,L,

!ill

-'--'1

L::j

_hq

ii:ii

!bd
"'7'1

q

IV|



o

v

3_,0

3OO

20O

150

100

0
0

Velocity (mpl x i0 ])

_ 7II I It II t

/

/

/

/

i

lO

/

/

I
i

I
I

!
/ Circular Orbit Velocity

I

/ (300,000 f_)

f

lb/ft 2

1.07

2

3.22

5

16.2

160

219

320

438

I
t

neu¢ons/m 2 f_2/slug

51.22 £5.04

95.74 8.04

154.1 5.00

239 3.22

775 0.9

7660 O,IO0

10,_80 0.0735

15,320 0.0503

21,000 0.0367

20

m2/10 "3 m2/kg

95.7

51.2

31.8

20.5

6.32

0.637

0.468

0.320 I

0.234

[
I

I
10

Velocity (fpmx 1033

Fig. 9a. Ent_3' Vehicle Comparison, Velocity-Alti_ude Profile

IX-47



o
3OO

Velocity (raps x 103)

2 3 4 5 6 7 8 9

= 90

8O

200

5O

o

3O

2O

lO

Fig. 9b. Effect of Entry Velocity on Altitude-Velocity Profile

IX-48

3O

'l

jJ



o

0 I 2 3

Note: LID - 0..5

ho - 3oo,ooo o-
(91,400 m)

v 0 = 25,000 fps
(7620 mps)

70 - -0,I"

XXX_Cx x 70 " "0.5°

7Q " -I,0"

YO " "3"0°

70 - -5.0"

_'0 " "i0"0°

Veloctt 7 (mps x 103 )

4

WICLS - 438 Ib/ft 2

(B = 0.234 x 10 "3 m2/kg)

8 9

Circular Orbit

Velocity at

300,000 fc

(91.4 ka)

0 10 20 30
Velocity (fps x 103)

7o

5O
A

0

X

s,

.a

.a

Fig. 9c. Effect of Entr7 Angle on Velocity-Altitude Profiles

IX-49



35-"

i w_._
CLS

v

25C

<

15(
0

Fig. 9d.

1 2

Velocity (mpm x 10 3)

3 6 5

/
/

../.

/ ,://
2" /

////1.4J/

i Ib/ft 2 = 21-_

47.8: / "-,

(, , w3 I/

/, /I./ ,/

L/,'__" ..-.r ,="" 20/i /

/;,i2" / ,
/ /

/71 / /

/ /

/ / t
f / See Fig. 9e. for

CL programs of

j cur_es t,2 and 3

!/i
I

I0 20

Velocity (fpa x tO 3)

7

I

], e-!

8

tOO

9O

-so -.
o
w

:7o
<

6O

28

Effect of Programmed CL on Velocity-Altitude Profile

0.5

\

0,4

0.3

0.2

0.1

%,

%..

•%. _

/
/

tO

A

J/-\ .,i
/ VI'

lJ I

/ '
:

I !

i_.1. ,i
S,-'- ' i

. '% / •

\ "'_i

20

M_ch l_l_r

Note.: v 0 " 25,000 fps

(7620 mps)

" f*O0,O00 ft

(122 0OO m)
Y . l" •
0

W/A - 2 [b/ft 2

- 95.7 nm#tons/m 2

C o = I

lllll
30 40

m

m

Fig. 9e. Program of C L with Hach Number

IX-50



0

,..4

0

0

....4

0

0

v

b_

v

I>
_u

r_

0

....._ J f

0
/

Ot'_"

Q

I
I

0 0

v

c_

_S

0

v

r")

I!

J

_666

/

j..-
J

I f

/

°oo,.o°

jl

__001

° J
vj

/

/

f

I

0
0

i
jl

_v 0 _ _..-

I

/I
f

/
/

//
/

/

/

/

N

I

/
J

I

/
I I

/

/,

/

/
f

J

0
1,4 _/

J

/
!

i

/
I

!

/
/
/

/
/

/,
/

/

J

J
/

0
0

)

/
/

rf
//

/
0

v

>

f

0

,-.i

f

OT :l,J _ ge_- o:1 - :1_ T"[

o
o

Fig. lOa. Terminal Veloci_:y

IX-51



6 _ L;L

3 _,_7_ -; _,'-_

........_!!__i,_,:,

0 _i':!!!!::;! ',!',i!
0 -I0

_Z

:! ,i;i

!ii!

-20

Data Points

300,000 ft
(91,400 m)

25,000 fps
(7620 mps)

(19,100 newtonslm 2)

Fig. lOb. Terminal Flight Path Angle

LX-52

I



2
.,,-4
-r'

0

8

Ca£

I

IX-53



25

L0 Ballistic
= 105 ib/ft 2

-,.4

o 5

0 _-

= llistic<
_= -6

m -4

_ Ballistic

0 r

8

X 4

v 2

° /7
0 _

8
-- 6

_ 4

2
/

.-. 0

"4 4

--,3!-Z
_ 2

m

E 1
oJ

E-w

0

z 0

_i Balllstic

f J
%

llistic

\

2 4

_ .=.==...

Lifting c¢ = If2 Iblft 2

L/D- i/2

I

/

--_ifting

Lifting

Lifting

\
6 8 I0 12

Ti_ (mec z 102)

Winged L/D - 1.25

- 7.25 lb/ft 2

Winged

Winged

Winged

_ Winged

14 16 18

o
x

3

2 -

g
o

v

Fig. lib. Re-entry Vehicle Comparison--Time History

IX-54



//'/

( O! x _) ._:_T_OI_A
£

o

(,,10"[ x m) apn3131V

h, I I

g ,,,4 l

.4

,Z

/
!

J

/

(;"

{/"

({

/' t
/_ /

,/" /

i

J

A

0
e.

M
0

..,r,

i

d

'4*

e,l N
• ° •

I

.-* ,-* o o
• ,

o o

_ g

(_OI X ld]) _3T_OI*A

IX-55



__J_

,,.D

.--_--]--ZZ

_ . =_.

=_ -__-_

• _

i,

,!: ][

:_._-,-

(_) uo!:pe.za'[aaa(] I_UOZ].XaH

iiiS{=

[,ii:;

:-:_ ir

_ N

0

_-_.:

__. _

'2;

b=,

=C
_S

2_

_._

d

IX-56



0

-2

Fig. 12c.

h 0 = 300,000 ft

(91,440 m)

v 0 = 25,000 fps

(7620 raps)

YO = -1°

L =0

' _iii i

_- L_

:_-:: ::_1 _'÷t _-rt --r- -c-_

:::'2

;._: _-_ _ _ 44*

_il _ iLL! _'! ....

H_Iiiii _i_ !!!! !!ii iill iii
i:ii !i:i iill ,_:::
IN1 IIi'_ HI'. ',_I'_

I ft21slug- = 6.37 x 10 -3 m21kg-

!!!!!!!!!!!!!!iiiiiiiiilH!iiiiiiii!!!!!iiiiiiiiiiiii!!:i!!
!!!!!!!iiiii!!!!!!!ili!!!!!!!!!!!!!!ilH!!ii!!!!!!!!_!!!!_!

!!!!!iiiiiiiiiiiiiiiii}i!!!!!iiiiiiiiiiii!iiiiiiiiii!iiii!iiii!
6 8 i0 12

Deceleration (V/g)

Deceleration Variation with Altitude for Satellite Re-Entry

-100

70

3O

IX-57



28O

240

200

lO

Maximum Deceleration (_'/g)

Fig. 13b.

m

o

2

cJ

m

Fig. 13a. Haximum Decelerations for Ballistic Re-Entry

0 -2 -4 -8 -8

Re-Entr_ Angle (deg)

_0
-10

Optimum Ballistic Coefficients (to minimize re-entry decelerations)

IX-58



uo._,_,_oloooV

0

=
0

%

0
u
u

"o _.
_ u
N _

5 a

L

_J

0
,.j

a_

0 _

,a

IX-59

4



32O

28O

20O

................. •-:-_----:-:[-r
L .' i_'_;l,,i ,: _' i ' ._-_ ....

: 6.3; . Io-3 =2/k_ _-_T;-_ -_===

H_ Tolerl_nce : _z: I

to AcceleI_tiom_ _---

b.O
_,_:i_::,_,:_ .......................... ::i!"i!!i_i;_i!ii!!i: i!i!! ii:i!ii: i!i_i:i '¸ :::_:'i'!!,

0
o 5

•: * : : --- _ : _' _i ''-::_-- _------r

I0 15 20 25

Deceleration (v!g)

(a) Constant ballistic coefficient

Fig. 1S. Length of Time Spent at Decelerations Equal to and Larger than the
Shown Value

IX-60



r

v

o

0
0

[Ii_;],i;

--T!

E_

:AIi:----:
; ?,I, ::L :

.tl

_YU

\)

',Tt" T_:

;, i

" :7 '-

_._ I:_

I'i
(b)

8 I0 12

Fig. 15. (continued}

IX-61



12

11

Fig. 16. Effect of Re-Entry Conditions on Maximum Total Decelerations (L/D = 0.5)

30

Fig. 17a.

L/D

Naximum Load Factor Versus L/D (W/CDA = 458 psf or B = 0.234 x I0 -3 m2/kg)

IX-62



v

O

-,j

>¢

>¢

F_2

L_

Fig. 17b.

28

c 24

_ 20

N 16

I|

N

12

%

_v 0 = 25,000 fps
(7620mps)

----V0.: i0,000 fps
(3048mps)

h 0 = 400,000 ft
(121,920 m)

>laximum Load Factor Versus L/D (I_ICDA = S0 psf or B = 2.04 x 10 -3 m2/kgJ

h 0 = 400,000 ft v 0 (121,920 m)

_v 0 = 20,000 fps (6,096 mps)

v = 15,000 fps (4,572 mps)
0

Fig. 17c.

00 1 2 3
L/D Ratio

,_aximtm Total Acceleration Versus L/I) Ratio (_/C_A • 50 psf or B • 2.04 x 10 -3 m2/kg)

4

IX-63



-2
10

_B

u

10.3

10"4 0 IU

,_xL_um Load Factor (N)

(a) lO * -I°

U

g

u

10"2

i0 "3

-4
I0

0

i0 "2

U
u

-3

Fig. 18.

10 -4

10 20 30

Maximum Load Factor (N)

(c) YO " -10"

Maximum Re-Entry Load Factor Versus Ballistic Coefficient

(h0 = 400,000 ft = 121,920 m; v 0 = 25,000 fps

• 7620 mps)
IX-64



30

Z

O

"d

O

20

10

3O

(a) W/CDA = 438 psf

B = 0. 037 ft2/slug = 0. 234 [0 -3 m2,kg

20

Z

]

10

0
0 -3 -4 -5 -6 -7 --8

Flight Path Angle, y (deg)

(b) W/CDA = 50 psf

B = 0. 322 ft2/slug = 2.04 x I0 "3 m2/kg

Fig. 19. Maximum Re-Entry Load Factor Versus Flight Path Angle

(v 0 - 2S,000 fps - 7620 mps; h 0 - 400_000 ft • 121,920m)

L'_-65



v 0 = 25,000ft/sec
= 7620 raps

h0 = 400,000 ft
= 121,920 m

C
2
(J

0

J

-3 -4 -5 -6 -7

Flight Path Angle, ,_ (deg)

(c) W/CDA = 5 psf, B = 3.22 ft2/slug = 2.05 x 10 -2 m2/kg

IX-66



15 2o

Velocl.t 7 _fps w 10 3)

{b) B - 0.322 _t2/slug; W/¢_ = 50 psf

- 2.04 x 10 .3 m2/kg " 2390 nevCons/m 2

Velocity (k]/sec)

S 6

10

Fig. 20. Continued

IX-67



A

Z

o

©

a_
I

qJ

E
op,,I

X

10

0
0

A

d
O

tJ

o

Fig. 22.

IZ!

:71

:! ii

r-* •

h- r_

!?

1

_'_!iiiiii_-
iiiiii_
ill]ll_I;II

iii!iiiiiill
l];II_IliI:l

!!!!._!!!!!!

-tr'_T rtT_t_

.L41i_::ll!

L/D

,_- _20, 000 fps(6096 raps)

_ _.-_F,-_25,000 fps (7620 raps)

2 3

Fig. 21. Maximum Re-Entry Load Factor Versus L/D

14

12

i0

8

6

4

0

Suggested Limit _/
for Manned Entry

Operational /
Limit

/
0

/
-2 -4 -6 -8 -10

Re-Entry Angle, _ (deg)

Effect of Re-Entry Angle on Peak Deceleration. v
0

g/CLA = 20 psf = 957 newton/m 2, L/D = 2 (Ref. 14)

m V _,

C

IX-68



i

!_!!!
ii!ii

iiiil
!!!!!

iiiii

Ijlll

IlJll
I!li_

IIIII
il!l!

(3_/ _) m_/_.C_:) =

ii;iiiiiii

IX-69



I

4

w

IX- 70

%

-0

0

C

o

I.

r',,

Cl

i:iiihii
IIIlIILI I
II_II[:ll

IlltliJil

"G!!!l!

,,ITII III1[11IIIIII I

!l!,u!,!!!,!!!!!r_ iiii
iiii;i i'_;iillliiiijj i i ;IIIIII ,,l!lllll/IJ II i J

IIllillll!!llllllllll I I I I I [ I

iillH'lli!lll!!itlllllil I I I

!tlTliillliltliiilllflll ] I I I _
T _

o

I

II 8

,g
N



/4

1

.M

<

II

_)

--_

-r------

::::::

_:___

I I ;

i0-3

i
I!

10 -4 IIi

10 3 10 4

Dynamic Pressure (newtorm/m 2)

[c) _0 " -I0"

Fig. 23. (continued)

IX-71

105



o

0

(ml suolmau) aanssoad :,_m'euE(::I

.J

IX-72



.1.._.! F:

,LLL,

L-it

:; _,,

_ ;._"r

!:: 7:-

LT _XL

Ti-

ll

, I,l

X::f:_---

, 11

i:7!7 S.-

/:L:t LXL

L-:i. 1-:

--"-_i'---
:ill:

; I |[.

iJl_llJ <J

!]!!:_' i¸ ii

"-tT I'
. -4 ...........

....
_..a.

..4.--

_m ........

-|7

.... t..

' [Ul_l,LI !ll_rl'lF i i ,#I i I-/ _'

• ,-' :i:li h i [ i h#_,--- ,--f--+ - .4,-

fl: llh ihi!l;_i i i- ' _":, ,:,._,.._,,_:!J:/ --.P t-+ -_.+-'-t-+.__

,:-t./4::Brg4_:----_: _.... P :;:4:..::.i__

/""t-"_l_-t'] ;-''-' _ L" '+.-i r: : -;:_

...... r/_-"_..... '-'_-r r" "'I-t "--'t'.;-.-l----t---g-+-,-t------I

' ....;:;: '----- .... :.............I---:.44- -._-
-I,_. _;-<' '_ ' 4.,-4.4.--i_- 1-,,,+,-_., _ I:,I,[ :
.LL iF lll!ili !ii , , L4_l-- b '
JI 11 :llllil; l: : -''_-', [ !'7_ ! I' [ :,if:!!

........ !i " ! --'--q-,- ,:" _-÷ _, -i:, "-_-. .... , ...... -
-_'m, i, 7: i;., f "-i-'-t- _"_"-'-r"_'-'f-'_-_""--'_ '---t------

:!"71 iiii:i_ I: : . l-F-l-: tT:t-._r-tr--_---t"_
]' !! rtilH'r']i i;.ll I rl_li I I,,'t l:!' Ii :!1!'--_1

!l:i:l il[llili_, t ,! i I l:: I rill I][' ]ll [l]]11] _! 7 I
; I: 17'.;II!1!1 _ 'il ! I t i IHI I ; I ' h I ;i :'lr i i ]] t

,h-'mq',-1- PI' VI'I;G-'I _ I' I
[ li!l'.H!l i;:], _ _. I I : _"'l _ "' I ' !

il!!:,hi!lltlll Iljl;]l, I ill. t_ I I " I :[ :I t ; I

:;:_4-:_t _b;--LPLI-!--t--1--_--.! ..:'--L.-_ ,----4--_ t

($,a:. s_o;._u) a=nssa.:_[ a'._i_c'J.f G

A

> %

0

>

>_
II' *

t_

!

g,

d

II!I
HH
X[I

;iiT

,p,
!,'i
,x

i!u

I!H

NH
I]11

[!1
HII
Ii!l

J

2_

L"

iii_;
! h"

Iii1:
iiTT:

i,_,;]!

flu
?!

,%
:_7ir

Ill]
ill]
Jill

:i
I1
i:l!

_- i':1 I I i:.[I I I

: il I I i,1 : :: : i i I I !

: !! i:,J....................
. ::::: ,:::: : .::;

_::v,dh,h ,il_,l:

il_i._': _ i_iliTiliH I i<:li ii I::l'lll, ! ,I:III:iiHIIll ii,!1_11 I;
!; I'1'I[[][] ;ill{] 1

?i,ii.i,:i:u,!: !!!_! !!ii i i iJi,;t,,lii::nlIH I ), '
i,,, !,lir,,illl, ,_l,ili i ,'I IT[ rrll]l , i i

,,,1 llh'illlill i[li.,., ii_T_
; I%ii,- i,I ! !_ ':',;! I'.',',:',', .,,

:!:: i i k@,iiii;i j_i'f,fi i !: ]:;ii lli_;I ,ill;;rllillll i i,

.::::: ;Plli

........ i 1:ii ::i"lliiiill iiiili., i i;'i][]7 ]:11..1 [1 r'l.liHI ] : i;
lxllllli :;, : Ii 71[][rPlillfl i[[', " '

i_llll ' ' _4i_lIIiilll!T%i I]I II i [ [ I

'rl_ iFi iFhliJ, tii1il II111il I 1;;:'; E .lli_Hll!il Illl. ]I r I;

l!_i] ;[i] _lTH!lllltlI I"li.I i ! [ [ II :il:ldltlill !! I'l,.: i 7 ! I
: 1i!1 't _lli:lilil!llilltllll IIIl'll.i : i 1]
Ill]lilt[ :. : : liltllillllilllI I1 .......

p_l_. _.!.:!:_,'_,;,,um,,,,iiilt ;'_i i
it ,_ _:::'": ;I,"1LIIII!1t1111 !_7 I, i_'/ Ii:llil'rldlilltlll li]lil I ] _i
<;illi;" !!; :i:lliLil!'%lllllil 1TiTtll i ] II

__.;.... '.'l-t-tl'-__ r
:i;i:iii LI;{ IIIII![',IINNI_II{Iiii i _.
iiiiii]_ ,iii:i 7112[i'.iiiiiiiiiiifill ill i _:

0
U

qP

IX-73



15 2(

Velocity (fpi x 10 3)

(c) W/CDA • 5 p4f

• 239 new_ons/m 2

Fig. 25. (continued)
J

LX-74

4



o
7

_1o _

104

1 2

L/D

¢a) W/CDA = 438 psf = 21,000 ne'vtons _m 2

o

lo 4

10 3

1 2
LID

W/C-A •-50 psf = 2390 newtons/m 2(b)

Fig. 26. I_ximum Re-Entz7 Dynamic Pressure Versus L/D

(v 0 - 25,000 £ps . 7620 raps)

IX-75



__.14._.512_/

i!_ ];lli:[:][ ]]:Fllr_I;!! 17.-4_1i:;l:.;[+;[i!|;;.LJ]!_[i

il!: [LILi! T]" i Ii]][I, H [

i i11 ii ! IIi_li llU[lill B IIi ii

iiii iiii@iiiiiiiiiii ii
l[llil:!ql!ltl!il'l] IFI!tH [Tli

._l.l,lI,II,I, ,l ,,IIH, I
iili]iii;{iiimiiimii,}@ifii i i

:.!!! _.'.':F_:iTiFili Yiii'.?[h ![

!i!!!?!ibiiiiiiiiiiiii!!!!!!i!i!!!!
:;" i]ili]_ilir:i_iii:_iii!ii_]i{

ll{I{{H_lillllJ4rlll}?lIl17{ ,,
RLI Ill{l;;ilN:il 2ilILL; t I[

,It_i!!!!',l!:!:!!!!',{!]!{',!5',!{!:',ii
llll _l,,l,,:.+J_l'Nt,,_:_*H,,l, II

]I+I,!!!_q++,r,_:++_i+i+!,!!m_,IY
iiii.......................i:: ,,,iiiiiiiiii[iiii:i;ii}iiiili:ii_Ill
_}t_IIUt%i'!!II!:}II_IIII'.K {U111i ;llLll IIII;I[NIlI!, li!_,l_i II

JILt ilhl'iiliillll!rl]lillililril] i I
<;;i ii,,; .....................

iiliiiiiiiJJiiiiii,++iiiii,l+iiiii ii
llllltll_llI],, lliLltlrl Hill It]

III1 IIIIillllltll' Iiilll Iltll 1l!
IIII III¢IIIlINII IIIIIIlll Iltll II

Ill{ HlllilIIll llillllll Illll II
till II{li_lll_lll !1111111111111 I1:

Till II1_iIIII1£111 lllllllll IIIII Iii

lill llrliilllllilll IIIllllii IIIII Iii
_1111_1',11111'lllltlllt _1111,ll;

Till {IIlHHTItlll Illllilll IIIIllll

II11 lil!llt!ll!ll: I111!1!11 lllll'll

II1111[llJi]lllll!i [l!llllil,ll{l[ [[,

11lr { i] I P!IIIilIN ..................

Illl Ilil_illllltll JiiiilNiiiifil ill

-t-_i-
i'

2X.

I III

Ill

!il
111 I

I!1

III

I::

:t:

%

(z_u/suo_au) o.xneea.z d o!m_eu_cI

1X-76

![!l; P:

s ._::w :

I II I Itlllllll

I I] I |llll!Ir, r

! f! ! _>!!!!!'H

", i : :X JI.H:

b#!!J]!!_!7'

; ;; __r ;114
I_,! _., ffi,!!

I I1111tttltll[

11111iNIIIII#

!'.!! _l!l!!]!!

ihiihiiiit]
!!!!!!!!!7!!'
: :: : :H: :;::

!i i] !Hd!!!F!

H!!!!!q![[!
111 lll,_llllW
1111IIIIII!11,

tl I I _1111111Ii
II I I III1illlll

I I I I lqlll]flll

I I 1101111{lllI
......... i .....

I I11 illlllili
.I,I,TI..

'_'l "'l_+'"l
I [1E[d[ll]lill

i"

II

0

_ "

if3

<

I,.,

m _

g_

g,

@

C

O
eJ

t

,_



t..

!!i_j, zL

rb, pr_ !,ii I_

,@liH'#'bl i

!IIIHII PIll

IIII,I 1i'C;i'i
HH_H_:: :r:

ILi; ;i,:
I !!![ H !!l!ir'

i ir!!!'!!:
::;ii:iii_
!i:iii iiiii:

i'T!!i?!!!!i,
'L:i;;iTi:,
]lllll[]]EI
Jl]lllll ! ![1!

!1111111 [ lill
mE], _11

i1111111111,1!
I!IiII1111[','1

lib illliiltli:
IltlllllJ !ltlt!

H_IH IIII111 I]I
IJil[llllillll I

llillHIIllil PJ
H!IIIIIIII II 1'1
l_ Iltllllllll

Liilllllll!ll II

[]illlltl;llll:

:gl_!!f!.l,_:

:J-_,i:ii.

,,. = ;

,Tillt] ]i Jt i i I I Ili

!h!!fi!!bfi!!

R-'It'_1-r'_

!_!:,r!!

ii_!iii!!!

ll}Prll :r t i

II_; 11

ii!!!!!!i
:::::::1;

_iiiiill
I!T_i: I ! _ I

II I1 "_LI I I
IIIIIl'hl I
Ii[:il I <_.
lJll[lll!

III1'1!11
llll I111
IIII Iltl

I111 I11[
IIII III1
IIII Ilil
I111,11] h

IItlII[IJK
IIIIIIllr
I11111 lirl

IIlI'M'I I
I I I i II ,v_l
llill ! I

.illll l"l i I I
ri_ll'l [ I I I I
rllll r I IA_i

(Zui/lmol_eu) e.msseacT _,!m'_._

lllll
Illll
lllll

!!!!!
iiili
l[lll

llllt
TIIII
IIII1

i

I
i

I

i

i

_.___

e_

_.1 _

I

!

m

1

e-

k2

IX-77



o _

.r-,

O

I}
>

_a

t.,,
!II ..-i

Z
ul

k_

_ ...,--

_ I _

' _.

I

ii f I

(_u/suo_u) _unss_uH o_u_ui(I _unw!xelAl

E

E

T

t-
O

0
-1

_.2
_ N

IX- 78



g

_:1_
gb

o
i

(_ 111

I) .,-i

Q.

=. .._

o _ _ _

Q.

A

g

#

l_l I I.i

_ o

0 "_

_ ._

•',- _ 7 e.._

d

IX-79



P_

'r. a

,\

\
1

\

oo

T
C

N H

_J

IX-80



f

,-w

<

Fig. 52. Comparison of Radiation Equilibriu_ Method with an Exact Skin Temperature

Computation (free fall from I_000_000 ft • 304_800 m) (Ref 23]

IX-81



300

25O

o

M 200

150

1oo

......... ii!!

4

Iblft2

Flight Velocity (lc_/sec)

6 8

47.37 newtons/m 2

• 1 lb/1_ 2

10 12

h0 = 300,000 ft = 91,440 m

v 0 25,800 fps = 7, 870 mp_

?!i!2
i'a() o::_liiill

m
r-'i

I i/ I

Tw_ x R 1/B x

G

_t

L -W - C Lf v 2 A +--W __V2 _5_-_

w
Re-entry t'_.stories for _ = constant

Rl/8 1/4 ftl/8)T x x (*R •
We R S

Recovery temperature

80

70

4O

3O

20

50

0
0

Recovery temperature (_R)

(_K = _ °R)

Tre c • Tam b (1+ 0.18 m 2)

Circular orbit

velocity

5 I0 15

Fig. 33a.

20 25 30

Flight Velocity (fps x 103)

I0

o
35 40 45 50

Nose Temperature llistories for Different Flight Conditions

IX-82



0

M

>

c_
&}
r.¢}

E
0

@

9
,,,-,t

<

3OO

2OO

47.87

500

:i!i N !i!

[t:

T w Rsl/8 ,

1000

120

iio

oo

9o

80

ilil ill , ; 20

te" ax occurs at v/ _= (7870 mps)

0 ::00 2000 3000 "'_ 0

Tw Rsl/8 114 (oR _ ftl/8)

Fig. 33b. Stagnation Point Temperature Profiles for Equilibrium Glides

G

v

70 "_
>

r,Z2_

60
0
c,

&l

50 "'

<

[X-83



7

,.J

("nl) q °apn:aT=lY

_ o

\

\
\

\\

\
\

\

|

\
\

\
\

\

'i

\
\

,\
\

',

. \\\\

? -\ \ \s__. _-._\
5 _.'-

I

((Ol X _j;) q 'epn:;$3"(y

L

\\

,o

\y

o
0

0

[..

d
t_

IX-84



0

ii_li!_i! !lilhtHJi!iiiiiii i_ii il_i i+iii_iii
o_ 4000 j' +r'i;!IFiii"'_._;4.:-_= .......

-_ L,_LiL::,._,L%__L.L2L__ _.._,_.:'_L.+:------i-r--,-.

3o0o_/ + ;;!:;li :1;i:;::] :,i:::

;_fi! :_,
2000 zOO 200

(W/CDA) (psf)
WICLA = (LTD)

NOTE: (TwRI/8 1/4) max at v= 21,000 fps (6400 mps)

Eq mbrium Glide -- --0 or @ --CL /2(JA>+
gR

W (newtons/m 2)

i0,000

30O 400

20,000

-2000

I000

500

=--.

-=

A

-=

Fi_. 34a. Maximum Equilibrium Nose Temperature Versus W/CLA for

Equilibrium Glides

3001 i iiiir,_ I
I ]lliJ][_t

0 l i!llJ]ll!l

L+.__l I I I ] !il
_I |I ] P+!][II

l i i llll!!'_
Ili ll;JJ_
I , i /_llllll

2,+olI i I ttllt' l

- 200

l,IIIIilIIil
;_ liLI!II ]1

! i II [IFIII

I I! _[1[I
I_ I I I t l I]il[I

I ]1 ; llJ+iil

..-=lSOlii+lll,Lit
I 1! I IIl_lll

< I / ! JJJllJJ
125

i[iiiqT_ iiiiiJii!FiB[!iiiir_:i i i i iiiii _11+
................... I _ll!rl .....iHiiWi__iu¢ i I I 1111[1 ;iiJi

i !1111+11;i;li.tilii h'l H ![I[H!I illt:uzui!l;i:l:: _ _;++r"N i_lll_!!!!!
iJlZH]Ji+J)I;;_JIJIII !l iI;t!lJJJJHIJ ]) _ 3't100

lYikliHi;iiliiiihi;; ti,'liitliitiliil] Ili[lli[Jl i i k I iT"I%

...................... IH illillll]l !i Hltli!FI f

iiiii[liiiiiiiiiiiBi _[Jm,,Hmm_ l illliI",,,,,"
++Hmlm,i,uim:]itHIIIilIIilHIiiiiiii'4i i ,1,,I,,IHII

(TwR1/8 1/4) = 2500 (°Rx
max

l°R x ft 1/8 = 0.478°K x
II]llllliillli]HIH:!! Hl.lli[lllll Hlllill i t

titllillillIIttlllli]!! iliiltllll] Ill]i]ll I t
IIIltl!llllllrHIlil!l: Ill;It]lJll[; [ili_tll I 1

I /!11111 itlllllllllll_ IIllllillll ,1111,11I t
IlllllIIIHItlIItllltll Iillil1111111 ![li11!1 I I
IIltllllllillili+lllN Itltliq]llh !IEIII I 1

[Jllll'lillll!li!li'lll !!!ll!!lJlll lll:]lll i i
J H H h lii[]lii:.Jh_',i H|]] [, .

]lltl[llHIItl!tllll!h {1'[{![{{':{1' I11!1['1 I 1
'till Irilll 1,1]1 :: .:::::::: illq I !
.................... , ........... hlHil i
:;::H.I;;;;::;::: ........... 111![!:1 I I

_=HHm...umu_ ............. I!E!!I I I:H:H::: :::i: ',;:;t]: ::::::::::::
HJJH_JH.JUJJJHJ ............ Hll]lil I J
IH]llllillIIIll{lt[ff [;;;;:;;;;;;[ ilHI]PI I I

0a

ft1/8) iiiii!!!

118 ;::u":x
m

i! !t i!11111 !!1111
li lllll .... Illill

I + II IIIlltl IIIIII
II

It NOTE: Maximum temperatures are
I reached at approximately
! 20,800 fps (6340 mps) for

i J Vo = 25,800 fps (7870 raps)
_tiiiiiiiii iii,_ ii _iiiiiJiiiii]iiiiiiiiiii_;i;i+i_,+r I ,, I r 'iiiiii,,
J II)IIIHIJ HJJJhJqJltil!lllllMl!JJJtJiJJiJ],il_J]lJ J J ilJJl[I
]111I[ lill ll[ll[llhl_Ilillilll[lllllllllillil!i ]_liiLI I I ;11!111

.___ (newtons/m 2) 104

L A

Fig. 34b. AltiCude for Maximum Equilibrium Nose Te=peraCure

Versus _/CLA (equilibrium glides)

'!.h !J+ll
ii;:;::ir_ _ -

ii i:_:!*' ! ! ; ! L _
]i; :.1;][ ! I _ / (I
ill I;] Ilii i I I i I--
I!] [!i!llii J i I i I,.. I.,,,;

fh_lll] i I I I I
I1_l ;U'l' I!1 l r

i1 !li;

tlll ! ! I I P" _

iu ._ i i ! !!-60 _

_ ooo_ o
h-II!ll -_i

Jiih'Jm !i!!i 40 =
HII i!Hl/1'i , ,,_

105

1X-85



o

ii

b-,

o
z

0

d

IX-86



1200

(_Km 1/8)

1400 1600 1800 2000 2200 2400 2600

iO -2

30U0

1800

5OO0

2800

55O0

3000

10 -2

.,:,1

r_

I0 -3

3000 35OO 4500 5000

T w x Rs 1/8 x ql/4 (o R _1/8)
s

(hi Y0 • " 5"

8000 )0

Fig. 3S. Maximum Re-entry Stagua¢ion Point Nose Temperature

(h 0 * 400,000 (121,920 m), v 0 = 25,000 fps (7620 ups)

IX-87



('K m 1i8)

1800 2000 2200 2400 2600 2800 3000 3200

.¢

3
.=
21

n

i0 "2

lO "3

4000 4"O0 5000 5500 6000

C_) YO = -10°

Fig. 35. (continued)

7000

7000

6000

w

5000

_000

m

M
o

2500

4200, n

Fig. 36. Ha_imu_ Re-Entry Stagnation Point Nose Temperature Versus Y O

(h 0 = 400,000 ft = 121,920 m, v0 • 25,000 fps = 7620 mps)

IX-88

/



f
x 5000

,2500

"_, 4000

X

N

3O0O
-1 -2 -3 -4 -5 -6 -7 -8 -9

Flight Path Angle, Y0 (deg)

(b) B = 0.322 ft2/slug = 2.05 x 10 -3 m2/kg, W/CDA = 50 psf = 2390 newton/m 2

-2000 x

1500

-I0

1500

v

IOOO

140C -1 -2 - 3 -4 -5 -6 -7 -8

Flight Path Angle (Y0)

{c) B : 22 ft2/slug : 0.0205 m2/kg, W/CDA = 5 psf : 239 newton/m 2

Fig. 36. (continued)

IX-89



5000

o
4000

i

O3

_ 3000

- (7925 mps) _-_ *--r-rrr_
,:_,!I! i25,000 (7620) _-_ ii .... _

24, 000 (7315) ! i .... -[:_,
t-v'"t _-"

23,000 (7010) ;i! il;. _'_

22, ooo (67o6)._ _.#
21,000 (6401) _ _i_
2o, ooo(6o96) _:N_ii_,_ ,_
19,000 (5791) ,,, _'_i_h
18,000 (5486)i"_

17,oo0(5i82)1:---

16,000 (4877) 1--%..,,,
15,000 (4572)i_

i l if'T1 171_

i[_i_i :till ii Ii ,_ ',i I_'.:;"

_L "_' i: ::-r _ ..... _ ill. ,

_ W/CL A_-._-_ = 146.9 psf

-_-_ (7032 / 2)-_ newtons m
m_

_i Rotating Air Mass

O00__p herica]Earth_____-__-m__-_________.._____._--__-_--___i_ _= _-_'_-*'-_-_-_-_'_-_'_

-2 -4 -6

-+-H_ _+-

llr!_!ll ,r,

._-._

;'L I%J; -44

N

C L =0.5

CD=I

Re-Entry Angle, "_0'"(deg)

2500

2000

0

-1500

Fig. 37. £ffect of Re-£ntry Conditions on Maximum Stagnation Point Temperature (L/D - 0.5)

IX-90



M

|

o

u)

io

Velocity Ckm/sec)
4 6

12 2o
Velocity (fps x 103 )

(a) B = 0,0367 ft2/s[ug m 0.234 X I0 -3 m2/kg

= 2W . &38 [b/ft 2 21,000 new_ons/m

c_

Velocity (km/sec]

2500

f
s=

M

v

|

o

o_

J

3,000

2,000
10

Velocity (/_ x lO 3)

(b) B - 0.322 ft2/slu8 = 2.05 x 10 .3 m2/kg

- 50 lb/fc 2 = 2390 newtons/m 2

25

-2000

1500

,1000

b_

Fig. 38. Haximua Re-Entry Stagnation Pofn¢ Temperature Parameter Versus Velocity

Ch0 - 400.000 f¢ - 121,920 m; ¥0 • -10)

IX-91



VelociCy (km/sec)

5 6

_::-:.i:iif"-ii:._!i!_:.'!i::: ::_!_

_NNNN

I

_/_

it?:

Velocity

I

z

_u

2O

(fl_" x 103)

0

I

i

_::

7

;:=E:::: 1500

_:_- _ ii_._ _L

!_% _ "_ ,:..+TT:- :T*_,t't'.Tt-??':':

::::::::::::::::::::::::::::::::::::::::: :::::::::j

!iiiiiiiiitii;iiiiiii iiiiiii;,: r iiii  .ooo
_u:E;_ -_ .... $n _ "--::L-t:

e&;¢:iiiiiiiF;:i;iN_: SOO
25

(c) B - 3.22 ft21slug - 20.5 x i0"3 mZlkg

W = 5 Ib/f_ 2 " 239 newtons/m 2

c_

Fig. 38. (continued)

/"
,-4

"W
o

IX-92



5000

I

o_ 400_

30(

1

i

7

200O

o

,1500

o

p.

400

300(

2OOO

~E
I

v

1500

/

Fig, 39.

2O0(
i0 15 ',0

Velocity (fps x 103)

(b) LID = 0.5

Haximum TwRI/8EII4 Versus Re-Entry Velocity (h 0 = 400.000 £t = 121.920 m.

IX-93

I000

• 50 psf - 2390 newtonsl m2



5OOO

TR 1/
a _/4\

E

J4-
5000

15

(km/sec)
5 6 7

2O

Velocity (fps x 103)

(c) L/D = I. 25

W X1 1/

/_ --5

®

_ ,,-- ._000

i12_1o

::::h:q:

'_" _500

I r

25

II , ,1/4 ] Btu/ft2 sec8 _ 200 _q;w

%-_--xj

4000

w

2OO0

3OOO

1500

i0 15 20

Velocity (fps x 103)

(d) L/D = 2

Fig. 39. (continued}

25

IX-94



7OOO

° 6000

w

N

%

5000

6000

i

N

_ 5000

Fig. 40.

5

16

Re-Entry

(km/sec)

6 7
I I

I(: = -] O° " _

....!.,.,t,_.-,,l_ ,_., _, ._oo
:_J.:tt'J_=_ _Tt: ::.=_ "t'-t :" tt:!y_a. _}t--H

20 22 24 26

Velocity, v 0 (fps x 103 )

(a) L/D = 0.5

16 18 20 22

v 0 (fps x 103)

(b) LID = 1.0

_ximue Re-Entry Stagnation Point Nose Te_rperature Versus

Velocity (h^ = 400,000 ft = 121,920 m; W/CDA = 458 psf -
21,000 newt_ns/m 2

IX-95



5

6000 ii,; _;_

d-

=_ 5000 L_

440 _,._+_.4._ _
015 16

6000

(c) LID = 2

400015 16 18 20 22

v 0 (fps x 103)

(d) L/D = 3

Fig. 40. (continued)

24 26

i

F

IX-96



IT w R I/8

=--

i

a

4000

30 0 (}
0

=X

1 2

[ / 0

= TW _ W/CDA = 50

9

(a) W/CDA = 50 psf = 2390 ne,,vtons/m _

12oo (q) _/4

,2000

-1500

3

W/CDA = X

e_

k
o

Btu/ft 2-sec

3000

i

v 0 = 25,,/00 fps = 7620 raps {
'-2500

------v 0 = tO, O00 fps : 3048 raps

=--

i

o
v

>4

_o

4'300

3000

-2000

-1500

i

o

2600

Fig. 41.

1 2

LID

W/CDA = 50 psf = 2390 newtons/m 2(b)

T R 1/8_ 1/4 Versus Lift-Ora_ Ratio (h 0 = 400,000 ft = 121,920 m)
w

IX-97



(2)

J

i , i

i I i ' ',
i

• K r .
3O00 lO0 200 400 500 600 700 800

i

Time (sec)

Fig. 42. Equilibrium Temperature History, with and Without Rotating Air Hass

i

v

7000_

__000_
_ aooo_-4

t'4000

3000

I 'E I

_ I •

_J

I I

h 0 = 400,000 ft
(121,920 rn)

v 0 = 25,000 fps
(7620 mps)

| I

VO = O°

I
Kemp and Rtddell for

10-3 10 -2

Ballistic Coefficient (m 2/kg)

nose

-i
i0

Fig. 43a. _ximum Stagnation Point Temperature Parameter Versus Ballistic

Coefficient (ballistic re-entry--L/D - 0)

-3000

"2000

1000

IX-98



oo

o

w

¢o

p.

5000

4000

3000

2000

I0O0

Fig. 43b.

m

I
• L/DI

i I I

lO

f

t

br" I-----

I

i

" I I

I '

_J__J
to 2

w/CDA

3000

, J I I.,H'IJJ't" I.,,'f'l II II1t-

"' }2000

--__ _-_ 1ooo

C apman (Eel, I } , ,'v[achine

Kemp-RiddeD (Ref. 22) I calculation_

Cazley-Masson (_qe[. 24)_ L/D = 0

--"-'_H i3 = [°gsl°pe °f 1
_tmospheric density

10 3 10 4

(newtons/m 2)

_laximum Radiation-£quilibrium Temperature at Laminar

Stagnation Point for Entry from Decaying Orbits into Earth

Atmosphere (Ref. i)

1.8

S _. 1.2

i
_ 1.o

=_

0.4
I

0.2 !

o
-o 5

i Half cones --

_ Half"paraboloids"7 ]

i {:
: r :

! ! :

0 0.5 1.0 i.

Lift-Dr_g Ratio, _ ]_
Earth

Fig. 44. Effect of Lift-Drag Ratio on Maximum Laminar Heating Rate at

Stagnation Point for £ntry from Decayin£ 0rbiCs

IX-99



i

F_
co

5000

LI IIIN_ i
4000 ) IIIIl) ) I " ....

! i i --
!

i 41iJi i i _'-"
i

l I i 11 'li .4_k_i)l_l

r !

: 19. 6 newtonslm _ i i

10 -7 i0 -6 i0 -5 10 -4

I

III \

i))! i

i ,

1 LillllllllilII ooo
lli II'i)

" ' ! 7

Plo o

10 -3 10 -2 i0 "I

Fig. 4Sa. Surface Te,aperature Parameter c 1/4 R1/8-Fw as a Function

of Air Density l(atio o/o O. Sim:_lc dra_ bodies (Itef. 22)

J

o

10_2

%
_j I0 -3

ons /tn 9

lo_4L----_ ___ T

10 -7 10 -6 10 -5

------4------4---

--------4--------+--

-------+------4---

_. 09 f--_-ff-f-+tt

J._l -'_ I

10 -4

o/o o

_- I/4RI/8 T : 2000 ° R-ft [/8

W

= 956 ° l<_mI/8

lO-3

Fig. 45b. Lift l'arameter CLA/I_ as n Function of Air Density I_atio

9/00 for Several Val.es of the Dra_ l>_ramcter ;,/CDA.

Constant Heat Transfer Trajectories ([<¢f. 22)

IX-IO0



T
o

! /
I I

I°
,0
i

ii

," f
/

/
/

/
/

J

t

I

r _ m

O0

: I
o

!

0

1

o

o

Q.

¢.D
!

,--4

t"

!

0

8

0

"_,

L _

o_

0

d

IX- 101



-2 -4 -6 -8

Re- Entry Angle (deg)

(a) B = 0.0367 ft2/slug : 0.234 x 10 -3 m2/kg

-10

ioo •
_0

"O

%

c_

o

50

Fig. 46.

40
0

5

0

-2 -4 -6 -8

Re-Entry Angle (deg)

(b) B = 0.322 ft2/slug = 2.05x 10 -3 m2/kg

-10

I00

e_

i

5O

Rate of Change of Stagnation Point Temperature Parameter as a Function of Re-Entry Angle

(h 0 = 400,000 ft = 121,920 m, v0 = 25,000 fps = 7620 mps)

IX-102



o o o 0

I

b

y

[_,_,_,,qt>_,=] t_°-/- 17/T- I_"' I,I'[i :"t,.L

/

/
0

o

_._
" "B
1,40

_ .,4

:_2 ._'

T _

0

II

M

_0

0,1

i
0

t._

¢,1

ii

-I

L0

¢,1
¢q

11

v

.=_
o

G

8

,m-

iz.

IX-103



10 -2

E

ca

1.0 -3
C

e,,

r_

10 -4
0

h o

v 0

L/D

-4 -6

Re-entry Angle (deg)

300,800 ft

_'9; ,440 ,-z_)

25,000 fps

(7620 mps)

0

9

6.37 x 10 -3 m"/kg

Fig. 48. Range to Impact Versus Re-ent_y Angle

IX-f04



oi

A

!"
v

c_

0

o

m

E

.5

_2

i

IX- I05



[l]llllEi]

'llll[i!
IIIIIii
IJIJIi[
[!iITrV

_IIIIII
li}illl _

Ii!!IJ ! I I r

A

'III!t!!]1 ° ._

_!1]', [ I

',i_
llllt_/
[liilll
[illlli

IIIlll|

T ,-i

,,,._

o

IX-f06



f

14

_ m

_ r-a

_t'--
0

m

_-

c,l ;_

t1(

_,E::

,::::

i:iili

k_+.t-H

tt_
tt_
1444_

N

iiii_[

[)!F:!

_iii!

!!!!!

N'

g

et
.=1

0
U

IX-lOT



0

+A

!.,'l

L_

IX-t08



4

104 _ _

____+_

10

Velocity (kin/see)

S 6 8

"-I_L I 1 t ' I!!_t ,

15 20 25

Velocity (fps x 10 3 )

(a) W/CDA : 438 psf : 21,000 newton/m 2,

B = 0.0367 ftg/si_g = 0. 234 x 10 -3 m2/kg

Velocity (kmtsec)

5 6 7 B

10 4

o

_r

10 3

io 15 20

Velocity (fps x 103)

(b) W/CDA = 50 psf = 2390 newtonlm 2,

B = 0..322 ft2/slug = 2.04 x 10 -3 m2/kg

25

Fig. 51. Range to Impact from 400,000 ft - 121,920 m (Y0 " "1_)

/.Z_-109



10 4

_2

v

<D
_0

10 3

I0

Velocity (km/sec)

(c)

15 20

Velocity (fps x 103 )

W/CDA = 5 psf = 239 newton/m 2,

B = 3.22 ft2/slug = 2.05 x 10 -z m2/kg,

25

y --_ _1 O

Fig. 51. (continued)

_J

IX°llO



,-.4

e,l

ii

ii

3

II

Q

i

m

IX-111



t'-.. I:I:lI:i

II!_FI

%

(ta_I) o_u_ H

%

_iiiiii_l,!!! :_;;

l:,.!_ 21 !: L._L

:F

A
t_

c2

>

o
c;

(u_) o_u_I

_iii ii

I:i; ii

II II ii

i! ii !i

i7;

ii!! i!_

¢'3

1/] II

_9

I_-112



"0

,x:

0

,...9,o
>

(re:I) o_u_ H

,J4_4.---

ht._

_-t _ tm

c

IX-l13



Velocity (kin /sec)

5 6 7 8

10 4

A

txo

15 20

Velocily (fps x 103 )

(g) L/D = 3.0

25 30

Fig. 52. (continued)

IX-I14



104

(a)

I 2

L/D

W/CDA -- 438 psf = 21,000 newton/m 2

10 4

103

Fig. $3.

1 2

LID

(b) W/CD_ - 50 pal = 2390 newton/m 2

Range to Impact fx_m 400,000 £t C121,920 m) Versus L/D (v 0 - 25,000_

_s - 7620 mps)

IX-115



10 4

1o 3

2

r.lD

(c) W/CDA = 5 _ = 239 newton/m 2

Fig. 53. Continued

i0 3'

Fig. $4.

1 2

LID

(a) v0 . 18. 500 fps and v0 - 22,000 fps

Range Versus Lift-Drag Ratio, W

O
= SO psf (Apnlies for S< __r_r< SO0 psf; h 0

D

IX-116

= 400,000 ft)



Fig. 54. (continued)

IX-ll?



10

Velocity (km/sec)

at 5 6 7

¢)

o

10 12 14 16 18 20 22 24

Velocity (fps x 103)

Fig. 55. Lquilibriura Clide Rang, e (not dependent on I',/CLA )

-0.2

-0.1

0

0,1

"_ 0.2

0.3

0.4

0.5

0.6

Fi£. 56a.

0 2000

100 '" " /

{,0 g
_-" \%

0 I000

\

\
\
&

2000

Range (kin)

4000 6000
Z I

¥0' deg -

-1

-0.25

\\ \

)'\\
ado

Rlu_e (atat mO

8000

\
N

. \
\ --,..

4000 5000

I0,000

8000

Variation in Ranp, e as a Function of _n_,le of Attack and Entry An_le.

(;';onrotatin£ Earth; 110 = 350,000 ft = 106,700 m; v 0 = 25,863 fns

--7870 raps; _¢/A = 20 lb/ft 2 = 956 newton/m2}(Ref. 25)

IX- 118



O

2

>

Fig. 56b.

0

28,000

27,000

26,000 ....

25,000

24,000

'¢0'

Range (km)
1000

I

deg = -i____¢_//

-1 j

2000 3000

I

f

0 500 1000 1500 2000

Range (stat mi)

Va:tation in Range as a Function of Initial Velocity and Entry An_le for Ballistic Vehicles (a -- !;I)),

(_;onrotatin_ Larth; h 0 = ._S0,000 ft = 106,800 m; h'/A = 20 lb/ft2 = 955 newtons/m 2] [!<el. 25]

8O

_o

<

60

Range km)

0 4000
90 I

50
0

Fig. 56c.

2OOO 6O00 8OOO
I

\

voi
I000 2000 3000 4000 5000

Range (stat mi)

Variation in l_a,_ge as a Function of An_le of ;_ttack and Initial Velocity.

(;;onrotatin_ barth; h 0 = 350,000 ft -- 160,800 m; YO _ -1") (Ref 253

IX-119



(u_)a_ue'H.

II

I

T-,

n

o

U

i0

w C_

m

!

IX-120



u_
0

i;[!:i!i_!]Ii

"ti ._i

F:i i_i!

_Cli

L-_'-IIIi,ji

_!i
;_ :i:_!!il]

!h!

illi ![11]i!

_ ili¸ ifli
i!:I" !!!!
:!i :_!irj!

. :h ....

ill!!!i !r
illi il[ [iii

I1!1 _L[ HH
l_ii_liL ]HI
!!il :lJJ II]1

i!!_!_!!!!!
iii[iii iiii
Ilil lii Jill
].lJj JJJ ]lJI

l_il I_1 Iill

!!!J!!! !!!!

lift iii [iii

1ILl III Ili[
l[[i l[I Illl
[1!: IH IIII

fill III _lll

ii_ii[i iiii
]111li[ Ill
al?l III 1111

[! tli!i[ l[[]l]ll _

i!i_llll]i IIi1111[

!LilII_ !!]:l[]!i

I_!l!i]! IiI'1_ I!

][!]lii!].. ::_ ::.:

To

. _ ;]_ilil i

r']};' ] 1.1 ';j'_]l ' []

I ];p iii: 4UII[iT

i;iiiii ]iili:!
',; ", 21 mm

il]_i[]ill lliliIli
IIl]l[ll] IFI][_F

iiiiiiiii_'".....

: :u :: :: ::

!ll!fl]!l Ill!Hill
]l _l]i I1':11'['

ili!l{iil IiI1161
]ilil[iii :e_iL_f_
I[ il;, _-'

!:ib,%!!!ll
!qL_Ilkk[!!!!!!

llllI;;

[ill111il][IIIIIII

INIIil] lllililJl

IIIIIIIii[!!!!!!!!
!!!!!!!!!!!!!!!!!!
111iliil{ inm.i

11[IPl[i [ll]IIl]l
Illlll!ll llllll I

IH[IIIll llil|llll
[IIIIH]I lllIlllll
........ iml_m

:ii_iiih"="
_,imiiiiiiii;
tj,_l:,f,_lh

iii!

iii!

iiii

iiii
!!fi

i i i i..
2.-m'T,_

iiii

Jill lllfllill I ¢_I

i_il iliI il *

!!]I ',li', _l

iiL ]lli i r

lI][ Ill l I I I

.... {!i ill

' ! "_

i::ii i,, it,
.... li[ _ i [ "-
.... ill illl C)

ir[ I ,Ii r! , _

'.',i,,,,II_ _i _, _ _

[tt iiii ,"
/J]l ) ' ; ' "

',i',', ]ii _11 _ I*

,iii llt

-"-1

iiii
IIll

HH
Jill
IIII

llli
IIII
Illl

lill

iiii
iiii
IIII
[111
IIII

!!!!
!!!!
iiii
iiii
fill

iii_i

::: : i

!!]!!
I I I _ I
::: ) i

iiiil

Jill

I I I I I,.,_

!!!!i

iiii!
', ', ', ', I

I I

iiii!
iiii!
;;_::

Ill _¢lo

"7

i

II

c_

C_

II

m

o

IX-121



(_s) _!i

>

_2

,., ,_
_. _ _1

_ :_I_ b "

;l!i 0

-'*_ >

_ f

:;;irilri _

0
0

0

0

0

0

N

I1

0

<

_J

N

11

0

2_

0

0

[--

d

_J

IX-122



(:,a,s) e'_=T,,.T. , ..L.=_._'-e'l:[

!_ _ i_--._,T_.r_t:_._:-::

_:'_t

N

J

o
o

o

II

J:::

..

o

e-

o

?,i

i

=i2=

o

4-

N

O

IX-123



\\1 \

\\ !

I

&

t.

IX-124



/

0 200 400 600 BOO 1000 £-_C'O

It_ _o Impact (_ec)

Fi_. 62. Range and Time to Impact for Ballistic Entry

3O

IX-125



4O

38

38

28

2"/

26

400,000

25

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -lO -It

Intt_/ FIl_ht Path Angle, _0(deg)

12

Fig. 63b. Conditions for Impact, Lifting Case

A

v

0

Positive

/ lift

Negatlve

it_ j

I
l
I
!
I

/
I

/

,/I
I

Escape / Capture

!
10:-3 -4 -5 -8 -9

Re-Entry Angle, ¥0 (deg)

Fig. 63c. _lil,i_,um,_ Lntry Angle for Capture (at escape velocity) (Re£. 14)

IX-126



f

o

m

o

0
U

m

0

o

-1.0

-0.9

-0.8

-0.7

I0.6

-0.5

-0.4

-0.3

-0.9

-0.8

-0.7

-0.6

i]i]i

!!!! - 300,000 ft
(91,440 m)

- 25,000 fps
(7 ,_20 raps)

- B1 I B0

I0

j ,if', ,li
[ll iJl
ii_ []1

_- _ _ :
Ill {i[

1 ft2/slug = 6.57 x 10 -5 m2/kg

-0.5

-0.4

-0.3

-0.2 "2 14 --6 --8

Design Re-Entry Angle (deg)

Fig. 64. Range Corrections with Ballistic Coefficient Increments

IXlI27



r

(_) uo1_e.z_I_o_[ mnzu'tx"eIN

(_ep) _am, lV .;o _i_"

0 --

0,_C3 _J

U.,'_ II

,,.w .

=_.. ,,&-.

e- o ,.-j e.

_o

a

u

_o _

II,,I _

-,'_ 0

_o_" %

._ _ _

m

>

IX-128



/

(ur4)

¢D 0 C_ O
0 Q 0 0

0 0 ,_ '_ _ !

0 I
II,

¢D 0 0 0

t_ 0 _ 0

(_.m lrteu) o_ue_t I_..xm_,_I

0

0

v

0

>

0

0 o
0

t_

It

>

5

.4

r/l

_ Z

o

D_g_

o n
!
I

I

I
I
Io

(ta_)

t T .

i !

O

I l

II II

O A _

A O
,,,e I >

. S ul e

0 o 0

÷ +

++

O w.,

(iu.t ;nmu) o_U_l I_.Zo_e"I

IX-129



m

(2

Y_

;w

m

800

600:

400

2O0

0
0

0 Numerical results,

equatorial entry W to E

(L/D) 0 = i, ¢ =45 °, -- -CDA - 0.5 ft2/slug

m -3
(3.18 x i0 m2/kg)

Fig. 66c.

-2 -4 -6 -8

Entry Angle (deg)

Effect of Entry Angle on Lateral Range (Ref 27)

-I000

-500

I!

A
0

be

,-3

o

be
e-

,.3

Fig. 66d.

1.0

0.8

0.6

0.4

0.2

O Numerical results, equatorial

Theory

(L/D) 0 - 1

@ - 45"

entry W to E j

/
J

0 0.2 0.4 0.6 0.8 1.0

Velocity of Initiation of Maneuver. (V/Vc) 0

Effect of Velocity at Initiation of Maneuver on Lateral Range (Ref 27)

IX-130



/

20O

160

120

d

<

N

<
40

5

o

4

.,,.4

_ 3
v

4

Constant altitude and

equilibrium glide

/
/
f

/
J

f

• v0 = 25,900 fps (

W/CLA = 20 psf =

2

1

0.5

7894 mps)

957 newtons/m 2

8

6

0 -2 -4 -6 -8 10

Re-Entry Angle, _0 (deg)

4

OD

)4

Fig. 67a. Effect of Re-Fntry Angle on the Azimuth Angle and Range
to Maximum Lateral Deflection Point (Ref 14)

IX-131



Fig. 67b.

A

E
10 4

<

L/D =0.5

1030 I0 20 1 30 40

Azimuth Angle (deg)

Effect of Ning Loading on Azimuth Potential (70
glide) (Ref. 14)

50 60 70

= 2*; constant altitude and equilibrium

(km • 10 3)

4 8

r

a

104

!

I _L/D • O. $

_--L/D - 1

Fig. 67c.

1030 2 4 6 8

n_alle(mt_mt • 103)

Effect of Wing Loading on Range to Haximum Azimuth Potential (7

altitude and equilibrium glide) (Ref. 14) 0
= -20; constant

_J

IX-132



A

1--I

Q

L_ _._
C_ O

m

r..) __

_ .
II

_,_ .,_

N

II

O

IX-133



/

/

(b) v 0 = _'_Vc, 70 = -6% W/CLA = 100 psf = 4787 newtons/m2(Ref. 14)

Fig. 68. (continued)

(kin)
0 1000 2000 3000 4000 5000

-500

e_

lOC

v

for

O0 I000 1500 2000 2500

Range (naut rot)

3O0O

Fig. 69. Range and Lateral Displacement for Lifting Body Re=Entry

IX-134



f

CHAPTER X

WAITING ORBIT CRITERIA

Symbols .................................

A. Introduction ..............................

B. Payload and Geometrical Restrictions .............

C. Vehicle Temperature Control ...................

D. Cryogenic Propellant Storage ..................

E. References ...............................

Illustratie2.s ..............................

Page

X-I

X-2

X-2

X-4

X-IO

X-15

X-2!

X-I



LIST OF ILLUSTRATIONS

Figure

1

2

4

7

8

9

i0

ii

12

13

14

Equilibrium Temperature of Inert Sphere .........

Equilibrium Temperature of a Thin Plate Normal to

the Sun ................................

Effect of Attitude on Equilibrium Temperature of a
Thin Plate Located at One Astronomical Unit from

the Sun ................................

Effect of Added Heat Input on Equilibrium Tempera-

ture ...................... , . , . , , , , , , , ,

Vapor Pressure of Cryogenic Fluids ............

Heat Transfer Rates of Cryogenic Insulations,
Thermal Conductivity Versus Vacuum Pressure ....

Thermal Conductivity at Various Wall Temperatures .

Heat Flux from Sun ........................

Solar Heating--Temperature of Outer Wall ........

Heat Transfer to Hydrogen and Oxygen ...........

No-Loss (Pre-Boiloff) Time--LH 2

System Factors (S) Versus Time

Tank ..........

tQl T
S =I +--

W V

Propellant Boiloff Plus Insulation Weight at Optimum
Insulation Thickness for Spherical Tanks on the
Lunar Surface ............ ...............

Boiloff Losses for Liquids Contained in Spherical
Tanks, General Case ......................

Page

X-23

X-23

X-24

X-24

X-25

X-25

X-26

X-26

X-27

X-27

X-28

X-28

X-29

X-30

X.-ii

I
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A. INTRODUCTION

In thepreviouschaptersofthismanual,the
conceptofwaitingorbitsor parkingorbitswas
introduced.In someofthesediscussionsthe
parkingorbitwasdefinedcompletely(i.e., all
six elementswereobtained)bythemissiontobe
accomplished.Therendezvousdiscussionutilizing
theintermediateorbit is anexampleof suchcases.
In otherdiscussions,however,oneor moreofthe
orbitalelementscouldbeselectedbasedoncon-
siderationsotherthanthoseofthemechanicsof
themission.Whenthesedegreesof freedom
exist,thefollowingfactorsareamongthose
whichbecomeof interest:

Chapter

(1) the radiation environment II

(2) the meteoroid environment II

(3) atmospheric factors, heating, etc. lI, V
(4) orbital perturbations IV, V
(5) satellite lifetimes V

(6) maneuver requirements VI

(7) recovery considerations VHI

(8) trajectory error sensitivities XII

(9) guidance and navigation
philosophies XII

(10) solar elevation and eclipses XIII

(11) tracking station, area, and point

coverage optimization XIII
(12) ground tracks and or synchronous

behavior XIII

(13) optical resolution, etc. XIII

(14) staging considerations, reignition
and economics

(15) radiation heat loads and cryogenic
storage

Because of the number of constraints which

can be imposed, no single set of rules can be
constructed which will yield the best orbit in
the sense that each constraint is satisfied.

Indeed, it is necessary to assign weights to each
factor and to select the elements of the inter-

mediate trajectory for each particular mission
by a study of the tradeoffs involved. This phase

of study will not be attempted here because of
the scope of the task and the fact that the 15

15!
previous constraints can be permutated into n!fl5 -n)'

different combinations (taken n at a time) and
15_

different permutations.

All of these factors except the last two are
discussed within the manual. The next to last

item is a practical limitation imposed by the
nature of the vehicle used to boost the satellite

to orbit and as such was not covered within the

present scope of study. Later paragraphs will,
however, provide a short qualitative treatment.

The final item on the list, though far from com-

pleting the possible list of constraints (e. g.,
human tolerances to radiation), falls into the

same general classification of material. However,

because of the fact that propellant is required for
maneuvers and because radiation heat loads cause

problems of storability and boiloff, some of the

problems are presented. The level of these

discussions, however, will be superficial since

the theory of heat transfer is a study in itself

and since in any case the specific vehicle must

be considered to obtain design data. The presen-

tation of this material, though brief, will begin
to tie the purely mechanical analyses of the re-

mainder of the manual to system or operational
requirements.

B. PAYLOAD AND GEOMETRICAL

RESTRICTIONS

The parking orbit concept was introduced in

several chapters (e.g. , VII and L-X) to assure that

some given parameter (usually time) could be

factored into the 3-dimensional analysis without
requiring drastic maneuve_'s at launch. Thus,

the primary advantage was in the area of timin_
the mission, t{owever, there are three other

distinct advantages:

( 1 ) Flexibility

(2) Energy reductions

(3) Error correction.

Flexibility in planning and executing the mis-
sion is afforded bec.ause the intermediate orbit,
if selected properly, increases the number of times

at which transfer to a given position or orbit is
possible. Also, since the orbit is to be utilized in

any event, the launch can occur at an), of the
cr,:,ssinzs o! the orbital plane by the launch sit,:.

Fhus, the effects o_ countdown hoi_ls can be re-
duced.

The energy, requirement utilizing this tech-

nique is generally reduced because of two factors
First, the out-of-plane maneuver can be eliminated

(or nearly so if there are small launch time er-

rors) and secondly, the type of transfer trajecto-
ries can be ener_, optimized since the timing

problem is handled separately. It is noted, how-

ever, that there may be times in which parking

orbits will require an increase in energy. These

cases are those for which the problem timing was
correct for direct launch and ascent via a near

optimum trajectory since under such conditions

the work expended in transporting propellant to

an intermediate orbit for future burning is not
recoverable. (If this situation is in fact true, it
can, however, be assessed so that in no case

should an unnecessarily high energy requirement
exist. ) This energy loss points up the case for a

low altitude parking orbit. The practical limit
for this orbit will be mentioned later.

The third advantage is that of affording a con-

venient interval for either correcting for launch

errors or computing changes in the transfer

trajectory to compensate for them. Because of

this feature, the intermediate orbit approach will

result in smaller errors in the position and
velocity in space at the time of arrival at the

designated transfer point.

The discussions which follow combine the

flexibility and energy considerations in a brief

summary of some of the material presented else-

where in the manual (the emphasis here being in

the selection of the intermediate orbit). Consider

the following sketch and angular definitions:
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e=e "¢+¢IS

where

O = perigee-outward radial angle
8

¢ = launch-outward radial angle

_I = total burning arc (launch-to-injection)

= unit vector directed toward perigee

S" : unit ve,ztur [n outv, a:'d radial direction

(spccilied by laua,:n Cal,: ana flight tin,e).

Since O s and ¢I are relatively invariant (with zero

coast capability), it is necessary to vary o by launch

azimuth or outward radial declination. (Launch

azimuth is restricted by range safety; to change

the outward radial declination the mission must

be altered). By employing a variable coasting.

arc 01 may be replaced by _I + Oe + ¢2 where Q1

is the burning arc necessary to get into the parking

orbit and ¢2 is the burning arc from parking orbit

to final injection. Given a launch azimuth (or time)

and mission (outward radial declination), the

powered flight is matched to the post-injection tra-

jectory by varying launch time (or azimuth) and

parking orbit coast time. This is illustrated in the

following sketch.

Coasting /-Final burning
Initial - _

bur ning_ Injection

O = O s - ¢+(¢1 + _bc + d)2)

The lowest possible altitude should be selected

for the parking orbit from energy considerations.

Since the energy requirement is lower, this

selection also provides the greatest payload capa-

bility. The minimum altitude which can be utilized,

however, depends on vehicle engineering con-

straints such as aerodynamic heating and struc-

tural loading, on guidance constraints, such as

minimum elevation angle, and on mission con-

straints requiring specified orbital characteristics
(all enumerated in the introduction). However, if

the payload capability outweigh._ the oti_er factors,

a parking orbit altitude in the vicinity of lO0 to l i0

naut _i (i.e., 185 to 204 kin) appears to bc th_
best choice.

Thus everything is defined in terms of the

parameters of the problem save the vector _.
This unit vector is obtained utilizing the spherical

tri_onornetric relationships in Chapter III for right
a_cension and declination or iati[ude a,d ti_ id_n_it,_

= cus :\ c_s L x * sin A cos L y + sin L z

where

= unit vector directed from earth's

center to iniection

AI = right ascension of injection

['I = injection latitude

:_, .'_>,_ : unit vectors, earth centered

inertial cartesian _:,-_tem

(aligned as x, y, z) with x
toward vernal equinox

This location will of course vary considerably

with launch time delays since the interval in the

intermediate orbit must be adjusted accordingly.

Corresponding to this value of A _nd L, there

is a unique value of longitude for injection. This

value may be obtained from the following equation.

A I = AI-A L -girt I + A L

where

A L : launcher right ascension

A L = launcher longitude

tl =tl +t2 + _bc/$c

¢c = constant parking orbital rate,

This brief review points up some of the factors

affecting the selection of a parking orbit and in-

dicates the desirability of restricting the altitude
of such an orbit. The discussion has, however,

been purely qualitative since more complete
discussions are available in Chapters VI and VIII

as well as in the literature.
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C. VEHICLETEMPERATURE
CONTROL(REF.1)

Thegeneral temperature control problem can
be conveniently subdivided into two requirements.

(1) Maintaining the mean temperature of
the spacecraft components within limits

dictated by tolerances of the components.

(2) Preventing fluctuations about the mean

temperature which might impair the

general reliability.

Depending on the mission requirements, there are

several possible solutions for these problems:

(1) Independent local control of sensitive

components.

(2) General control of the mean temperature

of the total spacecraft.

(3) General control of the mean temperature

of the total spacecraft plus control of
the fluctuations about the mean tem-

perature.

(4) Various combinations of the above.

The major factors involved in the temperature
control problem will be examined leading to a
discussion of various control methods.

i. Heat Balance

The mean temperature of an object in space is

determined by the energy balance on that object.

Except for the dwell time in a planetary atmosphere,

a spacecraft is generally in a vacuum far below

that which will stipport conductive or convective

transfer, and since mass transfer is generally
negligible, the only significant exchange is by radi-

ation. Consider for simplicity a satellite made of

a material of infinite thermal conductivity so that

it is at a uniform temperature throughout. If it is
not in the vicinity of a planet and has no internal

power its energy balance, at equilibrium, is found
by equating the absorbed solar energy with the

infrared energy emitted from the spacecraft:

aGA i = Ea'l'4Ae

A.
T4=_ G 1

a K (1)
e

where T is the absolute temperature, a is the

absorptance of the surface coating for the zero
air mass solar spectrum, _ is the emittanee of

the surface for the black body infrared spectrum

corresponding to the temperature of the spacecraft,
G is the solar flux at the local radial distance of

the spacecraft from the sun, a is the Stefan-Boltz-

mann constant, A i is the cross-sectional area

intercepting solar energy, and A e is the emitting

surface area. Kirchhoff,s law for opaque mate-
rials states that absorptance equals emittance (for

bodies at the same temperature) at a given wave

length or integrated over the same spectral curve.
But since the two bodies of this problem are not

at the same temperature and since a is here re-

served for the solar wavelengths and _ for the

infrared wavelengths, a in general does not equal

c. The fourth power of the temperature is seen

in Eq (1) to be proportional to the ratio of a to c
so that the ratio itself becomes a convenient mate-

rial property of interest {see Fig. 1).

If internal power w is uniformly dissipated

throughout the imaginary spacecraft, the energy
balance then becomes

aGA. +w = eGT4A
1 e

A.

T 4 a G i w
= _ a .-k-- + _ (2)

e e

The effect of the internal power on the mean tem-

perature depends on the case with which that

energy can reach the surface and be radiated away,
which in the case of our infinite conductivity space-

craft is a function of the emittance e only. Thus,

the emittance must be considered separately as
well as in the ratio of _/c. It has often been the

case that the second term on the right of Eq (2),

the internal power term, is small relative to the

first term, so that the internal power produces

a _ninor effect on the spacecraft mean temperature.

It has been assumed that the spacecraft ex-

terior is a continuous surface of a single mate-

rial. This is generally not the case. However,

under the assumption of infinite conductivity the

case of multiple surface materials with no internal

power, is expressed by

T 4 G [alAil +c¢2Ai2 +''' j
=--_ clAel ÷C2Ae2+.. (3)

where the numerical subscripts represent the n
surface materials. If the idealized isothermal

spacecraft has moved to the vicinity of a planet,

the energy balance including the transient effect
becomes:

[the absorbed solar energy + the absorbed

solar energy reflected from the planet + the

absorbed plane_ emitted energy + the inter-

nally dissipated power + the stored energy]

equated to the infrared energy emitted by
the spacecraft.

Symbolically,

Eaj GAis j + Ea,j ERAiR j + _c,j EEAiE j

+w + WCp _ = E_j o_j4Aej (4)

where G is the solar flux at local distances of

spacecraft from sun, E R is the flux of solar

energy reflected from the planet, E E is the flux

of planet emitted energy at the altitude of the

spacecraft, AiS is the area absorbing direct solar

energy, AiR is the area absorbing reflected solar

energy, AiE is the area absorbing the planet, s

emitted energy, a, is the absorptance of the solar
reflected energy, c, is the absorptance for the

planet,s emitted energy, w represents the inter-

nally dissipated power, WCp the thermal capacity

of the shell, t is time, and the summation signs
indicate that the appropriate terms are summed

over the j isothermal surface areas.
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Depending on the spacecraft thermal design,

and its particular orbit and altitude, the magnitude

of the energy exchanges shown in Eq (4) varies,

in turn causing changes in the mean temperature of

the spacecraft. These factors are discussed quali-

tatively in the following sections. More detailed

analytic discussions are to be found in the bibli-

ography.

a. Solar flux input

The mean value and variations about the mean

are most strongly affected by direct solar radiation.

Solar flux input is dependent on orientation of the

surface, time of exposure, look angles with re-

spect to sun, wavelength of received and emitted

radiation. In addition there is the roblem of

solar eclipses due to the planets (see Chapter XIII).

One effect of the eclipse of an earth satellite is

the transient cooling during the eclipse. The extent
of this, in a simplified model, depends on the ther-

mal capacity of the satellite and the external radi-
ation resistance as determined by the surface in-
frared emittance. In an actual satellite the various

components each have different thermal capacities
and different thermal couplings to the exterior,

and will therefore experience different transient

thermal behavior during the eclipse. The other

important thermal effect is due to the reduction in
the total solar radiation input integrated around

the orbit. For example, a satellite in a polar orbit

will at one time during the year experience full sun,

and at another time of the year, if in a low altitude
orbit, the total solar flux averaged around the

orbit will be only slightly greater than one-half of
the nominal value. The present best estimate of
the nominal value of the solar flux at the earth, s

mean orbital distance from the sun is 442 Btu/

hr-ft 2 (1199 kcal/hr-m 2) with an uncertainty of

+2%. The ellipticity of the earth,s orbit results
in a +3.7% fluctuation in the solar input through -

out the year, so that other factors remaining con-
stant, a satellite will be about 9 ° R (5 ° K) hotter

in December than in June. The limit cases for

the effect of earth orbits in solar radiation input

may be divided as:

_. A satellite whose orbit lies in the
ecliptic plane at same time will be eclipsed by

the planet once each orbit throughout the time re-

quired for the planet to rotate the orbital plane out
of the ecliptic by an amount dependent on the
orbital elements.

Equatorial. If the orbit lies in the equatorial
plane, and is at a relatively low altitude, the
satellite will be eclipsed each orbit. At a suffi-

ciently great altitude, because of the 23-degree

tilt of the earth, s equatorial plane, the satellite

will experience an eclipse once each orbit during
two periods of the year and will experience no

eclipses for the other two periods. This is the
case for a satellite in a circular, equatorial 24-hour
orbit about the earth.

Polar. The polar orbit is similar to the high

alti_quatorial case in that the satellite is

eclipsed once each revolution for two periods

during the year and is in full sunlight for the other
two periods. Each of the two eclipsing intervals

start out with an eclipse of momentary duration,

gradually increasing to an eclipse of maximum
duration {the time depending on the satellite

velocity) and gradually decreasing the shorter

eclipse durations.

Special. One special class of orbits [approxi-

mate-_--ffl_retrograde, depending on the semilatus

rectum] has the property that the nodes regress
such that the 1° per day shift in the direction to the
sun is canceled. In this orbit the satellite will be

in full sun continuously throughout the year or,

depending on the launch time during the day,
eclipsed once each orbit throughout the year. The

duration of the eclipse depends on the altitude of

the satellite and the ellipticity of the orbit. For

example, in a highly elliptical orbit it is possible

to have very long eclipses, if they occur at the

apogee of the orbit; however, it is possible to

delay the occurrence of such an apogee eclipse

{resulting from orbital precession} for several

years, depending upon the orbit characteristics,

by suitable choice of launch time.

b. Planetary emitted flux

For the earth and presumably for any planet

with an appreciable atmosphere the infrared

energy emitted by the planet is relatively inde-

pendent of latitude and longitude and varies in a
predictable manner ',_'ith altitude. In the case of
the earth at low altitudes the flux is about 68

Btu/hr-ft 2 (184 kcal/hr-m2). Incases ,vhure

there is no atmosphere, as for the moon. the
emitted flux must be considered to vary with

angular position measured from the subsolar
point because of the large temperature variations
on the surface.

The earth-emitted flux injects two sources of
error which must be accounted for in the thermal

design of the spacecraft. One is the magnitude
of the flux, which is known with much less pre-
cision than that of the solar flux. {This lack of

knowledge is even more applicable of the moon,

and for the other planets there is relatively poor
knowledge of the planetary thermal balance condi-
tions and the emitted flux). The second is the lack

of adequate knowledge of the emission spectral
characteristics. In the case of the earth, for

example, it is known that the emitted flux comes

primarily from the surrounding gaseous atmos-

phere which has spectral characteristics differing

significantly from the black body spectrum corres-

ponding to the earth, s equilibrium temperature.
Lack of knowledge of this spectral characteristic

results in an uncertainty in the effective absorp-

lance of the spacecraft surface material for the

earth emitted energy.

c. Planetary reflected solar energy

The same altitude dependence applies for the

solar energy reflected from the earth or nearby

planet as for the infrared energy emitted by the

planet. In addition the reflected solar energy
varies with the orbit plane attitude with respect

to the sun and the instantaneous position in the

orbit. For example, in a twilight polar orbit

the reflected solar flux is approximately con-

stant, whereas in a noon orbit in which the sun
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lies in the orbit plane the reflected flux varies
from zero to a maximum of about 160 Btu/hr-ft 2

(434 kcal/hr-m 2) at the sub-poiar point.

The magnitude of this flux is approximately as
uncertain as that of the earth emitted flux and is

known to vary with such factors as cloud coverage.
The absorptance of the surface materials for the

planetary reflected solar energy is not precisely
the same as for the direct solar flux because of

changes in the spectral characteristics after re-

flection from the planet and its atmosphere. The

magnitude of these changes and the correspondin_

change in the effective absorptance for this flux is
not well known.

d. Spacecraft characteristics affecting heat
balance

The internal and surface characteristics of the

vehicle itself are important in temperature control

since they define the radiation losses to space and

to internal heat boundaries (equipment heat dis-

sipation and thermal inertias). A thorough review

of thermal balance and uncertainties is given by

Comack and Edwards (Ref. 2) and a qualitative

discussion is presented below.

Thermal radiation properties. Knowledge of
the thermal radiation properties of the spacecraft
surfaces can be deficient in two respects. The
first has to do with uncertainties in measurement

of the properties in the laboratory,, and the second

is concerned with the changes in those properties

due to handling and exposure to the air before

launch, to heating during ascent to orbit, and to
exposure to the space environment.

Shape and attitude considerations. A spin

stabilized spacecraft has the spm axis nominally

fixed in inertial space, though various disturbing

torques and tip-off errors can decrease the spin

rate and gradually shift the spin axis attitude in

space. An attitude controlled spacecraft is not

affected as much by these uncertainties. Cornog
(Ref. 3) shows that if the attitude of the vehicle

can be controlled, the same aspect of the vehicle

can be presented to the sun at all times. If low

vehicle temperatures are desired, the portions of

the surface exposed to the sun can be made highly
reflective, the unexposed portions can be covered

with some material having good radiative properties,

and by changing the shape or treating each vehicle

quadrant with the desired ale materials, the ef-

fective absorptive area exposed to sunlight can be

made quite small.

Internal temperature gradients. The preceding
factors all result in either variations or uncertain-

ties in the spacecraft mean temperature. (Mean

temperature can be defined as that temperature

which the spacecraft would attain assuming zero

thermal resistances. ) In an actual vehicle, tem-

perature variation can be quite large. For example,

temperature differences exceeding 100 ° F (38 ° C)

were encountered in Explorer VI. Thus a given
component in this spacecraft located near one end

of the thermal gradient would experience large

changes in temperature as the sun orientation

changes and during the spacecraft lifetime.

Internal power fluctuations. As various com-

ponents are turned on and off, or changed in

power level, the locally dissipated energy causes

local temperature changes, the amount depending

on the power dissipated and the particular thermal

circuitry of the spacecraft interior. This internal

power dissipation may range from a few watts to

kilowatts depending on the equipments required
for the mission.

2. The Effects of Thermal and Optical Properties

on Temperature Control

a. Thermal radiation properties and materials

Coating the surface of the spacecrafts external

structure with thin lightweight material may pro-

vide the needed thermal radiation properties.

These coatings may in some instances be more

effective if applied in patterns of several mate-

rials (for example the combination of vacuum

deposited aluminum and anodized aluminum in

adjacent areas). Values of solar absorptance

and infrared emittance _ covering the entire

range from 0 to 1 are useful for these coatings.

In particular, both high and low values of the

ratio of a/c are especially useful for certain forms

of active temperature control systems. A good
material should absorb over the entire thermal

spectrum, that is, have high c_and high ,. (Mate-

rials which reflect well over the entire spectrum,

that is, have low values of a and e, are also useful,

although this combination can sometimes be

achieved by insulation. )

A great body of thermal radiation data exists
in the literature. While these data are useful as

a guide to the kinds of properties obtainable with
various types of materials, most of it is useless

for space applications. There are a variety of
reasons for this fact:

(I) The data is not applicable because of the

following reasons: much of it is reported for

radiation properties not directly applicable to

the spacecraft thermal control problem; in

general, the diffuse properties are required, but

most data reported is for specular properties;

for emittance, hemispherical values are generally

required, but most data reported is for normal

or near-normal angles; absorptance data is not
available as a function of incident angle but most

data reported is for a single near-normal angle;

much emittance data reported is for a total
measurement, which is often made at a rela-

tively high temperature (such data is applicable

to a somewhat incorrect spectral curve and to

the wrong material temperature); finally the

total solar absorptances are often measured

directly with the solar energy as it exists at the

laboratory (this spectrum is generally markedly

different from the solar spectrum in space).

(2) Measurement errors. Only in the past

few years have the subtleties of the various types

of radiation measurements and techniques been

fully appreciated (Refs. 4 and 5). Equipment

and techniques to measure directly the appropriate

properties are in many cases still lacking. From

the standpoint of the designer using the data, such

errors represent serious shortcomings and must

/
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be fully recognized. A few of the common sources
of errors are: lenses and mirrors which do not

have spectrally flat optical characteristics are often

present in the instrument optical path; water vapor
may be present in detrimental amounts; the reflect-

ing surface in integrating spheres, often MgO, is

sensitive to water vapor and may have to be re-

newed frequently; MgO is partially transparent in
the wavelengths for which it is used and must be

applied in a relatively heavy coat to avoid erroneous

data, a fact not always appreciated by the experi-

menter; nonuniform wall temperatures with vari-

ances in the infrared reflectance yield erroneous
data; spectral measurements are dUficult to obtain

at wavelengths longer than about 50 _, and much

of the available equipment is limited to about 25 _.

This last point is significant in its effect on the

property obtained for a low temperature spectrum
(for example, 18% of the energy of a 50 ° F (10°C)

black-body spectrum and 36% of a -100 ° F -73°C

s_ectrum are both beyond 25 _).

(3) Materials not well defined. Much of the

reported data represents materials which are

poorly defined. For example, the surface optical

properties are usually sensitive to the details of

a materials processing technique. Because of

incomplete or inadequate description of the mate-

rial, the materials cannot generally be duplicated,

rendering useless a large part of the reported

data. In most cases the only solution to this

situation is to measure the required properties
for each material.

Once the spacecraft has been prepared with

materials of the desired properties, there remains

a practical problem of making certain that the

properties remain unchanged before the space-

craft reaches altitudes above the atmosphere. A

certain amount of handling of the exterior surfaces
may be unavoidable. Some of the more delicate

coatings can be protected by plastic peel-coats

until a few days before the scheduled launch, but if

any last minute cleaning is necessary to remove

fingerprints, grease, dirt, etc., there is always

a danger that the cleaning process itself may affect
delicate surface properties. During the launch

interval the satellite and its materials are pre-

sumably protected from aerodynamic heating by a

protective fairing, which is jettisoned after leaving
the sensible atmosphere. Because of the weight

penalty in carrying the fairing along longer than

necessary, there is often a tendency to jettison it
too soon, thereby heating the satellite surfaces to

a level which may affect the optical properties of
the surfaces.

b. Optical properties in the space environment

Most of the factors of the space environment

represent new and untried conditions for space-
craft materials. Whether these materials and in

particular their sensitive surface optical properties

remain stable in this environment is a question of
importance for all spacecraft with long intended
lifetimes. Among the factors of importance are:

(1) The vacuum of space, in which the
pressure is such that sublimation and

decomposition occur virtually unimpeded.

(2) Ultraviolet radiation, X-rays, and the
harder radiation of the radiation belts.

(3) Single particle radiation.

(4) Micrometeorites.

Certain of these factors may present no prob-
lems. For example, micrometeorites are gener-

ally believed to be of sufficiently low flux that

they will have no significant effect in spacecraft

thermal control (Ref. 6). Many of the other
factors of the space environment are difficult

or impossible to reproduce in the laboratory,
even singly, let alone in combination. In addition,

the designer does not al-.vays have the freedom to

choose materials which are rugged since certain

optical properties are available only in delicate,
vacuum deposited forms. Since these surfaces

can be delicate, sufficient flexibility must be

allowed to provide for some change in materialls

optical properties due to exposure in the space

environment. (Some of the important optical

properties of various materials are summarized

in Table I.)

3. Vehicle Temperature Control Systems

a. Passive

A passive thermal control system is defh%ed

here to be one employing fixed external coatings

in which there is no active element either me,-_}an-

ical or electrical. Since the mission requircmcnts

in orbit, the. lifetime, the internal componen_

complexity, etc., have generally been sufficivntly

simple from the thermal environment standpoint

to allow a passive system to be used success-

fully, the great majority of spacecraft flown to

date have had passive thermal control systems.

Experience demonstrates that a passive desi_m can
achieve a spacecraft mean temperature in orbit

within about 5 to i0 ° F (2.3 to 5.6 ° C) of the de-

signed mean temperature (for example, in the case

of Explorer V!).

An interesting application of a passive design

was that of Pioneer V, a spacecraft designed to

reach the vicinity of the Venus orbit. In the

course of its journey, it would experience approxi-
mately a doubling of the solar flux from that

occurring at the earth,s distance from the sun.

This spacecraft was spin stabilized, that is, with

its spin axis fixed in inertial space. In an approxi-

mate manner, the trajectory flown may be con-
sidered to be such that the sun moved half-way

around the spin axis during the half orbit to Venus.

That is, the sun look-angle would increase from
zero, looking straight down the spin axis at one

end of the spacecraft, to 180 ° , looking at the

opposite end of the spin axis and spacecraft. If

the external coating was chosen to be appropriate
for the solar flux at the earth, s distance from

the sun at the start of the flight (sun look-angle
equal to zero) and also chosen appropriately on

the other half of the spacecraft for the Venus

distance from the sun, then in a rough sense the
coating would be appropriate at both the earth

and at Venus. In actual fact, partly because of

three-dimensional effects and partly because of
other considerations, the orbit that was flown

resulted in a sun look-angle of 35" at the start,
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TABLE I

Optical Prol)erties of Various Materials (Ref. 3)

Degrees Degrees Absorption Ratio

Material Fahrenheit Centigrade Number a Emissivity E air

Silver

Aluminum, polished

Aluminum, 2024, buffed and

polished

Stainless steel, black

Stainless steel, polished

Fused quartz, bricks, hard

rubber, asbestos

Lamp black

SiO on polished metal

MgO

Titanium, 6A I-4V

100

100

I000

I00

tO0

i000

IO0

I00
i000

100
i000

I00

I00

I00

37.7

37.7
538

37.7

37.7
538

37.7

37.7
538

37.7
538

37.7

37.7

37.7

0.04

0. I0

0.34 to 0.37

0.40

0.1to 0.4

0.95

0.1

0.15

0.8

0.02

0.05

0.06

0.03

0.90

0.90

0.05

O. 9O

0.9O

0.95

0.95

0.90

0.97

0. 18

2.0

2.0

12.0

8.0

0.2

1.0

0.1

0.15

4.4

decreasing to about 15 ° at 20 days, back to 35 ° in

about 40 days, and increasing to 135 ° upon reach-
ing the Venus orbit at approximately 105 days after

launch. A pattern was chosen using two materials,
one with anaof 0.92 and E of 0.87 and the other

with anaof 0.25 and anE of 0.85. A pattern was

achieved which maintained a mean temperature

within the desired range over the entire trajectory,

as well as at the end points of Earth and Venus.
During the 3-1/2 months of transmitted data, the

measured temperatures followed the predicted

curve within about 5 = to 10°F. The flight path that
was finally selected was not the optimum one from

trajectory considerations but rather was chosen

to satisfy a thermal control requirement that the

sun look-angle increase from approximately 0 to

approximately 180 ° . It would be entirely possible,
from trajectory considerations alone, for the sun

look-angle to start at 90 ° at the earth, decrease
to zero and increase back to 90 ° at the Venus

orbit. Clearly the coating pattern and therefore

the effective a/E of the spinning spacecraft at both
the earth and Venus would be the same and would

therefore not compensate for the increase in solar
flux. The actual sun look-angle history noted above
was about the limit of allowable deviation from the

ideal 0 to 180 ° change.

b. Active

A variety of mechanizations of active control

may be envisioned:

(1) The spacecraft can be kept relatively cool

by means of passive coatings, but still

warm enough to satisfy the majority of the

components. (Local thermostatically con-

trolled electrical dissipation can be pro-

vided to warm those few components

(2)

(3)

(4)

requiring a higher temperature.} \Vhile

this scheme is quite feasible, the types of

components which require the heating,

(such as liquid fuel tanks and secondary

storage batteries) may be so large that

the "local" heating may involve a large frac-

tion of the spacecraft power. Unless ex-

cess power is available such a design may

not be practical from the point of view of

the overall system.

With a nonspherical shape, such as a

relatively fiat disc, the mean tempera-
ture can be increased or decreased by

orienting the spacecraft so as to increase

or decrease the surface area intercepting

solar energy (see Figs. 2, 3 and 4).
However, normally, this design would

not be practical in view of other conflict-

ing requirements for the spacecraft atti-

tude control system.

A number of materials change optical

properties as a function of temperature.

For example, silicon monoxide and other
materials like it have the self-controlling

tendency to increase in emittance as tem-

perature increases, thus tending to limit

the temperature rise, and vice versa.

Various experimenters are currently
examining such materials, but the ma-

terials unfortunately have a general

characteristic that their emissivity is

too weak a function of temperature to be

advantageously employed.

Some number of materials undergo re-

versible optical property changes as a

result of phase changes, Curie point
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transitions,etc. For example, the so-

called thermochromic materials reversibly

change color, and therefore solar absorp-

tance, as a sharp function of temperature.

Unfortunately these materials may be in the

form of gels, liquids, etc., generally with
low vapor pressures and therefore unsuit-

able for the exterior surface. They could

be encapsulated in materials transparent

in solar wave lengths but at the present at

least they would not seem to offer enough

advantages to overcome their obvious short-
comings for use in a temperature control

system.

(5) Mechanical changes of radiation properties
and areas are the systems presently given
most consideration.

These mechanizations are embodied in two

general types of active vehicle temperature con-
trol designs, the radiation balance design and the

insulated design. Any thermal design is at least

partially a combination of the two and there are

many designs in which both the external radiation
balance and the insulated features are combined

in a single application.

Radiation balance type. In a radiation balance

design the internally dissipated power is generally
a small factor in the overall heat balance and

therefore contributes only in a minor way to the

mean temperature level, although the dissipated

power may have important local effects. The

energy relationship is then a balance, in the

equilibrium state, between the absorbed incident

radiant energy and the emitted radiant energy.

Active control of the temperature may be effected

by varying the exposed areas 6f two materials,

one with a relatively high a/c ratio and one with

a relatively low _/_ ratio. This can be accom-

plished by a venetian blind arrangement, moving
vanes, or in a variety of other ways.

The first spacecrafts with such a temperature

control system were the Atlas/Able 4 and Able 5

satellites. These were intended to be orbiting
satellites of the moon, to be put into lunar orbit

by means of monopropellant hydrazine engine
aboard the spacecraft to reduce the approach

velocity sufficiently to allow lunar capture. Partly

because of the hydrazine fuel and fairly severe
environmental conditions, such as lunar eclipse

durations exceeding two hours, it was necessary

to employ an active thermal control system. The
spacecraft was spin stabilized, thus an arbitrary

sun orientation with respect to the spin axis was

possible during the spacecraft lifetime.

Briefly, the thermal design was as follows.
Thermal energy exchange took place primarily at
50 circular areas well distributed over the external

skin. Each circle consisted of an alternating ar-

rangement of two materials in the eight 45 ° sectors
of the circle, one material with a high al_ ratio

and the other a low a/, ratio. The circular areas

were covered by a four bladed mask which could

completely cover one or the oUter of the two
materials, or some fraction of each at any inter-

mediate position. The mask was driven by a bi-

metallic spring device at the inner end of the body,

arranged so that the bimetallic device sensed a

portion of the spacecraft interior. The plastic

body of the unit was made of a poor thermal con-

ductor so that the bimetallic spring was better

coupled thermally to the spacecraft interior than
it was to the skin of the spacecraft. The mask

was rotated the 45 ° of its travel by a 25 ° F change

in temperature of the spring. With the spring at

50°F the mask fully exposed the high a/t material,
and at 75 °F the low a/E material was fully ex-

posed. The activation thus provided self-powered,
closed-loop control of the interior temperature.

The remainder of the spacecraft's skin, outside

the control circles, was covered with a material
of low a and low e so that the contribution to the

overall energy balance from the uncontrolled area
would be as small as possible. That area was

vacuum-deposited aluminum, over a smooth

plastic substrate, with an absorptance of 0. 10
and an emittance of 0.05. The high a]_ material

in the control areas was a form of titanium dioxide

with anaof 0.65 and ant of 0. 13, and the low

_/_ material wasa particular form of anodized

aluminum with ann of 0.20 and an E of 0.80. A

more complete description of this system is given

in Ref. 7.

The system has the capability of compensating
for fairly large changes in the ex-ternal environ-
ment, such as an interplanetary mission to Venus,

and furthermore it minimizes the decrease in

temperature during long eclipses because the

masks automatically decrease the effective

emittance of the spacecraft durin_ this time.

Insulated t2"pe. It a spacecraft is always
oriented so that the sun irradiates only certain

of its sides but not others, as may be the case

in a fully attitude controlled or a spin stabilized

spacecraft, it is possible to insulate the solar
irradiated sides so that the solar input plays little

or no part in the spacecraft energy balance. (A

very high order of insulation may be achieved
for the spacecraft sides with multiple layer re-

flective insulation. ) If for simplicity the space-

craft is considered to be far removed from a

planet, then the energy balance is achieved be-

tween the internally dissipated power, the trans-
mitted solar heat load and the spacecraft emitted

energy. The unirradiated, uninsulated faces are

covered with a surface of high emittance, and the

emitted radiation is controlled by a set of louvers

(external coverings to the radiation plate). The

emitting area is then a function of the louver posi-

tion, which may be controlled by sensors measuring

the radiation plate temperature to which the space-

craft components are mounted. If the louver is

irradiated, the system may still be employed if

the radiation plate is covered with a material of

sufficiently low a and high , , to minimize the

solar input. It is required that the internally

dissipated power be at least as great as the heat

losses from the entire spacecraft when the louvers

are fully closed.

The advantages of this design are that the

spacecraft is insensitive to eclipses and other

changes in the solar flux, such as would occur

on an interplanetary journey. The temperatures

within the spacecraft are much more uniform than
in the radiation balance design since there is no

large external input over any part of the surface,
and the problem of sensitivity of optical properties
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of the space environment is greatly diminished.

The primary property of interest is the high emit-

tance on the radiating plate, but this is a property

which tends to be stable in space environment
(Ref. 8).

D. CRYOGENIC PROPELLANT STORAGE

(Ref. 9)

Cryogenics is concerned with the phenomena of
low temperatures, normally those below T _ - 250 ° F

(-157 ° C). To be more specific, cryogenic stor-
ability involves the prevention of excessive boiloff of

cryogenic fluids (e. g., liquid oxygen, liquid fluorine,
liquid nitrogen, liquid hydrogen, and liquid helium)

over varying periods of time. These stored fluids

can be used for any of the following purposes:

(i)

(2)

(3)

Supplying other vehicles or stations
(logistic use).

Maintaining state-of-readiness in ballistic •

missiles or for satellite propulsion (opera-
tional use).

Thermal shielding during times of in-
creased flux.

1. Properties of Cr_,o_enic Fluids

Insofar as space vehicles are concerned, there

are six important cryogenic fluids: liquid hydrogen,
liquid helium, liquid nitrogen, liquid fluorine,

liquid oxygen, and liquid ozone. Table 2 gives the

basic properties, except vapor pressure, of these

fluids and of liquid neon and liquid argon. Figure
5 presents the vapor pressure of these fluids as a

function of temperature and pressure. Definition
of properties is as follows:

(I)

(2)

(3)

Heat of vaporization (v). The number of

heat units required to vaporize one unit

weight of liquid at its normal boiling
point.

Boiling point. Absolute temperature, at

which liquid boils under one atmosphere
of pressure.

Freezing point. Absolute temperature,

at which the liquid freezes, under one

atmosphere of pressure (except liquid
helium).

(4) Critical point. The combination of pres-

sure and temperature of a liquid and its
vapor under equilibrium conditions that

causes the two phases to be indistinguish-
able.

(5) Density (p). Density of the gas phase in
units of force per unit volume.

(6) Specific heat ratio (7). Ratio of specific

heat at constant pressure (Cp) to specific

heat at constant volume (Cv).

(7) Vapor pressure (p). The vapor pressure

of a liquid is defined as the pressure of

saturated vapor over the liquid. It varies
with temperature. In the design of cryo-

genic tankage, the relationship of vapor
pressure to other pressures (see below)

is of importance in calculating boil-off
and "no-loss ' times. Figure 5 gives the

variation of vapor pressure with tem-

l_ratures for liquid nitrogen, liquid

oxygen, liquid hydrogen, and liquid
helium.

2. Properties of Insulations

In the past few years a number of new insula-

tions of extreme value in cryogenic service have

been developed. With these much more efficient

insulations, the mission analyst is able to plan

space flights involving much greater weight of
payload and vehicle.

There are six types of insulation now in use

for various types of cryogenic service. Some are

useless with regard to space vehicles, because of

too high a conductivity or density. Others (Fiber-

glas, SI-4, NRC-2) have great potential in space

applications, since the environmental vacuum

(either moderate or high) prevents heat leaks into

the fluids due to gas conduction and convection.

The substance added, whether powder, Fiberglas,
aluminum foil, etc. , is intended to reduce the

radiation heat leak across the vacuum into the fluid.

a. Types of insulation

(i) Cellular. Actually consists of a silica

gel with very high absorbing or absolv-

ing surface.

(2) Powder. An organic powder, usually

perlite, is introduced into a space held

at a moderate vacuum (< 100_ Hg).

(3) Opacified powder. Aluminum or bright

copper flakes are added to the powder to

increase the radiation shielding. The

vacuum must be high (< 10_ Hg).

(4) Fiberglas. A very low density inorganic

substance placed in a high vacuum (< lu

Hg).

(5) Organic foams. Usually polystyrene,
foamed either with air or freon. These

foams have a cell structure which isolates

one cell from another. When placed next
to a fluid at cryogenic temperatures, the

gas condenses within each cell, creating a

partial vacuum, which is the insulating
agent. Use of such foams with liquid

oxygen or liquid fluorine is highly dan-

gerous, due to their organic nature.

(6) Multiple radiation shield. This type has

the highest insulating qualities (but also

requires high order vacuum for most

efficient usage (< lu Hg). One type (Linde

SI series) consits of alternate layers of

aluminum foil and glass fiber paper.
Usually 50 to 80 layers are used. NRC-2

uses approximately 100 layers of crinkled
mylar which has been aluminized on both
sides.
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b. Tableof properties

Table3 lists all types of insulations, with

some of them reported under different conditions.

The properties of Santogel A, given for an am-

bient operating pressure and under moderate

vacuum, show the effect of vacuum on these in-

sulations. The thermal conductivity (k) of Linde

SI-4 and the Fiberglas insulations, is measured

both in the compressed and uncompressed states.

The increase in k value under compression in-

dicates that such insulations must be maintained in

an uncompressed state for greatest efficiency, but

will also have a reasonable insulating effect whcn

compressed. This fact may be of considerable

importance for the insulation of space vehicle

stages during flight through the atmosphere.

Outer insulation blankets must be compressed to

prevent their being lost due to air friction. Once

in orbit, or [n space flight, the compressing de-

vice may be removed, and the high vacuum of

space will raise the insulation to its full efficiency.

c. Relationship of thermal conductivity to

operating pressure

To obtain the very low thermal conductivity

values shown in Table 3, the insulations must he

in vacuum. Hence, a double wall is required for

most tankage applications--except in space,

where the environment is already a vacuum. The

thermal conductivity is a function of the degree

of vacuum in the interspace. Fi_are 6 indicates

that, in general, the powder and cellular types of

insulation are less affected by vacuum changes

than the radiation shield and fiber glass types.

With the latter, there is a sharp lowering in ef-

ficiency when the operating pressure rises above

about I0_* of mercury: while with the former, the

change in k is more gradual, and pressures of.

I00 to I000_, Hg can be tolerated with not too great

a degradation of insulating qualities. It may also be

seen from Fig. 6 that the multiple radiation

shield insulations (at high vacuum) are more ef-

ficient than other types by an order of magnitude.

One other criterion for efficient insulation is

given in the last column of Table 3 where the ther-

mal conductivity (k) is multiplied by the density

of the insulation (p). It may be seen that the prod-

uct kp for the multiple radiation shields is one to

three orders of magnitude lower than other types.

Hence, for orbital operations, it is concluded that

the multiple radiation shield insulations must be

used. In the remainder of this section, the insu-

lation used in all calculations will be the Linde

SI-4.

d. Relationship of thermal conductivity to wall

temperatures

The temperatures of the inner (cold) wall and
the outer (warm) wall of the insulation have de-

cided effect on the value of the thermal conductivity

factor (Fig. 7). The thermal conductivity varies

by about a factor of 30 as the outer wall tempera-
varies by a factor of 10 [100 ° to 1000 ° Rture (T l)

(56 to 560 ° K)] for any constant inner wall tempera-

ture (T2). The value of k varies much less with in-

ner wall temperature for constant T 1, and is es-

sentially independent of the value of T 1.

3. Design of Cryogenic Tanks

In order to design cryogenic tankage for space

applications, one must determine the heat input

into the cryogenic fluid. In order to do this, the
temperature of the outer wall must be determined.

If the insulation has been selected and the cryo-

genic fluid specified, all else is known. The ulti-
mate factor to be calculated is the evaporation, or

boil-off rate, of the cryogenic fluid.

Space vehicles, or orbiting tankage, receive

heat from the sun according to the distance from

the sun. Figure 8 shows the relationship of heat

flux from the sun (O s) and the distance from the

sun. If the surface of the tankage were either a

perfect_bsorber or a perfect reflector, the prob-

lem would be simple. However, since this is not

the case, the absorptivity (a) and the emissivity

(_) of the sure'ace must be taken into account. Nor-

mally, the parameter used is the ratio of these

terms, cz/e . The higher this ratio, the more heat

absorbed, and the higher the temperature T 1

Figure 9 shows the variation of T 1 with a A s/_ A w

(where A = surface area exposed to the sun and
S

A = area of the total outer surface of the tank).
W

The greater the proportion of the outer surface

exposed to the sun, the greater the heat absorbed.

It is possible to determine the outer wall tem-

perature (T 1) from Fig. 9, once the shape and

size of the tankage are known. One first assumes

a value of c_/_ , the practical lower limit of which

is approximately 0.25. From the general shape

and orientation of the space vehicle or tank, As/

A w may be estimated. After obtaining aAs/E A w,

it is possible to interpolate in Fig. 9 at the ex-

pected distance from the sun, reading the tem-

perature. Note that orbits about the earth may
be assumed at the same distance as the earth

from the sun, with negligible error. Even on

the moon at its nearest point to the sun, the

temperature of the outer wall will maximize at

essentially the same value as ff the vehicle were
on earth.

Knowing the temperature of the outer wall, it

is then possible to determine the heat flux (QI)

into the cryogenic fluid.

Q_ = _ (T I - T 2)

where k/_ is the ratio of the thermal conductivity

to the thickness of the insulation, and Q_ is the

heat flux to the exposed surface. Figure 10 shows

the results of calculations for several values of

T 1 (thus, for several values of a/, ), and for var-

ious thicknesses and thermal conductivities.

a. Total heat input

The total heat input per hour into the cryo-

genic liquid will be Q_ T : _)l Aw (As IAw) Where

As/A w = estimated percentage of surface ex-

posed to the sun. From a knowledge of QIT'

the weight of the cryogenic liquid at the start,
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L

and the heat of vaporization of the cryogenic liquid,

some knowledge of the evaporation rate can be

gained.

b. Relationship of tank pressure, vapor pres-

sure and designed vent pressure

The phenomena occurring in a tank of cryo-

genic liquid are complex, If the vapor pressure =

tank pressure = vent pressure, then the evapora-

tion rate is easily determined. There appear,

however, to be three thermodynamic phenomena

that occur in distinct phases. When the heat in-

flow begins, normally the vapor pressure will be

below the tank pressure. As heat continues to

flow in, the temperature of the liquid increases

according to

Q_T t

AT =_
C

P

where

t = time in hours

W = weight of cryogenic fluid, and

c = specific heat of liquid at constant

P pressure.

Thus, the pressure is raised, as shown in Fig.

5. During Phase 1, no evaporation can occur be-

cause all of the heat used in raising the tempera-

ture of the liquid, merely increases its vapor

pressure.

Phase 1 ends when the vapor pressure equals

the tank pressure. In Phase 2, these two pres-

sures will always be equal, since, if the vapor

pressure were greater, evaporation from the

liquid into the ullage space would increase the

tank pressure. Thus, in Phase 2, the liquid

temperature, the vapor pressure and tank pres-

sure all increase, until finally the vent pressure

is reached. Although the liquid has evaporated,
it has not yet been lost from the tank. It is, how-

ever, unusable as a propellant, although it could
be used to aid in a pressure transfer of the fluid,

if required.

Based on perfect gas laws, the total heat input

during Phase 2 can be conveniently divided in the

following way

+ [p Ti ]t%T : cp M1 v [ - 1
where

M 1 = mass of gas initially in ullage space

PI' P2 = initial and final Phase 2 tank pressures

v ffi heat of vaporization of cryogenic

liquid, and

AT = total temperature change of liquid.

The first term in this equation is the heat input

which raises the temperature of the liquid, and

the second term is the heat input which vaporizes

the liquid. The duration of Phase 2 is given by

 Twcp+Ml

ff aerodynamic heating is neglected. A term

Qaero/QiT must be subtracted from the time to

account for this phenomenon.

If the ullage space is small, t can be consid-

ered the preboil-off time, because in this case
the boil-off time is much less than the liquid heat-

ing time. If the ullage is less than 10 to 15_0 of
the total volume,

AT Wc

t ~ _#T-_ hours,

this is the time during which no boil-off occurs

Phase 3 is that period during which tank pres-

sure is equivalent to vent pressure. It is during

this time that the liquid actually boils off

t Q_T

WBO - v

This equation shows that the boil-off for reasonably
well Jesi_{ned systems is moderate even for loa_

times for good quality insulation in moderate ;hlck-
nesses.

If the tank is filled at the vent pressure then

the process will be in Phase 1 until the vapor pres-

sure reaches the vent pressure, at which time the

process becomes Phase 3. Thus, preboil-off time

and the actual boil-off can be regulated by varying

the design vent pressure. Phase 2 is completely

eliminated from consideration. Such a system will

have the disadvantages of requiring e.xternal pres-

sure sources (helium bottles) and a pressure re-

lief system. Thus, by setting a high vent pressure

and maintaining a small ullage space, the pre-

boil-off (no loss) time can be extended considerably

(see Fig. II).

c. Insulation performance factor

The weight of the insulation, I w, represents

a performance penalty and since insulation is not
perfect, a certain amount of boil-off will be as-

sociated with the weight of insulation determined

by the t Q_T/V. The penalty exists when

I w + tQ_T/V > (uninsulated tank boil-off ).

Let

tQ_T
S = I +

W V

De called the insulation performance factor.
it is desired to minimize S. Since

Thus,

1
-- W

.-A--

and l%°A 2 (T 1 . T2 )

QtT = I
W
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then

+ t [ koA2(T1" T2)S = I w -_ I
w

and S is a minimum when

2 KpA 2 (T 2 o T 1) t
I =

W V

Thus, the total weight is minimized when the in-

sulation weight is just equal to the weight of tile
boiled-off liquid. Finally,

tA 2 "
Kp (T 1 - T 2)

Sm = 2 v

Figure 12 is a plot of the insulation performance

factor versus time-in-storage for a 6000-1b

(26,700 newton) liquid hydrogen tank under a speci-
fic set of conditions and with a surface area of

103 ft 2 {93 m2).

If it is assumed that it is required to have a

given amount of LH 2 left (from a 6000-1b [26,700

newton] initial capacity) after a given time and the

amount of insulation is to be found, enter Fig. 12
at the time and read S. Subtract the permissible

weight of the boiled-off liquid hydrogen, the re-

mainder is left for the weight of the insulation.

From Table 3, the density of SI-4 is read. Thus,

the volume of SI-4 required to meet the prescribed
boil-off can be computed.

Now, since the area of the outer surface of such

a tank is known, the thickness of SI-4 wrapped

about the tank necessary to provide the prop-

er insulation can be estimated. Before pro-
ceeding, it is noted that the insulation for such

a tank may actually weigh slightly more than the
uninsulated tank.

Once the thickness of insulation is determined,
all that remains is to determine the no-loss time

(Fig. 11), the boil-off during Phase 3, and the
weight of tankage required.

d. Application to other cryogenic fluids

In order to apply the previous discussions to

the design of tankage for cryogenic fluids other

than liquid hydrogen, the following factors must
be taken into account.

(1) The ratio of the weight of the new cryo-

genic fluid to liquid hydrogen.

(2) Boiling point of the new cryogenic fluid

related to LH 2.

(3) The volume occupied by one pound of the

new liquid.

It is then possible by means of ratios to use the

figures given here to obtain tank designs for all

other cryogenic fluids. What must be kept in

mind is the high weight of propellants other than
hydrogen and helium.

4. Example

The problem is to find the optimum insulation

thickness for insulating spherical tanks placed on
the illuminated lunar surface (Refs. 10 and 11),

that is, to find the minimum combined weight of
vaporized propellant and insulation for tanks con-

taining liquid hydrogen, oxygen or fluorine.

For tanks on the lunar surface, an external in-

sulation surface temperature of 607 ° R (337 ° K) was

assumed (based on an average of the lunar surface

temperature and the radiation equilibrium tem-

perature oi a surface exposed at normal incidence
to solar radiation).

The only need for insulation during the lunar
night would be to prevent freezing of the fluorine

or oxygen (at 97" to 99 ° R [54 ° and 55 ° K], respec-

tively} and to limit the hydrogen boil-off. However,
the average external insulation temperature is

estimated to be about 108 ° R (60 ° K), so that freez-

ing of fluorine and oxygen will not occur, and the

hydrogen vaporization rate will be only about 15%
of the day condition. Therefore, the day condition

is controlling for insulation thickness if the con-

servative approach of designing is chosen for

propellant tanks to be exposed on either the il-
luminated or shadowed surface of the moon.

Propellant losses on the lunar surface. The
weight shown in Fig. 13 is the sum of insulation

weight and boil-off, the two being equal at the
optimum. The results are based on conduction

through the insulation only. In actual practice
the heat leaks through tank support structure

are about equal to the heat flow through the in-
sulation. An approximation to the real case
would be to increase the value read from the

curve by about 70%. The propellant weight
loss would then be the total value of the ordinate

and the insulation weight would be 70% of that
value.

Propellant losses durin_ transfer. To deter-
mine losses from the tanks during the earth-

moon transfer phase:

(i) Determine optimum insulation thick-

ness based on the lunar day condition

and increase by 40%

-- {1.40)V vi

(2) Calculate AT/v from Table 4.

(3) Enter Fig. 14 to find "_. " Vaporized

propellant then equals

tD 2

w = -_-. _
1

(4) Double the weight found in step (3) to
account for heat leaks, and add the in-

striation weight

Wi = AiliPi
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Propellant losses in lunar orbit. Propellant
loss from tanks that do not land on the moon but

which are a part of the boost, transfer and de-

boost system are more difficult to define due to

their inherently integral fabrication with the flight
structure. However, for hydrogen the loss will

probably lie between 0.01 to 0.10% per hour of the

initial hydrogen weight. The lower value would

be a design goal for a thermally well designed
flight vehicle with separate tankage. The oxidizer

boil-off can be assumed zero for the "well de-

signed" case since the major heat exchange, even

with separate tanks, is from the oxidizer to the

hydrogen with other modes relatively small so

that the oxidizer may actually experience some

cooling.

TABLE 4

Propellant Parameters

Propellant

H
2

0 2

F 2

AT ( °R )
a,

Lunar

Day Transfer

567 460

445 338

454 347

V

Btu/lb kcal/newton

190 10.7

92 5.2

72 4.1

1 Btu/Ib = 0.05667 kcal/newton

E. REFERENCES

1. Lipkis, R. P. , "Temperature Control of

Spacecraft, " Space Technology Laboratories,

Inc., Memorandum, August 1961.

2 Camack, Walter G. , and Edwards, Donald K. ,

"Effect of Surface Thermal Radiation Charac-

teristics on the Temperature Problem in

Satellites, " Surface Effects on Spacecraft

Materials, John Wiley and Sons, 1960.

3 Cornog, R. A. , "Temperature Equilibria in

Space Vehicles, " part of Space Technology

Laboratories Engineering Design Manual,
1961.

4. Bewans, J. T. , "A Review of Thermal Radia-

tion Properties and Measuring Techniques, "

Space Technology Laboratories, Inc., TN-

60-0000-09096, 24 June 1960.

5. Dunkle, R. V. , "Thermal Radiation Charac-

teristics of Surfaces, " Invited Paper at the

American Society of Mechanical Engineers

Annual Meeting, 1960, to be published in the
Journal of Heat Transfer, Trans ASME.

6.

7.

Beard, David B. , "Interplanetary Dust Dis-

tribution and Erosion Effects," Surface Ef-

fects on Spacecraft Materials, John Wiley

and Sons, 1960.

Acker, R. M., Lipkis, R. P., and Vehren-

camp, J. E., "Temperature Control System
for the Atlas Able-4 Lunar Satellite," pre-

sented at the Aviation Conference, Dallas,

Texas, 5 to 9 June 1960.

8. Fried, E., and Costello, F. A.,"The Inter-
face Thermal Contact Resistance Problem

in Space Vehicles, " Presented at ARS Lifting

Re-entry Vehicles Conference, Palm Springs,
California, 4 to 6 April 1961.

9. Wolverton, R. W., ed., "Flight Performance

Manual for Orbital Operations, " Space Tech-

nology Laboratories (LA), September 1961

(U).

10. Perkins, D. S., "Cryogenic Propellant
Considerations, Lunar Return Vehicle,"

STL Memo 0862-2-47, 13 July 1951.

II. Full, A., "First Approximation to Opti-

mizing Insulation Welght on Propellant Tanks

for Long Term Space Storability of Cryo-

genics," STL Memo 9862-36, 19 July 1961.

F. BIBLIOGRAPHY

1. Bibliography for Staging of Vehicles

(See other chapters for geometrical restric-
tions and bibliography of pertinent references.)

Amass, W., Bullard, S. A., and Teegarden,
W. T., "Collection of Parametric Perform-

ance Studies, " The Martin Company, Balti-

more, Maryland, TM 491/2-02-60, January
1960.

Arens, M., "Staging of Cruising Vehicles,"

ARS Journal, Vol. 31, No. 6, June 1961,

pp 824 to 825.

Ashley, H., and Asher, G. W., "The Virtual
Mass of Clustered Boosters, " ARS Journal,

Vol. 31, No. 6, June 1961, pp 757 to 763.

Builder, C. H., "A General Solution for Opti-

mization of Staging of Multistaged Boost Ve-
hicles, " ARS Journal, Vol. 29, No. 7, July

1959, pp 497 to 499.

Byrum, B. L., and Grady, E. R.,

"General Airframe Dynamics of a Guided

Missile, " Journal of the Aeronautical

Sciences, Vol. 22, No. 8, August 1955.

"Kinematics and Kinetics of AerospaceVe-

hicles, " The Martin Company, Baltimore,

Maryland, Engineering Report No. ER 10920,

June 1960.

Chase, R. L., "Multistage Rocket Staging Opti-

mization, " American Astronautical Society,

Preprint No. 60-41, January 1960.

Chin, S. S., "Missile Design Criteria, " The

Martin Company, Orlando, Florida, Report
No. OR-1272, 10 October 1960.

Cobb, E. R., "Optimum Staging Technique to

Maximize Payload Total Energy, " ARS Journal,
Vol. 31, No. 3, March 1961, pp 342 to 344.

Cohen, A. D., and Rhodes, H. H., "Evaluation

of Coasting Flight of an Ascending Satellite

Vehicle for Circular Orbits, " ARS Journal,

Vol. 30, No. 8, August 1960, pp 768 to 769.

X-15

4



Cole, D. M., and Epstein, L. I., "Interpretation

of Malina-Summerfield Criterion for Optimi-

zation of Multistage Rockets, " Jet Propulsion,

Vol. 26, No. 3, March 1956, p 188.

Cole, D. M., and Marrese, M. A., "Optimi-

zation of Rockets for Maximum Payload

Energy, " American Rocket Society Journal,

Vol. 29, No. 1, January 1959, p71.

Coleman, J. J., "Optimum Stage-Weight Dis-

tribution of Multistage Rockets, " ARS Journal,

Vol. 31, No. 2, February 1961, pp 259 to 260.

Dergarabedian, P., and Ten Dyke, R. P.,
"Estimating Performance Capabilities of

Boost Rockets, " Los Angeles, California,

Space Technology Laboratories, September
1959, Report No. TR-59-0000-00792.

Dini, D., "Distribution of the Stages of a Missile

to Obtain Minimum Takeoff Weight, Minimum

Cost, and Maximum Payload Kinetic Ener_, "

L'Aerotecnica, Vol. 41, No. i, February

1961, pp 3 to 13 (in Italian).

Ehricke, K. A.,

"Powered Flight, " Handbook of Astronautical

Engineering, New York, McGraw-Hill

Book Company, 1961 (Koelie, ed. )

"Ascent of Orbital Vehicles, " American

Rocket Society, Preprint No. 146-54, 1954.

Fiul, A., and Braham, H. , "Optimization of

Vehicles and Trajectories for the Twenty-
Four Hour Equatorial Satellite Mission,

American Rocket Society, Paper No. 1120-60,
1960.

Fried, B. D., "On the Powered Flight Trajectory
of an Earth Satellite, " Jet Propulsion, Vol.
27, No. 6, June 1957.

Froehlich, J. E., "Capabilities of Multistaged
Chemical Rocket Systems, "Astronautica

Acts, Vol. 6, No. 6, 1960, pp311 to 321.

Geckler, D., "Ideal Performance of Multistage
Rockets, " ARS Journal, Vol. 30, No. 6,

June 1960, pp 531 to 536.

Goldsmith, M., "On the Optimization of Two

Stage Rockets, " Jet Propulsion, Vol. 27,
April 1957, p 415.

Hall, H. H., and Zambelli, E. D., "On the

Optimization of Multistage Rockets, " Jet

Propulsion, Vol. 28, No. 7, July 1958,
pp 463 to 465.

Hughes, J. V., et al., "Trajectories for Con-
tinuously Applied Propulsion Thrust, " Pro-

ceedings of the 4th Symposium on Ballistic

Missile and Space Technology (Los Angeles,

1959). New York, Pergamon Press, 1980.
(Also, Planetary and Space Science, July
1961, Vol. 7.)

Koelle, H. H., "Optimization Considerations

for Orbital Payload Capabilities, " American

Rocket Society, Preprint No. 491-57,
October 1957.

Krause, H. G. L., goelle. H. H., and Kuebler

M. E., "Analytical Method for the Determi-

nation of Powered Rocket Trajectory Elements,

with a Specific Turning Program and Consid-
eration of Air Drag and Thrust Variation, "

Stuttgart, Astronautical Research Institute,

Report No. 3, Chapter 2, August 1953, pp
18 to 25. (ASTLA Document No. AD-115961.)

MacDonald, J. A. , "Probability Approach to

Outage Prediction (U), " The Martin Company,
Baltimore, Maryland, Engineering Report No

11712, 1961.

Mackay, J. S., and Weber, R. J., "Perform-

ance Charts for Multistage Rocket Boosters, "

NASA TN D-582, January 1961.

Pollak, R. J., "Rapid Determination of the In-

teraction Between the Rocket Vehicle and Its

Trajectory, " Lockheed Aircraft Corporation,

Missiles and Space Division, Sunnyvale,

California, American Rocket Society, Pre-

print No. 1476-60, 1960.

Ragsac, R. V., and Patterson, P. L., "Multi-
stage Rocket Optimization, " ARS Journal,

Vol. 31, No. 3, March 1961, pp 450 to 451.

Schmidt, R., "Preliminary Calculation and

Layout Method for Single and Multistage

Ballistic and Space Rockets, Huntsville,

Alabama, Army Ballistic Missile Agency,

Redstone Arsenal, Report No. RA-TR-I-61,

10 February 1961.

Schurmann, E. E. H., "Optimum Staging Tech-

nique for Muttistaged Rocket Vehicles, " Jet

Propulsion, Vol. 27, August 1957, p 863.

Subotowicz, M., "The Optimization of the N-

Step Rocket with Different Construction

Parameters and Propellant Specific Impulses

in Each Stage, " Jet Propulsion, Vol. 28, No. 7,

July 1958, pp 460 to 463.

Ten Dyke, R. P., "Computation of Rocket Step

Weights to Minimize Initial Gross Weight, "

Jet Propulsion, Vol. 28, May 1958, p 338.

Townsend, G., "Ascent to Orbit, " Design Guide

to Orbital Flight, McGraw-Hill Book Company,
New York, Chapter 6, 1962.

Van Pelt, J. M., "Optimum Propellant Distri-

bution for Two-Stage Ballistic Missiles, "

The Martin Company, Baltimore, Maryland,

TM 491/2-66, January 1959.

Vargo, L. G., and Bruce, R. W., "Preliminary
Optimization of Clustered Rocket Vehicles, "

Aeronutronic, Newport Beach, California,
November 1959.

Vertregt, M.
"Calculation of Step-Rockets, " Journal of the

British Interplanetary Society, Vol. 14,

January 1955, p 20.
"A Method for Calculating the Mass Ratios of

Step-Rockets, " Journal of the British Inter-

planetary Society, Vol. 15, March 1956,

p 94.

X-16



Wang,C. J., et al., "Thrust Optimization of a

Nuclear Rocket of Variable Specific Impulse, "

ARS Journal, Vol. 29, No. 5, 1959, pp 341 to
344.

Weisbord, L.,

"A Generalized Optimization Procedure for

N-Staged Missiles, " Jet Propulsion, Vol.

28, July 1958, p 164.

"Optimum Staging Techniques, " ARS Journal

Vol. 29, June 1959, p 445.

Wilson, M. L., "The Calculation of Fuel Dis-

tribution in Step-Rocket, " Journal of the

British Interplanetary Society, Vol. 16,
No. 77, October to December 1957, pp 211
to 215.

2. Bibliography for Thermal Control and Cryo-
genic Storage

Adelber_, M., "Storage of Cryogenics inSpace,"

STL Report TN-59-0000-00324, 28 September
1959,

Altshuler, T. L., "A Method for Calculating the
Thermal Irradiance Upon a Space Vehicle and

Determining Its Temperature, " General Elec-
tric Company, R60SD386, August 1960.

Ballinger, J., et al,, "Thermal Environment of
Space, " Convair Astronautics Division,

Oer.eral Dynamics Corporation, ERR-AN-O16,
November 1960.

Berenson, P., "Transition Boiling Heat Transfer

from a Horizontal Surface, " AIChE Paper No.
18, ASME-AIChE Heat Transfer Conference,

Buffalo, August 1980.

Bevans, J. T., Grier, J. T., and Dunkle, R. V.,
"Comparison of Total Emittances with Values

Computed from Spectral Measurements, " Trans.

ASME, Vol. 80, No. 7, October 1958, p 1405.

Birkebak, R. C., and Hartnett, J. P., "Meas-

urements of the Total Absorptivity for Solar

Radiation of Several Engineering Materials, "
ASME Paper 57-SA-27.

Blanchero, J. T., Barker, G. E., and Boll, R.

H., "Heat Transfer Characteristics of Boiling
Oxygen, Fluorine, and Hydrazine, " Eng. Res.

Inst., University of Michigan (1951). See

also Chem Eng Progr Symposium, Serial
No. 17, Vol. 51, 1955, p 21.

Boelter, L. M. K., et al., "A Mechanical In-

tegrator for Determination of Illumination
from Diffuse Surface Sources, " Transactions

of the Illuminating Engineering Society, Vol.

34, No. 9, November 1939, p 1085 to 1092.

Brandt, J. A., Irvine, T. F., and Eckert, E.

R. G., "A Method of Measuring Total Hemis-
pherical Emissivities at Low Temperatures--
Results for Pure Iron from 300 to 500 ° R, "

Proceedings; Heat Transfer and Fluid

Mechanics Institute, Stanford University,
1960.

Brock, O, K., "Thermal Radiation Interchange

Between Black and Grey Surfaces, " Convair,

Fort Worth, General Dynamics Corporation,
PT-23, 3 June 1960.

Bromley, L. A., "Heat Transfer in Stable

Film Boiling, " Chem Eng Prog, Vol. 46,
1950, pp 221 to 227.

Brown, A. I,, and Marco, S, M., "Introduction

to Heat Transfer, " McGraw-Hill Book Com-

pany, New York, 1942.

Carslaw, H. S., and Jaeger, J. C., "Heat
Conduction in Solids, " 2nd Edition, Oxford

Press, 1959.

Chang, Y. P., and Snyder, N. W., "Heat

Transfer in Saturated Boiling, " AIChE Pre-

prin_ No. 104, Third National Heat Transfer

Conference, August 1959.

Chelton, D. B., and Mann, D. B., "Cryogenic
Data Book, " WADC TR 59-8, March 1959.

Class, C. R., DeHaan, J. R., Piccone, M.,
and Cost, R. B.,

"Pool Boiling Heat Transfer to a Cryogenic

Liquid, " WADC Tech Rep 58-528, 1958.

'_Botling Heat Transfer to Liquid Hydrogen
from Flat Surfaces, " Advances in Cryogenic

Engineering, Vol. 5, 1960, K. D. Timmerhaus,
Editor.

Dean, L. E., and Thompson, L. M., "Heat
Transfer Characteristic of Liquid Nitrogen, "

Bell Aircraft Corporation, Rep No. 56-982-

035, 1955. See also ASME Paper 56-SA-4.

Deissler, R. G.,

"Heat Transfer and Fluid Friction for Fully

Developed Turbulent Flow of Air and Super-

critical Water with Variable Fluid Proper-
ties," TransAm Soc Mech Engrs, 76, pp

73 to 85, 1954.

"Analysis of Turbulent Heat Transfer, Mass

Transfer, and Friction in Smooth Tubes at

High Prandtl and Schmidt Numbers, " NACA

Report 1210, 1955.

Drayer, D. E., and Timmerhaus, K. D., "An

Experimental Investigation of the Individual
Boiling and Condensing Heat Transfer Co-

efficients for Hydrogen, " Paper J-a, Advances

in Cryogenic Eng., Vol. 7, 1962, p 401.

Driscoll, D. G., "Cryogenic Tankage for Space

Flight Applications, " Linde Company, Cryo-

genics Engineering Conference, 1959.

Dunkle, R. V,,
"Thermal Radiation Characteristics of Sur-

faces, " Lecture presented at Symposium on
Theory and Fundamental Research in Heat

Transfer, ASME, November 1960; also in

Theory and Fundamental Research in Heat

Transfer, J. A. Clark, Editor, Pergamon
Press, 1962.

"Thermal Radiation Tables and Applications,"

Trans ASME, Vol. 76, 1954, pp 549 to 552.

X-17



Durham, T. F., McClintock, R. M., and

Reed, R. P., "Cryogenics Materials Data

Handbook, " Cryogenics Engineering Labora-

tory, National Bureau of Standards, U. S.

Department of Commerce, Contract

AF04(647)-59-3, 8th Quarterly Report,

Boulder, Colorado.

Dusinberre, G. M., "Heat Transfer Calcula-

tions by Finite Differences, " International

Textbook Company, 1961.

Eckert, E. R. G., "Introduction to the Transfer
of Heat and Mass, " McGraw-Hill Book Com-

pany, New York, 1950.

Eckert, E. R. G., and Drake, R. M., Jr.,
"Heat and Mass Transfer, " McGraw-Hill

Book Company, New York, 1959.

Elrod, H. G., "New Finite-Difference Method
for the Solution of the Heat Conduction

Equation, Especially near Surfaces with Con-

vective Heat Transfer, " Trans. ASME, Vol.

79, No. 7, October 1957, p 1519.

Farkas, A., "Orthohydrogen , Parahydrogen,

and Heavy Hydrogen, Cambridge University

Press, London, 1935, p 20.

Fenechi, H., "Thermal Conductance of Metallic

Surfaces in Contact,"SM Thesis, MIT, 1957.

Fenster, S. K., VanWylen, G. J., and Clark,

J. A., "Transient Phenomena Associated

with the Pressurization of Liquid Nitrogen

Boiling at Constant Heat Flux, " Advances in

Cryogenic Engineering, K. D. Timmerhaus,

Editor, Vol. 5, 1960, p 226.

Forster, H. E., and Zuber, N., "Dynamics of

Vapor Bubbles and Boiling Heat Transfer, "

AIChE Journal, Vol. I, 1955, p 531.

Frainier, R. J., "Experimental Performance

and Selection of Rocket Insulation Systems, "

Linde Company, Cryogenic Engineering Con-

ference (Reprint), 1960.

Frederking, T. H. K.,
"Film Boiling of Helium I and Other Liquefied

Gases on Single Wires, " AIChE, J. Vol.

5, No. 3, 1959, p 403.
"Remarks on the Heat Transport in Helium II

at High Heat Flux Values, " University of

California, Los Angeles, Report No. 62-5,

February 1962.

Frederking, T. H. K., and Clark, J. A.,

"Natural Convection Film Boiling on a Sphere, "

Paper submitted to 1962 Cryogenic Engineer-

ing Conference Committee, K. D. Timmerhaus,

Secretary, May 1962.

Fritz, S., "The Albedo of the Planet Earth and

of Clouds, " Journal of Meteorology, 1949.

Fulk, M. M., Reynolds, M. M., and Park,
O. E., "Thermal Radiation Absorption by

Metals, " Proceedings, 1954 Cryogenic Engi-

neering Conference, p 151.

Gebhart, B., "Unified Treatment for Thermal

Radiation Transfer Processes--Gray Diffuse

Radiators and Absorbers, " ASME Pa_,er No.
'! a !57-A-34. See also, Heat Tr nsfer, B.

Gebhart , McGraw-Hi/l, 1961.

Giedt, W. H., "Principles of Engineering, Heat

Transfer, " D. Van Nostrand Company,

Princeton, New Jersey, 1958.

Graham, R. W., Hendricks, R. C., Hsu, Y. V.,

and Friedman, R., "Experimental Heat Trans-

fer and Pressure Drop of Film Boiling Liquid

Hydrogen Flowing Through A Heated Tube, "

Advances in Cryogenic Engineering, K. D.

Timmerhaus, Editor, Vol. 6, 1961, p 517.

Hamilton, D. C., and Morgan, W. R., "Radiant-

Interchange Configuration Factors, " National

Advisory Committee for Aeronautics, NACA

TN 2836, 1952.

Haselden, G. G., and Prosad, S., "Heat Trans-

fer from Condensing Oxygen and Nitrogen
Vapours," Trans Inst Chem Eng (London),

Vol. 27, 1949, pp 195 to 200.

Haselden, G. G., and Peters, J. I., "Heat

Transfer to Boiling Liquid Oxygen and Liquid
Nitrogen, " Trans Am Inst Chem Eng (London),

Vol 27, 1949, pp 201 to 208

Holten, D. C., "A Study of Heat and Mass Trans-

fer to Uninsulated Liquid Oxygen Containers, "

Advances in Cryogenic Engineering, Vot. 6,
K. D. Timmerhaus, Editor, 1961, p 499.

Holier, F. J., "Simplified Matrix Technique for

Determining the Average Surface Temperatures
of an N-Surface Enclosure Radiation to Space, "

Personal Communication to J, A. Clark,
November 1961.

Hottel, H. C.,

"Some Problems in Radiative Transport, "

Lecture presented at 1961 International

Heat Transfer Conference, Boulder, Colorado,

London, England.

"Radiant Heat Transmission, " Mechanical

Engineering, Vol. 52, No. 7, July 1930,

pp 699 to 704.

Hsu, Y. Y., and Smith, J. M., "The Effect of

Density Variation on Heat Transfer in the
Critical Region, " Am Soc Mech Engr, Paper
60-HT-8, 1960.

Irvine, T. F., Hartnett, J. P., and Eckert,

E. P. G., "Solar Collector Surfaces with

Wave Length Selective Radiation Characteris-

tics, " Solar Energy, Vol. II, No. 2-3, July
to October 1958. See also addendum: Solar

Energy, Vol. ill, No. 2, April 1959, p 38.

Ivey, H. J., "Preliminary Results on the Effect
of Acceleration on the Critical Heat Flux in

Pool Boiling, " Reactor Development Division
Report AEEW-R99, AEE, Dorchester, Dorset,

England, September 1961.

Jakob, M., "Heat Transfer, " Vol. I and II,

John Wiley and Sons, 1949, 1960.

X-18



Kamius, M., and Zabel, E., "Manufacture and

Delivery of Liquid Oxygen and Liquid Nitrogen
to ICBM Sites," Rand Report, STL 59-3357.

Karagounis, A., "Heat Transfer Coefficient for
Liquid Helium, " (in French), Bull Inst Intern

Froid, Annexe 2. 195-9, 1956.

Keenan, J. H., "Thermodynamics, John Wiley
and Sons, Inc., New York, 1941.

King, C, R,, "Compilation of Thermodynamic
Properties, Transport Properties and Theo-

retical Rocket Performance of Gaseous Hy-
drogen, " NASA TN D-275, 1960.

Knudsen, J. G., and Katz, D. L., "Fluid Dy-
namics and Heat Transfer, " McGraw-Hill

Book Company, Inc., 1958.

Kreith, F.,

"Principles of Heat Transfer, " International

Textbook Company, 1960.

"Radiation Heat Transfer for Spacecraft and

Solar Power Plant Design, " International

Textbook Company, 1962.

Kreith, F., and Summerfield, M., "Investigation

of Heat Transfer at High Heat Flux Densities;

Experimental Study with Water of Friction Drop
and Forced Convection with and Without Surface

Boiling in Tubes, " Jet Propulsion Lab Progress
l_eport 4-68, 1948.

Kropschot, R. H., "Insulation Principles, "

Lecture No. 3, UCLA Symposium, Cryogenic

Technology, 1962.

Leonhard, K. E., and McMordie, R. K., "The

Nonadiabatic Flow of Evaporating Cryogenic

Fluid Through a Horizontal Tube, " Advances

in Cryogenic Engineering, Vol. 6, K. D.
Timmerhaus, Editor, 1961, p 481.

Leuenberger, H,, and Person, R. A,, "Radi-

ation Shape Factors for Cylindrical Assem-
blies, " American Society of Mechanical

Engineers, Paper 56-A-144.

Loper, J. L., and Heatherly, E. R., "Vapor
Losses in Cylindrical Containers of Aluminum

and Fiberglas Laminate Filled with Liquid

Nitrogen and Exposed to Climatic Heating, "
Tech Note No. G-002, Structures and Mechanics

Laboratory, ABMA, Huntsville, Alabama,

4 August 1955.

McAdams, W. H., "Heat Transmission, " 3rd

Edition, McGraw-Hill, 1954.

McCue, G. A.,

"Program for Determining Temperatures of

Orbiting Space Vehicles, " Space and Infor-

mation Systems Division, North American

Aviation, Inc., SID 61-105, 20 April 1961.
"Eclipse Characteristics of Close Earth

Satellite Orbits, " Space and Information

Systems Division, North American Avaiation,
Inc., SID 61-50, February 1961.

McMordie, R. K., "Steady-State Conduction
with Variable Thermal Conductivity, " Trans

ASME, Heat Transfer Journal, Vol. 84, No. 1,

February 1962, p92.

Metre, H., and Clark, J. A.. "Boiling Heat

Transfer Data for Liquid Nitrogen at Standard

and Near-Zero Gravity, " Advances in Cryo-

genic Engineering, Vol. 7, 1962, K. D.
Timmerhaus, Editor.

Moon, P., "The Scientific Basis of Illuminating

Engineering, " McGraw-Hill Book Company,
New York, 1936.

Monroe, A. G., Bristow, A. S., and Newell,

J. E., "Heat Transfer to Boiling Liquids at

Low Temperatures and Elevated Pressures, "
J. ApplChem, Vol. 2, 1952, pp 613 to 624.

Mulford, R. N., Nigon, J. P., Dash, J. G..

and Keller, W. E., "Heat Exchange Between
a Copper Surface and Liquid Hydrogen ann

Nitrogen," Ext from Secret Doc, LAMS-1443.

Nordwall, H. L., "Geometrical Configuration

Factor Program, " Space and Information

Systems Division, North American Aviation,

Inc., SID 61-90, 30 April 1960.

Obert, E. F., "Elements of Thermodynamics

and Heat Transfer, " McGraw-Hill Book

Company, New York, 1949.

Oppenheim, A. K., "Radiation Analysis by the

Network Method, " Transaction ASME, Vol.

78, No. 1, May 1956, pp 725 to 735.

Perkins, W. E., and Frainier, R. J., "Practi-

cal Storage of Liquid Hydrogen and Helium, "

Linde Company, 1959 Cryogenic Engineering
Conference.

Perry, J. H., "Chemical Engineer' s Handbook, "
McGraw-Hill Book Company, New York, 3rd

Edition, 1950, p 205.

Peterson, M., "Radiation Effects, " Los Angeles

Division, North American Aviation, Inc.,

NA-56-399, 1956.

Pope, D. H., Killian, W. R., and Corbett, R. J.,

"Single-Phase Flow Tests with Liquid Hydro-

gen," Advances in Cryogenic Engineering,

Vol, 5, K, D. Timmerhaus, Editor, Plenum

Press, 1960, p 449.

Richards, R. J., Robbins, R. F., Jacobs, R. B.,

and Holten, D. C., "Heat Transfer to Boiling

Liquid Nitrogen and Hydrogen Flowing Axially

Through Narrow Annular Passages, " Adv in

Cryogenic Eng., K. D. Timmerhaus, Ed.,
Plenum Press, Inc., New York, Vol. 3,

1960, p. 375.

Richards, E. J., Steward, W. G., and Jacobs,
R. B., "A Survey of the Literature on Heat

Transfer from Solid Surfaces to Cryogenic
Fluids, " NBS TN 122, Boulder Laboratories,

October 1961.

X-19



Richtmyer, R. D., "Difference Methods for Init-
ial-Value Problems, " Interscience Publishers,

Inc., New York, 1957.

Riede, P. M., and Wang, D., "Characteristics

and Applications of Some Super Insulations, "

Linde Company, 1959 Cryogenic Engineering

Conference (Reprint).

Robsenow, W. M., and Clark, J. A.,

"Mechanism of Boiling Heat Transfer, "

Trans ASME, Vol. 73, July 1951.

"Heat Transfer and Pressure Drop Data for

High Heat Flux Densities to Water at High
Subcritical Pressures, " Heat Transfer

and Fluid Mechanics Institute, Stanford

University, 1951.

Rohsenow, W. M., "Correlating Heat Transfer

Data for Surface Boiling Liquids, " Trans

ASME, Vol. 74, 1952.

Rohsenow, W. M., and Choi, H., "Heat, Mass
and Momentum Transfer," Prentice-Hall, 1961.

Ruzicka, J., "Heat Transfer to Boiling Nitrogen, "
Problems of Low Temperature Physics and

Thermodynamics, Pergamon Press, 1959, p
323.

Schneider, P. J., "Conduction Heat Transfer, "

Addison-Wesley, 1955.

Scott, R. B., "Cryogenic Engineering, "

D. Van Nostrand Company, 1959.

Smolak, G. R., and Knoll, R. H., "Cryogenics

Propellant Storage for Round Trips to Mars
and Venus, " IAS Paper No. 60-23, presented

at the 28th Annual IAS Meeting, New York,

25 to 27 January 1960.

Stevenson, J. A., and Grafton, J. C., "Radi-

ation Heat Transfer Analysis for Space Ve-

hicles, " Space and Information Division,

North American Aviation, Inc., Downey,
California, ASD Technical Report 61-119,

Part I, December 1961.

Stock, B. J., "Observations on Transition Boil-

ing Heat Transfer Phenomena, " Argonne

National Lab, ANL-6175, June 1960.

Sydoriak, S. G., and Roberts, T. R., "A Study

of Boiling in Short Narrow Channels and Its

Application to Design of Magnets Cooled by

Liquid H 2 and N2, "J Appl Phys, Vol. 28,

No. 2, 1957, pp 143 to 148.

Thompson, W. R., and Geery, E. L., "Heat

Transfer to Cryogenic Hydrogen at Super-

Critical Pressure, " Advances in Cryogenic

Engineering, Vol. 7, K. D. Timmerhaus,

Editor, 1962, p391.

Timmerhaus, K. D., Editor, "Advances in

Cryogenic Engineering, " Vol. I to 7, Plenum

Press.

Usiskin, C. M., and Siegel, R., "An Experi-

mental Study of Boiling in Reduced and Zero

Gravity Fields," Trans ASME, Journal of Heat

Transfer, Vol. 83, No. 3, August 1961.

Van Gundy, D.A., and J R. Uglum, "Heat
Transfer to an Uninsulated Surface at 20 ° K, "

Advances in Cryogenic Engineering, Vol. 7,

K. D. Timmerhaus, Editor, Paper No. J-3,
1962.

VanVliet, K. M., "Selective Coatings for Extra-

terrestrial Solar Energy Conversion, A Fund-

amental Analysis, " Wright Air Development

Division, WADD TR 60-773, 1960.

VonGiahn, U. H., and Lewis, J. P., "Nucleate

and Film Boiling Studies with Liquid Hydrogen, "

Advances in Cryogenic Engineering, Vol. 5,

K. D. Timmerhaus, Editor, 1960.

Waiters, H. H., "Single Tube Heat Transfer

Tests with Liquid Hydrogen, " Advances in

Cryogenic Engineering, K. D. Timmerhaus,
Editor, Vol. 6, 1961, p 509.

Wooley, H. W., Scott, R. B., and Brickwedde,
F. G., "Compilation of Thermal Properties

of Hydrogen in Its Various Isotopic and Ortho-

pars Modifications, " J. Research National

Bureau Standards 41, November 1948, pp 379
to 476.

Wright, C. C., "Design, Construction and Test-
ing of a Helium-To-Hydrogen Heat Exchanger, "

Advances in Cryogenic Engineering, Vol. 5,
K. D. Timmerhaus, Editor, Plenum Press,

1960, p 248.

Zuber, N.. and Fried, E., "Two Phase Flow

and Boiling,. Heat. Transfer to Cryogenic
Liquids, Amerxcan Rocket Society, Propel-
lants, Combustion and Liquid Rockets Con-

ference, April 1961.

X-20



ILLUSTRATIONS

X-21





lOOO

8o0

6oo

400

200

I00

8O

6O

4O

2O

io
O.

Distmlce

,_ 6

from the Sun (AU)

Fig. I. Equilibrium Temperature of InerZ Sphere

lO4

to 3

I0

1o-3

= Absorption number

•F : Emissivity of front surface

•R ffiEmissivity of rear surface

Does not include eclipsing

Assumes passive satellite

I
0.01 0.1

¢

I I I I !

1.0

Distance from Center of Sun (AU)

F

t

lO

m

1 I I

100

Fig. 2. Equilibrltm Temperature og a Thin Plate Normal to the Sun (Ref. 3}

x-= Precedingpageblank



_w

(3.

10 4 .

103

102
1.0

111III
a = Absorption number
E = Emissivity
Assumes passive satellite

f

[
[

!
i

Fig. 3.

j/
I

10

Angle of Surface to Incident Radiation (deg)

i00

Effect of Attitude on Equilibrium Temperature of a Thin
Plate Located at One Astronomical Unit from the Sun(Re£. 5)

v

Ie

O.

E_

O

_w

_J
@]

O

N

8OO

400

20O

100

5O

20

10

1

10 0

I
Initial

1 I 1 I

surfacetemperature(0°_/, / _-_

/
/

/

/
l01 2 5 102 2 5 10 3 2

Additional Radiation Flux Output (watts/m 2)

5 104 2

Fig. 4. Effect of Added tleat Input on Equilibrium Temperature

(I w/ft2 = 10.76 w/m 2)(Ref. 3)

X-24

!/
f

5 105



140

120

C_

i.w

_w

c_

100

8O

60

40

0

r-,

2O

°o 20

I
0.01

Fig, 6.

40 60 80 I00 120 140 160

Absolute Temperature (°I%)

Fig. S. Vapor Pressure of Cryogenic Fluids

Fiber glass
[cryogenic) T 2 --36 ° R

T 2 = 36 °

0. I 1.0 I0.0 i00.0

Pressure (. Hg)

Heat Transfer Rates of Cryogenic Insulations. Thermal Conductivity

Versus Vacuum Pressure (i Btu/hr-ft-'R • 1.27588 x 10 .4 kcal/sec-a-'K)

2

.10-9

i000.0

X-25



I00

A

v

o
i

L
to

dl

O.

I .

Insulation -- ' m

multiple radiation shield

m vacuum pressure < 1. -- _

IT l = outer wall temp I I

_-
T 2 = cryogenic fluid boiling

points (inner wall temp)

__ LO 2 = 162.4 ° R ,

LN2 = 139'a° R _'I--4T_ = LO, 2_

-- LH 9 = 36,5° R _ _

"-4-
"_T =

LHe = so° a m 2 LN2 -9

T,_ = LH 9 .c

i

T. 2 = LHe ' '2

_1_

A 161o
l0 100 ! 000 10,00O

T l--Temperature of Outer Wall (°R)

Fig. 7. Thermal Conductivity at Various Nail Temperatures

(I Br.u/hr-ft-'R = 1.2758_ x 10-4 kcal/sec-m-'X)

0 200
1700

1600

1500

1400

1300

1200

1100
$

lOOO

900
v

x 800

700

= 600

500

40O

3O0

200

100

0
0

Distance (106 km)

300 400

:11

'ii

P_
!,

120 180 240

Distance from Sun (naut

Fig. 8. Heat Flux from Sun (I 8tu/hr-ft 2 - 0.75347 x 10 "$ kcal/sec-a 2)

X-26



0

1600- llOOi_ -

_oooI_
-'N"

1400 - 900_ J__

6°ci!I
12oo 7o_i!!

= _ 6ooi_
Flooo- _ 5ooiii,,

_ 4ooi_

8oo _ I_
_o 300

_ 200[

v 600 _
" _ lOOI

_oo- °I_
-loo1_

-2001_
200 - v.-

-3ooli!i
-4001_

0-
0

Fig. 9.

200
Distance (kin x 108)

300 400 500 600 700

0, T_---max : radiation equil E =t=

_ temp _
A = Area exposed to sun _:_-,-_

A w : Total exterior wall area _

80 120 160 200 240 280

Distance from Sun (naut mi x i06)

Solar Heating--Temperature of Outer I_all

320 _60

-800

700

600

500_

_4oo _.

300 N

100

_o
400

4 6 810 -7

12 _ I

l

I0

Ls

v

_8

=

...4

0

O. 0001 2

Pig. 10.

(kcal/seo-m-°R)

2 4 6 8 10 -8 2
I I I I I I

= T 2)q as Gs - e(z T 1 =It- (TI -

LH2-------_____ _

:0.25

T 1 : 494°-504 ° R I

LH 2 --
(Z
-- :0.50

T 1 = 593_-599 ° R

LH 2 --

-a:o.75, _ =T 1 = 648*-653 = R _.

_-: _.oo _- .,- '

'T 1 : 708"-712_ R _/s _"

4 6 8 105 2 ,
I

k Thermal eondu " "_
T - Insulation thickness

4 6 8 0.001 2 4 6 8 0.01 2 4
k
r Insulation Conductivity(Btu/hr -ft-°R)

Float Trlmsfer to Hydrogen and Oxygen (1Btu/hr-ft 2 - 0.75347 x 10 "3 kcal/sec-m 2)

_ 0

6 80.10

0

!
0

m

X-27



\

v

t"-+

8O

60

4O

0
0 20

Fig. 11.

4O

E_:tll = I-I/2 in. ! !_+__ Design Vent Pressur_LLtJJl|i_lllJJll +
i: _ [: [_ L_I lIT;l, I :till I lll|Tl_ill I [It I I|I II J fill ' i I ,

• ri_-,_" -.-_,.+ ..... :_ ,-.,i,,,_i"r-i'-rl ......... _ i-.-r.- _ _ :
I Ill +'. I I Jl+'] i ) I [ I I t '_11 i i 1 i i i i i i i i i_[ i i 1 i i i I i i ] i ! i T
|]'( ]" ] I : 1 T: " :it" +11 I !11 I III I I '+r'l) 111111111[ t I TI 1 'i , , t -
Ill Jl+_ !llil+',_lllill _ I : i _,
IT I : +S'I Y+ I : I' #t II lll/lllrll+ t+S! [ lllllll ,_T I 5
!i 7i ' " ' I+l¢'r; III l] II _ r III II J _ ,71 ! i i !

r_il-l+!'_l_pj_ i _1 il"l !*,,,_.,._-._ll -- 1111111 III Ill I I11 Ill : I ' + I ]
t I i+ i I P + J ,SG'++'_i]":_, _ i* i * J,*il_--i--_ * -- _0 11111111iliil111111',ll iI I; !l:!l!

"+ + +u_uu_u+++'l',,', +........ lllllllllllfiil I i, !
_ 'j,_'_ t _J-_-_' H+ H-H,_I,,"I"I t L 'LLL!J-IA _ ! i t i I i i i i i I i I i i i i I I I I i : I' i :r_l_

_ 144-t Capacity = 6000 lb = 26,700 newtons

_! __ Insulation = SI-4 2

_+__+_Ventpressure =78.5psia=54.2newtons/cmi_i'TIll+If, TIt =493°R=Thickness S1-4

_ _ +i-+-+-;-_i ................. 1+-
![=rlli'll I ,_l-!-p/f-r-H 378 m. 0.95 cm ,,,,._ ,,

...!]+ i1!1_I!!1 11,17ilr_"l _ I i_:

illJllill I IliIlt II iilit:_ii;, i '
lJlll . Illllrl 3 in : 7 _9 o_r_ r_-iltl+l i i i "1 "

!!! "_" I II',IIIi] ........ i' ++.+,
... l+Iil+_ _ ,111+ ,Ill, i 1[+ ;l,,;ll, .,_i.];:lli illlillll!;, (I

80 100 12Q 140 160 180 200
No-Loss Time (days)

No-Loss (Pre-Boiloff) Ti=e--LH 2 Tank (I psia • 6894.4 newtons/a 2)

_E

0

,,-.i

4000

v 3000
O

E 2000

!

1000

° o

IJ;!

-vii-

;]i![ Ii!

Ii ; 'I .r
.... .+_, ++-r+, i , i+i.+,,_ ill NOTE:

,:,,..:,._ii__',[I][,_!.,;! !ii!" !i_,_ ._ill Initial tank capacity = 6000 lb (26,700 newtons) LH2_r-r "

,+.'-, fill !_ _-'-- Insulation=S1-4 _-"+: i! I ; +++ o
,+,+ i +-_:: T 1 = 493 R +
i',i!iil ...... =
llli l_+ ,'_'i r, i J +,. 13-_-_l]ll'l. [P ;!!+!+I] l'+rl+---l--+'l-++7"Yl .... t::+i

8 16 24 32 40 48 56 64 72 800
Time (weeks)

Fig. 12. Systu Factor (S) Versus Tile (1 lb • 4.448 newtons)

-20,000

;0,000

Z

)

X-28



_D
_=_

¢D
¢D

(suo_ou) _oI_.o_ puz uo_._Insul 30 _q_.OA_

o

o

0

r,
o

0

._, ,..

e_

,,=1

_2

X-29



i00 20O

_T

Fi_. 14.

i 2 3 4 5 6

T/v (ib-°R/Btu)

Boiloff Losses for Liquids Contained in Spherical Tanks, General Case

0
7

X-30



4

AO

B.

C.

D.

E.

F.

G.

H.

I.

CHAPTER XI

ORBIT COMPUTATIONS

Prepared by:

J. D. Kraft

Martin Company (Baltimore)
Aerospace Mechanics Department

March 1963

Page

Symbols .................................. XI- l

Introduction ................................ XI- 2

Coordinate Systems and Transformations ............ XI-2

Acquisition of Data ........................... XI-14

Determination of Preliminary Orbit Elements ......... XI-22

Theory of Observation Error .................... XI-28

Orbit Improvement ........................... XI-37

Accuracy Determinations ....................... XI- 43

References ................................ XI-47

Bibliography ............................... XI-47

Illustrations ......................... XI - 51

XI-t



Figure

1

2

3

4

7

8

9

I0

ii

12

13

LIST OF ILLUSTRATIONS

Interferometer System ..................

Minitrack Modified Interferometer System .....

Effect of Spread and Number of Data on Accuracy

of Ecentricity Determination ..............

Effect of Spread and Number of Data on Accuracy
of SemLtatus Rectum Determination ..........

Effect of Spread of Data on Accuracy of In-
clination and Nodal Longitude Determination ....

Effect of a Limited Number of Data on Ac-

curacy of Orbit Determination .............

Effect of a Limited Number of Data on Ac-

curacy of Orbit Determination .............

Angular Observation Errors, (_A Versus qE

(a 0 3 mps)
P

Angular Observation Errors, c D Versus a c

(a" = 0.3 mps) .......................
P

Angular Observation Errors, a v Versus (r

(a_ = 0.3mps) .... . ..................

Angular Observation Errors, a Versus ae

(¢7" = O. Smps) .......................
P

Angular Observation Errors, ar Versus a

(a_ -- 0.3 mps) .......................

Angular Observation Errors, av Versus a

(ap = 0.3raps) .... . .... _ .............

Page

XI-53

XI- 53

XI-54

XI-54

XI-55

XI-56

XI- 56

XI-57

XI-57

XI-58

XI-58

XI-59

XI-59

Xl-ii
v

_, . r . .. ! •

r .':4

r .



Figure

14

15

16

17

18

19

2O

21

22

23

24

LIST OF ILLUSTRATIONS (continued)

Angular Observation Errors, a a Versus a

(ap = 0.3 raps) .......................

Angular Observation Errors, cr Versus
e

(_; = 0.3 mps) ......................

Angular Observation Errors, cri Versus _e

(a; = 0.3 raps) ......................

Angular Observation Errors, _ Versus _

(a; : 0.3 raps) ......................

Angular Observation Errors, cr Versus
E

(or; = 0.3 raps) ......................

Angular Observation Errors, a M Versus a c

(a; = 0.3 mps) ......................

Angular Observation Errors, aA Versus a E

(O'p = 183 m) .......................

Angular Observation Errors, a D Versus a

(ap = 183 m) .......................

Angular

(a = 1
P

Observation Errors, a Versus
Y E

83 m) .......................

Angular

((7 = 1
P

Observation Errors, a Versus a

83 m) .......................

Angular

(a = 1
P

Observation Errors, a Versus
V

83 m) .......................

Page

X'I- 60

XI-60

XI-61

XI-61

XI-62

XI-62

XI-63

XI-63

XI-64

XI-64

XI-65

Xl-iii



Figure

25

26

27

28

29

30

31

32

33

34

35

LIST OF ILLUSTRATIONS (continued)

Angular Observation Errors, a r Versus a t

(ap = 183 m) .........................

Angular Observation Errors, a a Versus a t

(ap -- 183 m) .........................

Angular Observation Errors, a e Versus cr

(ap = 183 m) .........................

Angular Observation Errors, a i Versus a t

(ap = 183 m) .........................

Angular Observation Errors, _flVersus a

(a = 183 m) .........................
P

• Ve rsus aAngular Observation Errors a

(a = 183 m) .........................
P

Angular Observation Errors• a M Versus a t

(nO = m)183 .........................

Range Observation Errors, a A Versus a P
(a = 0.05 deg) ........................

E

Range Observation Errors, a D Versus P

(a t = 0.05deg) ........................

Range Observation Errors, a Versus
v p

(a t = 0.05 deg) ........................

Range Observation Errors, a Versus a
P

(a E = 0.05deg) ........................

Page

X1-65

XI-66

XI- 66

XI-67

XI-67

XI-68

XI-68

XI-69

XI-69

XI-70

XI-70

XI-iv



LIST OF ILLUSTRATIONS (continued)

Figure Page

36 Range Observation Errors, a Versus a
v p

(ac = 0.05 deg) ........................
XI-71

37 Range Observation Errors, a r Versus a P
(a = 0.05 deg) ........................

E
XI-71

38 Range Observation Errors, a Versus
e p

(_ = 0.05 deg) .........................
XI-72

39 Range Observation Errors, aa Versus
P

(a = 0.05 deg) ........................ XI-72

4O Range Observation Errors, ai Versus a P
(_ = 0.05 deg) ........................

E

XI-73

41 Range Observation Errors, ce Versus a P

(a = 0.05 deg) ........................ XI-73

42 Range Observation Errors, a Versus a
P

(_ = 0.05 deg) ........................
XI- 74

43 Range Observation Errors, a M Versus P

(a c = 0.05 deg} ........................
XI-74

XI-v



/



/

Xl. ORBIT COMPUTATION

a

A

C

D

e

E

f

f
non

h

H

i

L

L,

m

M

N

P

r

R

R c

t

t
P

C
S

T

V

SYMBOLS

Orbit semimajor axis

Right ascension

Speed of light; also, variance-covariance
matrix

Declination

Orbit eccentricity

Eccentric anomaly

Flattening; alsq two-way phase coherent

Doppler frequency shift

Noneoherent Doppler frequency

Altitude above the surface of the earth

Hour angle

Inclination of the orbit to the equatorial

plane

Celestial latitude

Geocentric latitude

Geodetic latitude

Mass

Mean anomaly

Electron density

Semilatus rectum (semiparameter)

Radius vector

Radius of the earth

Radius of the earth at the observation

site

Time

Time when the vehicle encounters

perigee

Local sidereal time

Transformation matrix

Velocity; also, diagonal matrix of the
inverse variances

_y

6

@

I

X

A

P

02

T

I2
e

T

n

Cartesian coordinates. See section

A. I for definitions of the various co-

ordinate systems

Azimuth angle

Residual

Elevation angle

Angle of the velocity vector with north

on the local horizontal plane; also. sector

triangle ratio

Frue anomaly

Obliquity of the ecliptic

Celestial longitude

Geocentric longitude

Gravitational constant; also, mean value

Maximum likelihood estimator for the

mean

Angle of the velocity vector to the local

geocentric vertical; also, refractive
index

Range, the distance from the observer to

a body

Range rate

Standard deviation

Maximum likelihood estimate of the

variance

Orbit period

Argument of perigee

Right ascension or longitude of the

ascending node

Rotation rate of the earth, 0.7292115 x

10 -4 rad/sec

Vernal equinox (Aries)

Autumnal equinox (,Libra)
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A. INTRODUCTION

The basic problem of orbit computation is the
determination, from a set of observations, of

six parameters which define an orbit. These
parameters may be the Cartesian position and

velocity components at some epoch, the classical

orbit elements (semimajor axis, eccentricity,

inclination, argument of perigee, longitude of
ascending node, and mean anomaly at epoch),

or any other set of independent quantities which
uniquely determine the orbit. The orbit compu-

tation problem may involve determination of

quantities other than the six orbit parameters,

however. For example, improved values of

physical constants, drag coefficients, tracking

station locations or thrust corrections may also

be determined in the orbit computation process.

Whether the goal of a satellite vehicle mission
is gathering of accurate geophysical data or safe

recovery of a manned capsule, accurate orbit

computation is a prime requirement since gravity

field or atmospheric density information is only

as accurate as the satellite position time-
histories from which it is derived. In addition,

there is a requirement for continual precise

knowledge of the position of manned satellites

for the safety of the pilot. The increasing require-
ment for fast, highly accurate determination of

orbits has led to many new developments of

theories, techniques and systems as well as

modifications of existing astronomical methods.

This chapter comprises a general exposition of

some methods and system capabilities for locating

an earth satellite and predicting its future

positions and velocities. Specifically, the areas

considered are tracking networks and their capa-

bilities, tracking techniques, data reduction.
initial determination of the orbit elements and

improvement of the computed orbit.

B. COORDINATE SYSTEMS AND

TRAN SFORMATIONS

I. Coordinate S_rstem Definition

In the determination of orbits a multitude of

coordinate systems are frequently used. It is
convenient to define these various systems before

considering the principal problem of orbit deter-
mination, so that the definitions will be available
for reference.

Complete specification of a coordinate system

involves three geometric quantities, an origin,
a principal direction and a fundamental plane.

For example, the origin might be an observer on
the earth,s surface (a topocentric system), the

center of the earth (a geocentric system), the

center of the moon (selenocentric), the center of

the sun (heliocentric), or any other convenient

point. The principal direction might be the

south point on the horizon, vernal equinox, or

any of a number of such directionsl and the

fundamental plane might be one of the customary

planes of reference, i.e., the local horizontal,

equatorial or ecliptic planes, or any other con-

venient plane. In addition, coordinate systems

may be time dependent (rotating systems) or fixed

in spatial orientation (inertial systems). Table 1

defines the most frequently used systems of
coordinates. A list of definitions of the various

terms involved in this table and subsequent dis-

cussions is presented in Appendix B.

2. Transformation of Coordinates

A rotation _ about a certain axis is considered

positive if counterclockwise as viewed from the

positive end of that axis. The general forms for

rotations of +_ about the x, y, and z axes are as
follows:

y' = cosg si

z, -sin_ cos_

=- Tx, _ {x, y, z}

(1)

Zi_It I z _" .,.yl

{,1":F :1 {i}
Lsin_ o cos_.J

Ty. tx. y, z}

(2)

z,\ i_

Xl -iX v

yl

y, = sin_ cos_

0

-- Tz, _ ix, y, z}

(3)

These general rules may be used to derive
transformations between the various coordinate

systems defined in the preceding subsection.
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Y

Transformation of geodetic latitude L, to

geocentric latitude L

! ! !
L = L - 695"6635 sin 2L ÷ I!'1731 sin 4L

or tan L =

-0"0026 sin 6L I

(I _f)2 tan L fwhere
I

f = _ = flattening

(4)

Transformation from topocentric hori-

zontal (Xoh, Yoh' Zoh.) axes to topocentric

equatorial (x o, Yo' Zo) rotating axes

Center
of earth

No rth
Pole
Z
r

z o

/oh/.-----Locat
/vertical

..... X O

I jr
Equatorial

plane

Eil o=-t:70o
cos L' 0 sin L' LZohJ

polar coordinates:

xoh= oo8.oo. I.
Yoh p cos E sm

Zoh = psin_

where t = elevation, a = azimuth

Zoh

Yoh

(s)

(6)

XI-4

0

Z o

sin D = sin L' sin E - cos L' cos e cos a

sin _ cos c
sin H = -

cos D
(7)

Transformation from topocentric

equatorial (xo, Yo' Zo) rotating axes to

topocentric equatorial inertial axes

(xi' Yi' zi)

[xiI ostssn,silExlYi = in ts cos ts Yo

zi 0 z

where

t
s

= local sidereal time

= hour angle of vernal equinox

= right ascension of local meridian.

Z O, Z i

(s)

/_s y°

:_J---- Is- -Yi
j#"

x i p/ts_

._./ "/x o

The polar coordinates are related as follows:

A = ts-H (s)

D is the same as in subsection b.

xi//_ _f H -"Xo



Transformation from topocentric equator-

ial inertial axes (xi, Yi" zi) to geocentric

equatorial inertial axes (x, ye 0 z e)

_r
X = x.+X

e t C

Z

,-Observer

\
Yi

R_xi > ' Ye

Ye = Yi + Yc
(io)

Z = z.+Z
e t C

where

X c = (C+ h o) cosL' cos ts

Yc = (C + h o) cos L' sin ts (II)

Z c = (S + h o) sinL'

are the coordinates of the observer in the equa-

torial inertial system and

t = local sidereal time
S

L' = geodetic latitude

h = observer,s height above sea level

o in units of the equatorial radius of the

earth

1
C =

_i- (2f - L'f2) sin 2

S = C (i - f)2

I ffiflattening of the earthf = -2-c55Z-_

R c

(C and S, as defined by Rye sin L = S sin L and

R c

i_e cos L = C cos Lo are tabulated in the

American Ephemeris and Nautical Almanac).

= _c ' L'R c ReC os 2L + (l-f)4sin2 (12)

R (1 -f)
e= (13)

_I + f (f - 2) LCOS 2

where

R ffi equatorial radius.
e

Transformation from general equatorial

inertial coordinates (xi, Yi' zi) to earth-

centered inertial axes (x e, Ye' Ze)

Z e" Z i

/

x I

Ii!} ° txintxoC°ss ntYtx°ifi!1
where

= right ascension of the x.-axis
tx meridian t

(14)

A = t x + A A (15)

D is the same as in subsection b

A A = difference in geocentric longitude
between the x.-axis and the object

i

being located.

Transformation from general equatorial

inertial coordinates (x_, y_. z L) to geo-

detic coordinates

z i

Prime _

Geodetic or geocentric longitude:

A = A 0 + tan'l y-i
e

x-'7" El"
L

Yi

(16)

4
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Geodetic latitude:

L' = tan -1

where

xi2"+ Yi

(17)

A0 = geodetic longitude of the prime
direction x. at the time of trans-

1
formation

e
= rotation rate of the earth,

-4
0.7292115 x I0 rad/sec

At = time elapsed since the time of

, transformation

1

f = flattening =

Transformation from equatorial inertial

coordinates (x i, Yi' zi) to ecliptic inertial

coordinates (x, YE' z )

z izi

'\ ;

'
---- Yi

T

cos 6 sin

- sin C cos_

ors since

x. ffir. cos DcosA
t

Yi = ri cos D sin A

z. = r. sin D
l t

and

X E • re cos I COSk

YE ffi r COS I sin k

z E " r sin I

(18)

(19)

(20)
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cos I cos k . cos D cosA

cos _ sin k • cos _ cos D sin A + sin _ sin D

sint = -sin_cos D sinA + cos 6 sinD

where

= obliquity of the ecliptic

= 23 ° 27' 08'.'26 - 0'/4684 (tyears -

r. = r = radius vector
i E

A = right ascension

D = declination

k

(21)

19oo)

= celestial latitude

= celestial longitude.

Transformation from orbit _ystem coordi-

nates (xj y_, zJ to earth-centered inertial

coordinates (x e, Ye' z¢)

Ze f

z f-_/ _

'' Ye

X e / _\/ Perigee

Rotation routine:

(1) Rotation in the orbit plane about the

z axis through - T
to to_ -to

(2) Rotation about the line of nodes through

-i, T
-i

(3) Rotation in the equatorial plane through

-_, T_f 2

then

IXe ' Ye" Zel = T nT_i T.to Ixto, yto, z }

where (22)

T_f_ T_i T =-tO

sing cos i sin _1 -sin_/cos i cos _ sin_ sin

_-c_L- ---I .....-sin _ sin tO [ -cos _ si

] +COS G COS isin '_1 +COS n cosi COS _o[ n 1

Ls-TmT si--n--_ i sini costO I_o_ J



/ •

The elements of this transformation matrix
are frequently assigned the following symbols
for convenience:

T_.T_i -- 5N ,
z Qz R

3. Data Correction

Various data corrections are usually required
to convert apparent coordinates to true coordi-
nates. Depending on the nature of the measure-
meat, corrections may be required to account
for aberration, refraction, precession, proper
motion, nutation and parallax.

a. Aberration

Since light travels at a finite velocity, the
apparent coordinates of any body in space depend
upon the motion of the body and the motion of the
observer on earth during the time interval re-
quired for light from the body to arrive at the
observer. This apparent displacement of a body
from its actual position due to the finite speed of
light and the motions of the observer and the body
is called aberration. To elaborate, the observer

perceives a ray of light which originated at the
body sometime before the instant of observation
and which traveled toward a position that the
earth would occupy sometime after the ray origi-
nated. Therefore, at the time of observation,
the moving body is no longer located in the
direction from which the light ray is observed.
Also, since the earth is moving, the apparent
direction of the ray differs from the true direc-
tion. Thus the observed direction relative to
the stars is neither the actual direction at the

time of observation nor the direction to the posi-
tion of the body at the time the ray was emitted.

Various types of aberration are distinguished.
Planetary aberration is the displacement o£ the
observed apparent position from the actual posi-
tion at the instant of observation. Stellar aber-

ration, a part of the planetary aberration, is the
displacement of the observed position from the
actual position of the body at the instant when the
light ray was emitted. The stellar aberration
consists of two parts, diurnal aberration and
annual aberration. Diurnal aberration is that
part due to the rotation of the earth on its axis.
Annual aberration is due to the orbital motion of
the earth about the sun.

Obviously4 most corrections for aberration are
significant only for astronomical determinations
on relatively remote bodies. Even for observa-
tions of the sun, only stellar aberration need be
considered. In the case of a satellite, observed
as to its distance and angular position relative to
the earth, the stellar aberration may be neglected
as being essentially the same for the satelliteand
the earth. Also, a satellite experiences very
nearly the same heliocentric motion as the earth.
Therefore, aberration corrections for satellites
in practice need include only the effect of motion
of the satelliterelative to the earth during the

time required for light from the satelliteto arrive
at the observer. (For example, du_ing the time for
light to pass from the moon to the earth, the moon
moves about 0."7 in geocentric longitude. } Planetary
aberration is larger for artificialsatellites. In a
circular satellite orbit, central angle traversed is
proportional to time, i.e.,

A___0= t (A 8 in radians).
2,r

Since the period is

7 = 2'W r_-- ,

t p
_= F_/_-_

where r is the satellite orbit radius. The time

required for light to travel from an overhead
satellite to the earth is

r-R
C

where R is the radius of the earth and c is the

speed of light. Therefore, the planetary aber-
ration [s

At} = r -R _f_Tcr

This quantity has a maximum for r = 3R,

/x8 ,, 2" 1
max

The following sections briefly consider
methods used for computing the effect of aber-
ration. A more detailed description is con-
rained in 1Ref. 1.

(I) Stellar aberration

In stellar aberration determinations the folo

lowing notation is used:

= earth' s orbital velocity in inertial,
fixed-origin coordinates {x, y, z)

• velocity vector of the actual light ray

_'t = relative velocity vector of the light ray
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T = instant when an observation is made

t

E T, E t

B T, B t

B
a

earlier time when the ray observed

left the body

actual positions of the earth at the

times T and t, respectively

actual positions of a body at the

times T and t, respectively

apparent position of the body at time

T

_- =T-t=

_} = TC =

time for light to travel from the

body to earth

geometric distance E T B t

Aa, A T = longitudes of the apparent direction

E T B a and the true light path E T B T,

respectively

L a, L T = latitudes corresponding to A a, A T.

Then the direction cosines of E T B a are

cos L a

cos L a

sin L a

V
X

cos A a =cos L T cos A T + --c

v (24)

sin A a _cos L T sin AT + ---yc

v

= sin L T + zC

where V x, Vy, V z are the components of v

These direction cosines give

tan (A a - AT) (25)

= -sec U T iv x sin .AT - VyCOSA T )

c +sec L T (v xcos A r +VySinA T)

tan (L a - L T)

v z cos L T - (v cosA T +v sinai) sin L T
- ., X y 1

v z sin L T +(v COSA_ +v. stnA..) cos L'T+c
X 'I y *

where:

O (sin2_) denotestermsofthe

order of the quantity in the brackets.

In rectangular coordinates,

Vx Pt

-X t ffi -- =v 7Xa c x

Y

Z a- Z t =Vz_ ffi VZ7

(26)

where

(X a, Ya 0 Z a) are the apparent coordinates

of the body at the instant of observation T

(Xt" Yt' Zt) are the true coordinates of

the body at the time the light .[eft the body.

(2) Planetary aberration

The planetary aberration is the stellar aber-

ration corrected for the motion of the body from

B t to B T during the time for light from the body

to reach earth (see previous sketch). This cor-

rection may be computed from a Taylor series,

e.g,,

XT Xt ." + l'.xt 2 "" r_ = Xt_ _ +_Xt 3 + . . .

Then the rectangular components of the

planetary aberration are

Xa.XTo%_ 72_ 3...

1 Zt 2 "'"Z a - Z T = (V z - i t ) 7 -_r 7 -_Z t 73

(27)

where (Xt, Yt o Z t) are given tn the preceding

subsection. The terms of order 72 and higher

can usually be neglected. In terms of right as-

cension and declination the ptanemry aberration

can then be expressed as

• _j (28)_D= D

where R T = _XT2 + YT 2 + ZT 2

(3) Diurnal aberration

Because of the earth's rotation, the observer
moves toward the east at a rate

1R

= 464 _ cos L
%

meters/sec

(29)

where

R c = radius of the earth at the observer ' s
location

R e • equatorial radius of the earth

L = geocentric latitude of the observer.

This motion causes a shift in apparent position

of remote bodies toward the east given by
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sin

where_is theangulardistancefrom the east

point to the body, Then, in terms of right
ascension and declination° the diurnal aberration
is

"'e C O1
_A = 0'.'319 W-- cos L cos H sec

(30)

R c

_D = 073191_e cos Lsin Hsin D J

where H = hour angle of the body.

The effect of diurnal aberration may be

neglected except where relative positions of

widely separated bodies are being measured.

(4) A_mual aberration

The annual aberration, due to the earth's

orbital motion, in terms of right ascension and
declination is

_A =C 1 c 1 +C 2 c 2

_D = C 1 c I + C 2 c 2

(31)

where

c 1 =cos A sec D

c 2 -sinA sec D

el, = tan 6 cos D - sinA sin D$ =obliquity

I

c 2 =cos A sin D

and

C 1 - -20:'47 cosk(gcos 6

[k (_) = true longitude of sun]

C 2 = -20P47 sin k(D

are tabulated in the American Ephemeris.

b. Precession

Precession is the combination of the slow

change of direction of the earth' s axis of rotation

and the slower change of direction of the axis

perpendicular to the ecliptic. The first effect is

due to the action of the sun and the moon (luni-solar

precession), the second is due to the action of the

planets (planetary precession).

As a result of precession the vernal equinox

is slowly regressing at a rate of about 50 sec of

arc per year; therefore, any coordinate system

which has as the principal direction the vernal

equinox must specify a date to which it is referred.

To change from one equatorial system, say

referred to the mean equinox of date, to another,

say to the mean equinox of some other standard

date (like 1950.0), the following operations

should be performed:

Xd • Xx x1950 + Yx Y1950 + Zx z1950

Yd • Xy x1950 + Yy Y1950 + Zy z1950

Zd --Xz x1950 + Yz Y1950 + Zz z1950

(32)

or

x1950 = Xx Xd - Yx Yd - Zx Zd

Y1950 = -Xy xd + Yy Yd + Zy z d

z 1950 = -Xz Xd + Yz Yd + Zz Zd

where the subindex

and

d = mean equinox of date

1950 =mean equinox of 1950.0

X
X

= 1.000 000 00 - 0.000 296 97 T 2

- 0.000 000 13 T 3

Y =- X =-0.022 349 88 T-0.000 006 75 .
x y

+0.000 002 21T 3

Z = - X =-0.009 717 11T + 0.000 002 07 T 2
X Z

+ 0.000 000 96 T 3

f = 1.000 000 00 - 0.000 249 76 T 2
Y

- 0.000 000 15 T 3

Zy Yz - 0.000 108 59 T 2

- 0.000 000 03 T 3

Z = 1.000 000 00 - 0.000 047 21T 2
Z

+ 0.000 000 02 T 3

where T is measured in Julian centuries from
1950.0.

The Julian Calendar is discussed and a table

presenting Julian Day Numbers presented in

Chapter If.

T =[Julian date number for epoch -

Julian date number for 1950.0] ]36525

c. Nutation

Due to the solar and lunar attractions on the

equatorial protuberance of the earth, the celestial

pole traveLs in a small ellipse around its mean

position on the circular precessional path. The

correction for nutation is very small and may

generally be neglected except in precise astronomic

determinations.
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Tables for nutation in longitude and in obliquity
are tabulated in the American Ephemeris and
Nautical Almanac each year. An explanation of
how those tables are obtained is given in Astronomical
Papers of the American Ephemeris, vol. XV,
P_rt 1, p. 153, 1953, and in the joint supplement
to the American Ephemeris and Nautical Almanac
entitled "Improved Lunar Ephemeris 1952 - 1959,"
pp. ix-x, 1954.

To obtain rectangular coordinates referred to
the mean equinox of date when those referred to the
t rue equinox are available, perform the following
computations:

x =x d Xy - Yd Yz - Zd Zz

y = -xd Xy +yd Yz +zd Zz

z = -xd xz +yd Yz ÷zd Zz

(33)

where

=yy =x = 1ZZ X

"Yx =xy =_@cos¢ sin 1"

-z x =x z =_@sin_ sin 1"

and

-Zy = Yz = _ _ sin I"

= obliquity of ecliptic

At, and _ ¢ are, respectively, the rates of
nutation in obliquity and in longitude (ob-
tained from the tables mentioned above) in
units of seconds of arc.

d. Refraction

Refraction is another source of deviation be-
tween the apparent and true directions of optical
or radio measurements. The curvature of

electromagnetic rays due to refraction is greatest
for measurements of small elevation above the
horizontal plane. From Snell ss law, the cor-
rection to be added to the observed elevation is

O O

ds =-f _" V_dsc (34)_E = p-- v
b

where the integral along the ray path is taken
from the body observed, b, to the observer, o.
and

Pc = radius of curvature of the ray path

v ,,refractive index

= unit vector normal to the ray path

s = arc length along the ray path

Specification of the variation in v along the path
may be very difficult. One approach is numerical

integration of the integral expressed as

a i tan (2i + 1)Za

i

where the a.' s are empirical coefficients and
t

z is the apparent zenith distance. In several
a

studies of radio wave refraction, two components
of the refractive index are distinguished:

tropospheric refraction:

(,,- 1) 106 =

where

103.49 I_K (Pa - Pw ) _"

(35)

Pa = air pressure, mmofmercury

Pw =water pressure, mm of mercury

K = temperature in degrees Kelvin

or

v - 1 = 105 x I0 -6 e -0"142 (h - a)

(+ 15%, h > 9 kin)

ionospheric refraction:

V 4_ NE 2 V1 3. 18 x 109Nv = 1 - ----------_ = 2
E rn_

0

(36)
where

N = electron density, electrons /cm 3

q = charge of the electron

m =mass ofanelectron

E0 =dielectric constant

_0 • frequency in radians per second

Electron density is tabulated in Chapter H. Ref
(2) enumerates the phase changes which occur
in propagation for the various radio tracking
tee hnique s:

Range measurement:

\up down ]

Doppler measurement:

(37)

A_ 5- _,ds =_- b b" p -g_ d

(assuming isotropic v) (38)
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Interferometer measurement :

e s _- vds - vd (39)

_¢ =_ _xsin_ _t (40)
C

where the integrals are taken over the ray path
and

p = range

_o t = temporal phase difference

_¢s = spatial phase difference

_'_ = difference in rate of change of phase

= frequency (rad/sec)

c = speed of light

v = refractive index

b = subscript indicating a value of the

body

"t = unit vector tangent to the ray

_x = interferometer baseline length

and _, = is defined in Eq (34)

4. Data conversions

Transformation between topocentric
coordinates and direction cosine data

Xoh
= COS E COS _ =

P

m =cos _ sin = = I,Yo_
P

n = ¢I - =2 _ m 2 =sine =--Z°h (41)
P

x 0

YO

From the differentials of these relations

di '=
dXoh Xoh

p _" (Xoh dXoh + Yoh dYoh +
P

(continued)

dm =

+ Zoh dZoh)

dYoh Yoh (Xoh dXoh +P _ Yoh dYoh
P

+ Zoh dZoh )

dz oh
dn = --

P
(Xoh dXoh

P
+ Yoh °Yoh

+ Zol_ dZoh)

the correction relationship is

!'ldm

n

i-,2-,m-'nI-Im I- 2 b= m -ran h
J --Z--

_n -ran l-n t_'_[_.

-= TI _d_-_ °h)

Transformation between topocentric
coordinates and radar data

whe re

Xoh

Yoh

Zoh

= p COS _ COS 0/

--p COS ¢ sin

=p sin_

Z°h

Yoh

South

p = range

o = azimuth

• = elevation

The inverse relationships are

P =¢Xoh 2 + Yoh 2 + Zoh 2

Zoh
sin t = --

P

Yoh
t_,l o =--

Xoh

(42)

(43)

(44)
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The sensitivities of topocentric coordinates to
radar data corrections are obtained from the

differentials of the above expressions.

1 ( dXoh + dZoh )dp= _ X_h Yoh dYoh +Zoh

dZoh
cos c dE m Z°h (Xoh dXoh +- -"3- Yoh dYoh

P

+ Zoh dZoh)

2 dYoh Yoh

sec a da = -- -"""2- dXoh

Xoh Xoh

dp

OS¢ d =

Ld,
(45)

E cosa icos, sina IsinE]_Xoh ]

II a I _ II Isin cos i0 lldYo l

,.sln_ cos al- _ sin _ slna_ cos z o

The transformations of the time rates of these

variables are as follows:

1 (Xoh. + , + . )--_ Xoh Yoh Yoh Zoh Zoh

- Xoh Yoh " Yoh Xoh (46)
2 2

Xoh + Yoh

= z oh (Xoh Xoh + Yoh #oh ) - Zoh (Xoh 2 + Yoh 2)

2 _Xoh 2 2- P + Yoh

C. ACQUISITION OF DATA

I. Trackir_ Techniques

Orbit data are chiefly acquired by either

optical or radio techniques. Optical trackers

have the advantage of extremely accurate topo-

centric angular measurements, and the dis-

advantage of not being able to measure range

directly (range is found by triangulation). Radar

trackers, using much longer wave lengths (I in.

to 50 ft), have the advantage of accurate line-of-

sight measurements but the disadvantage of

relatively poor accuracy in angular measure-
ments. The radar trackers are able {o attain

their high accuracy in line-of-sight measure-

ments because radio waves can be generated with
very narrow bandwidths; hence, the measure-

ments of single frequencies are practical. Since

the velocity of electromagnetic wave propagation

is known rather accurately, the range (the
velocity of light times the transit time) can be

measured with good accuracy. The other line-
of-sight measurement based on the doppler effect

involves a comparison of the transmitter fre-

quency to the received frequency in order to de-

duce range rate. Since the frequencies of a light
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transmitter spread out over a wide band and are

uncorrelated, great difficulty is encountered in

attempting to follow any one frequency and meas-

ure its Doppler effect. Only recently has pure

light, with a very narrow bandwidth, been gen-

erated with high intensity.

Thus optical cameras such as the Baker-Nunn

camera are used to measure the topocentric

angles of satellites and radars are used for both

line-of-sight measurements and angles (even

though angles degrade the accuracy).

a. Optical systems

Optical systems which may be used are:

Baker-Nunn camera, recording optical tracking

instrument (ROTI). Cine theodolite, and ballistic

cameras. A complete description of one, the

Baker-Nunn camera, follows:

Features: field of view'-- 5 ° x 30°

focal length --20 in.= 50.8 cm

accuracies --2 " (claimed)

limiting magnitude: 17.2

(when tracking object on

celestial equator).

Description: Modification basic Schmidt

design which has wider field

of view than most telescopes

or cameras; uses three-element

correcting system for aber-
rations.

Advantages: Wide field of view, without
excessive aberration.

Disadvantages: Slow processing; no direct

range or range rate measure-
ments, sometimes takes a

week to process a single
photograph, sometimes the

star background is too sparse.

b. Radio trackers

Various techniques have been developed to

obtain the highest accuracy from radar measure-

ments. Three broad classes of techniques are
discussed:

(I) Radar measurements

(2) Interferometer techniques

(3) Special techniques to reduce measure-

ment errors.

Radar measurements cart be classified into

line-of-sight measurements and angular measure-

ments. Line-of-sight measurements are range

and range rate; angular measurements are usually

azimuth and elevation. Since the wave lengths

of the radio waves used by radars are relatively

large compared with the dimensions of the typ-

ical radar antenna, the angular measurements

are usually less accurate than the line-of-sight

measurements• Many systems such as Minitrack

and General Electric Mod II use triangulation

schemes with only range measurements. By using



at least three stations in a coherent manner, the

topocentric angles of the satellite can be com-
puted. Generally, range measurements use
monopulse systems.

(1) Range measurements

There are two types of range radars.

Skin track radars depend on the reflection
properties of the satellite's skin to reflect the
transmitted pulse back to the receiver. Of
course, the reflected pulse is greatly reduced in
amplitude. Since the reflected pulse is weak,
and since itis desirable to send out as many
pulses as possible during a pass, complex gates
must be built into the receiver and usually high
redundancy must be in each pulse to help
separate the signal from the noise.

Beacon track radars can either be monopulse
or continuous wave-single frequency carrier
types. Beacon track radars depend on a trans-
mitter on board the satellite which can be in-

terrogated by a ground transmitter. Since the
return pulse is much stronger than that of the
skin track' radar, beacon track radars are more

accurate in range measurements. However, the
added weight of the onboard transmitter some-

times precludes using beacon track radars.

(2} Doppler systems

Another radar technique is to measure tile

change in carrier frequency as the satellite either
recedes or approaches the radar station. One of
the differences between this technique and the
above pulsed systems is that the transmitter and
receiver of the tracking station must be phase
locked onto the satellite in order to obtain ac-

curacy, which means that phase information of
the carrier is retained. The frequency trans-
mitted can be measured by counting its energy
maxima or minima; the received frequency is
measured the same way. The result is a frequency
difference which is proportional to the range rate
of the satellite. Range can sometimes be measured
by integrating the range rate (provided the con-
stant of integration is known}.

(3) Angular measurements

Direct angular measurements (that is, not
using triangulation techniques with line-of-sight
measurements} can be made as follows: Suppose
a radar antenna is highly directional so that when
it does not point directly at the satellite (assuming
a satellitebeacon and neglecting refraction effects),
the signal strength falls off. The signal strength
is at a maximum when the antenna points directly
at the satellite. When the maximum signal strength
is indicated the orientation of the antenna can be
measured in azimuth and elevation.

(4) Interferometer systems

Interferometer systems measure the difference
in times that a radio wave front from a satellite

strikes differently located tracking stations (see
Fig. 1). By the time that the wave front reaches
the tracking stations it is almost planar; and the
approximation that

bcos,= X=c (t2-t 1)

is fairly accurate. The elevation G can be found

from the above formula.

Minitrack is an example of a tracking system
which uses the above interferometer technique
in modified form. The tracking portion (dis-
tinguished from the acquisition portion) of each
Minitrack "station" consists of five antennas.
The central antenna transmits and receives;

each of the others only receives. Two of the
receivers form a north-south line with central
included; the other two receivers form an east-
west line with central. The resulting beam
width from the length of the baselines is 100 °
{north-south) by 11 ° (east-west). See Fig. 2.

Notice that, since the antennas are fixed in
direction, the Minitrack station cannot track

unless a satellite passes through its fan-shaped
radio beam.

(5) Special techniques

Noise reduction techniques may be listed as

(I) Low noise receivers

(2) Choice of frequency

(3) Modulation scheme and redundancy
{coding, correlation)

(4) Frequency diversity to avoid multipath
errors

(5) Time standards and synchronization

(6) Search or acquisition techniques

(7) Antenna design

(8) Coherent and noncohererrt systems

Low noise receivers. These receivers are the

masers and reactanee amplifiers. Masers
(microwave amplification by stimulated emission
of radiation) utilize the high Q properties of the
natural resonance frequencies of certain materials
such as ammonia, cesium vapor and rubidium.

A reactance amplifier increases the signal-
to-noise ratio of the receiver by pumping energy
into the signal in a manner related to the phase
of the incoming signal. In this manner the
phase information redundancy of a carrier is
not thrown away.

Choice of frequenc),. The atmosphere is
opaque to moat radio frequencCes; however, there
is a "window" to radiation in the region from
300 to 10,000 Mc. Water vapor absorption limits
the upper frequencies and thermal excitation
limits the lower end of the spectrum.

Modulation schemes and redundancy'. One
sche_ne for using the redundancy of the signal
has already been mentioned. The common
modulation schemes are amplitude modulation,
frequency modulation and pulse time.

Frequenc_ diversit),. Frequency diversity
systems use two or more carrier frequencies
to minimize frequency effects in propagation.
One of the major sources of error in propagation
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is the ionosphere, which acts as a time varying
dielectric 0 thus changing the frequency of a
carrier in an unpredictable manner. The
ionosphere also refracts radio beams, thus
changing the direction of the beam. The following
formula shows how the index of refraction is a
function of frequency and ion density:

where

v = index of refraction

N = ion density in particles/cm 3

f = carrier frequency in kc

Using two frequencies allows the index of re-
fraction to be estimated, thus minimizing the
error due to bending of the radio wive.

The change in frequency due to the variable
index of refraction has been calculated by
Guier and Weiffenbach to be."

rcf0 1f - f0 = v0--d-- os h y _- _r V_0 - cos 2 h

where

v 0 = equivalent refractive index at earth's
surface

r c = the geocentric distance of the station

_(t) = angle between the station vector and
the geocentric distance vector of the
satellite

r = geocentric distance

h = height

c = velocity of light _ 3.00 x 1010 cm/sec

Time standards and s_chronization. Some
classes of orbits and some types of orbit com-
putations (determinations) require very tight
synchronization, whereas others need con-
siderably less. If three stations are to take
simultaneous range measurements, then the
simultaneity requirement will generally limit the
three stations to smaller baselines, and com-

plicated synchronization techniques are needed.
On the other hand, overdetermined orbits do not

need such tight synchronization and baselines
as wide as the earth are feasible (satellites could
also be used for tracking stations resulting in
very wide baselines).

One technique for synchronization of preci-
sion radars is to use gas filled wave guides in
which the temperature are pressure can be con-
trolled to the extent that the velocity of propaga-
tion is very precise. Generally, a central sta-
tion is connected via wave guides to outlying
stations; the signals and time are sent to central

from the other stations via the wave guides. If
line-of-sight radio beams were to be used instead
of wave guides, then significant errors, such as
multipath errors and variable time delays due to
temperature sensitive dielectric constants of the
propagation medium, would occur.

Another technique used for synchronization
when the time requirements are not quite so
stringent, is to use WWV receivers. WWV trans-
mits very accurate radio pulses on frequencies of
2.5, 5, 10, 15, 20, 25Mc. Through the use of
new techniques such as parametric amplifiers,
the frequencies are accurate to several parts in

1011. Received frequencies, if by line of sight,

can be nearly as accurate as the frequency trans-
mitted by WWV; if the received frequency is re-
ceived via the ionsphere reflection, then the ac-
curacy varies, sometimes degrading to a few

parts in 106 during solar storms.

2. Station Properties

Table 2 lists some of the existing satellite
tracking stations and their properties. Where the
information is incomplete or changes are antici-
pated, blanks are left so that insertions or modifi-
cations can be made. The information presented
should allow a good first estimate of whether or
not a station might usefully support a given mis-
sion.

Additional i_rfformationon these and other

stations is available from Goddard Space Flight
Center, Greenbelt, Maryland, attention Code
531.3.

Explanation of Table 2

Station number--An arbitrarily assigned
serfal number for cross referencing within
this handbook.

--The net of tracking facilities, if
which the particular station is

assigned.

Cognizant agency--This is the activity
responsible for the scheduling and operation
of the station; if should be contacted to ob-

tain support from this station. Abbrevia-
tions are:

AMR Atlantic Missile Range
Cape Canaveral, Florida

APL Applied Physics Laboratory
Johns Hopkins University

Silver Spring, Md.

BRL Ballistics Research Laboratory
Aberdeen Proving Ground
Aberdeen, Md.

GE General Electric Corporation
General Engineering Laboratory
Schenectady, New York

GSFC Goddard Space Flight Center
Anacostia Naval Station

Anacostia, Maryland
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JPL Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

MIT Lincoln Laboratories

Massachusetts Institute of

Technology

Boston, Mass.

NAA Space and Information Systems
Division

North American Aviation, Inc.

Downey, California

NERA Radio Receiving Station NERA

Nederhorstdenberg, Netherlands

NSSC National Space Surveillance
Center (Spacetrack)
Code CRRKI, AFCRC

L. G. Hanscom Field

Bedford, Mass.

PMR Pacific Missile Range

Pt. Mugu, California

RADC Rome Air Development Command
Griffiss AFB

Rome, New York

SRI Stanford Research Institute

Menlo Park, California

STL Space Technology Laboratories

One Space Park
Redondo Beach, California

LrlLL Electrical Engineering Re-

search Laboratory

University of Illinois

Champaign, Illinois

USASRDL US Army Astro Scie_ific

Research and Developme_

Laboratory

Deal, New Jersey

VAFB Vandenberg AFB

Lompoc, California

WRE Weapons Research Establish-
ment

Woomera, Australia

WSMR White Stands Missile Range
White Sands, New Mexico

Station name--A designation descriptive of

location and/or equipment.

--Equipment classification
Several widely distributed

radio systems are described in Table 3.

Where the installation type is unique or at

least not widely used at present, the table

gives the particular antenna configuration.

In this case, generally only the primary
antenna is described, and there may be

others for different frequencies or purposes.

Local desi_mation--A code used by the
_ognizant agency to identify the station

within the agency.

XI- 15

N Lat (deg)--The geodetic north latitude
of the station, measured in degrees.

E Long. (deg)--The geodetic east longitude

of the station, measured in degrees.

Altitude (meters)--The height of the antenna
feed at zero degree elevation above mean
sea level, measured in meters.

Survey reference--The basic survey to
which the station's location is referenced.

Data reported--Advertised and/or known
Observations from a given station. More

may be available.

a azimuth measurement

elevation or astronotnical altitude

measurement

H hour angle

D declination

p range measurement

range rate

f
non noncoherent Doppler frequency, the

received frequency from the sateilitc

being tracked, inciuding Doppler

frequency shifts

two-way phase coherent Doppler

frequency shift. Range rate can
be accurately and directly extracted
from f in most cases

Tel telemetry, analog or digital coded
information communicated from the

satellite

Units--Basic measurement system in which

t_ta if reported. Data reported and

units are on the same respective lines in
Table 2.

Coordinate system--Indicates how the
station's antenna is mounted and calibrated.

Antenna steering data (ephemerides) should

be supplied in the system and units specified.
The asterisk means that the units desired

differ from those reported and are artillery

mils for angular measurements.

Accuracy (3u)--This is statistical 3a to

which a given measurement is accurate.

Data formats--Indicates the data output

equlpment available. Most manual outputs

work into a teletype system. Almost all

automatic outputs work into a teletype sys-
tem. Almost all automatic output systems

may be read manually, so only the higher
order available output is shown.

Data delay--The estimated nominal time
for handling data at the station before it is
transmitted to the user. Abbreviations are

as follows:



RT Realtime, whichsignifiesthatthe
datais transmittedviaanon-line
processandwill bereceivedby
theuseressentially the same time
that the station observes it.

NRT Near real time--less than l-min

delay--essentially the same as

real time except for slight delays

such as those caused by data going
through teletype tape loops, etc.

Maximum range--The range limit on the

particular installation when tracking a

passive 1-m 2 target.

Antenna gain/frequency--The advertised
approximate antenna gain in a particular

frequency band.

Table 3 contains descriptions of some of the

more widely used radio tracking systems.

3. Data Acquisition

Mission constraints generally dictate the data
sources and tracking time available to each source
for a given pass. Low altitude earth satellites

are usefully visible from a given station for about

5 to 20 min, and, if the satellite's period is on the
order of 120 min. three to four stations more or

less evenly spaced along the ground track of the

satellite can track and produce data so that data

processing facilities will not be overloaded. Pre-

launch planning must always include the possibility

of a nonnominal orbit, and data handling and orbit

computation operations must be capable of pro-
ducing results under this "worst condition. "

Orbit determination tasks seldom have the prob-

lem of an overload of data, and, when it arises,

it is easily controlled.

The threat of insufficient data is best met by
considered overdesign of the tracking network.

Some redundancy in the tracking systems is

desirable, so that failure of a single system will

not require reliance on optical or skin track
radar methods for further data. Optical methods

are slow and dependent on such uncontrollable

items as weather, and large skin track radars

generally have other commitments. One tracking

station with high acquisition reliability should be

able to track immediately after injection of the

satellite into its free flight orbit, since in many
cases the data is better at shorter ranges and

time-propagating position errors are reduced.

Accurate determination of the time of injection

(orbit epoch) is possible from telemetry or Doppler
data.

The problem of locating tracking stations to

provide maximum certainty in orbit determina-
tion involves three considerations:

(I) Maximizing. basic orbital information.

(2) Maximizing the visibility period, con-

sistent with other requirements.

(3) Measuring with maximum certainty.

Maximizing the basic orbital information de-

pends strongly on what part of the orbit is being ob-

served. For any given coordinate system, there

exist orbits and locations on the orbit path which

give ambiguous coordinates. For example: (i) it

is very difficult to resolve the line of nodes (in-

tersection of orbit plane and equatorial plane) if

the orbit is equatorial or near equatorial; (2) it

is also extremely difficult to locate perigee when

the orbit is nearly circular; (3) if a station is

located such that it observes perigee passage,

the orbit determination might be very poor be-
cause so few observations would be obtained and

the noise on the observations would obscure such

vital information as time of perigee; (4) in the

least-squares fitting of observations in orbit

determination (described in Section E. 2) the

partial derivatives (of the observation quantities

with respect to the orbital elements) can be

manipulated to indicate the information content

of a pass, orbit, orbits, etc.

Maximizing the visibility period means more

observations for a given situation, but careful

notice must be taken of the information gained

from each observation. This requirement can

be approached by attempting to either adjust the

network to maximize visibility or to adjust orbits

to existing networks. Most system designs are
compromises of the above two approaches.

RIeasuring with n_.aximun -, certainty means
measuring in such a m_nner :hat znos-_ errors

are minimized.

Data rate. To minimize random errors, the

highest data rate possible is desirable in order

to obtain the maximum number of data per pass.
However, the assumptions of independent data
become poorer as the data rate is increased.

If the correlation between measurements falls

off exponentially with time, then there is a pre-

dictable data rate above which greater errors

are given in the orbit determination rather than

less.

Measurement ambiguities. A simple example
of a measurement ambiguity to be avoided follows.

Suppose the tracking station measures range p,
azimuth a and elevation E , of the satellite with
respect to the radar location.

It can be seen that when _ equals exactly 90 ° ,

the azimuth measurement is ambiguous; and when
E only approaches 90 ° , the azimuth measurements
become more uncertain.

Transformation ambiguities. Transformation

aml_ignities may result in the trigonometric trans-

formations of the topocentric coordinates into

orbital elements. An example of this is the trans-

formation of the inertial, geocentric spherical

coordinates r, A and D, into the radar quantities
p, a and E.

One possible transformation equation is

sin (D s - D) = p (cos { cos a)
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where

D declination of the satellite in in-
ertial coordinates

D S
declination of the station in in-

ertial coordinates

-- geocentric distance of the satel-
lite.

Examination of this equation shows that D in-

formation is lost when the azimuth a measure-

ments approach 90 °, that is, when the satellite
heads due east lrom the station. In a like man-

ner, all coordinate transformations have am-

biguous answers where the inertial orbital ele-
ment cannot be determined at that time. One of

the ways of resolving ambiguities is to have an

overdetermined orbit; another way is to adjust
the orbit or the station location such that the

ambiguities do not occur.

Errors may be minimized by suitable station

calibration techniques and methods.

It is undesirable to attempt an orbit deter-

ruination from a single station's data on one

pass. The station's random errors generally

preclude computation or an orbit sufficiently ac-
curate to furnish position predictions which will

enable a narrow beam radar to acquire one orbit

revolution later. Experience dictates that data
from at least one tracking pass from each of

two well spaced stations (preferably through

apogee, and 90 ° to 180 ° from apogee) is required
to determine the initial orbit achieved.

Satellites in highly elliptical orbits (perigee

high enough to be free from drag effects) and

space probes present less stringent require-

ments on the tracking system, unless midcourse
guidance is involved, because more stations

have visibility for longer periods of time and

data is plentiful. Mtdcourse guidance requires
rapid and accurate orbit determination if satel-

lite fuel requirements are to be kept within

reason. As little as an hour may be available
to track the satellite, process data, determine

the orbit, and calculate the time and duration of

the rocket firing for correction of the satellite

trajectory.

Under these conditions, prelaunch planning

must include limitations on the tracking time

and the number of data points, to ensure that
adequate computation time is available. Several

data handling modes should be available so that
last minute equipment failures do not jeopardize
the mission.

4. Data Handlin_

Communications should be established at

least one hour prior to the earliest scheduled

liftoff to ascertain that complete circuit com-
munication is available. Once liftoff occurs,

data should begin to arrive from the tracking
stations.

Teleprinter circuits are a favored method for

transmitting data because they:

(I) Are readily available as a leased
service.

(2) Are the most reliable rapid communi-
cation.

(3) Produce punched paper tape and

printed, multicopy output.

(4) May be gauged together on a single
circuit at little extra cost.

The received

(1)

(2)

(3)

information may be:

Supplied as electrical impulses in

teletype code to electronic conversion

equipment which writes it on a magnetic

tape in computer code. or enters it

directly into the computer.

Punched onto cards by passing the

paper tape through a tape-to-card
machine, (These cards are checked

for bad points and are then read into

the computer. )

Manually transcribed to load sheets,

keypunched to cards, and then read

into the computer. (This method is

used if the data is irregular in some

respect and cannot, be handled as
described m the f_rst _,vo methods.)

The availability of at least two of the above
methods is recommended. Experience has sho',vn

that flexibility is a prime data handling require-

ment. Extremely useful observations may be re-

ceived in an irregular format when previously
coordinated sources have failed to acquire the

satellite, and the orbit determination agency

should be prepared to use them.

Generally, the transmission of information

from tracking stations to a central data gathering
center is over a narrow bandwidth channel such

as a teIephone circuit. This means that the in-
formation cannot be fed over the lines very rapidly.

Error checking slows down the rate even more;

to check for all errors would require an extremely

long time. The result is that high probability

error classes are checked automatically or semi-

automatically; low probability errors are not ex-
cluded.

5. Data Filterin_

Two extreme cases of how the data could be

processed are: (1) the raw data could be fed into

a central data gathering center and processed
there and (2) the data could be processed at each

station. If each tracking station completely

processes its own data, there is not only a duplica-

tion of computing equipment {one for each station)

but each station is not taking full advantage of
other stations' data. If all data is fed raw from

each tracking station to one central computer,
then far too much bad data gets into the orbit de-

termination routine. The usual compromise is
to have one central computer do the final editing,

smoothing and orbit determination, but have each

tracking station perform its own local calibrations
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and some data smoothing and editing for grossly

erroneous data.

When a sufficient number of points have ac-

cumulated, the preliminary precision orbit is

determined. The differential correction tech-

nique using least squared errors is the method

usually used; it is described later.

An optimum filtering scheme has two con-

flicting requirements imposed on it: (i) to use

all the information contained in the observation

and (2) to reject all misinformation contained in
the observations.

Since there are no perfect data, all observa-

tions have varying degrees of noise or unknown

errors associated with them. Using all the in-

formation contained implies accepting all data

points. Rejecting all misinformation implies

rejecting all data points. Filtering schemes
attempt to improve the accuracy of an orhit de-

termination by various compromises with the two

above contradictory requirements. One such

compromise is to reject all "obviously" bad
data. Such data only degrade the curve fits,

since they contain so little information. Another
compromise is to maximize the probability of

the accuracy of the estimates of the orbit

parameters. This compromise is effected by

determining the maximum likelihood estimates
of the orbital parameter. There are two dif-

ferent ways of determining a bad poim: (1) by

taking more observations, thus increasing the

probability of obtaining a more accurate fit,

or (2) by a priori knowledge of the true trajectory

or a priori knowledge that a given point is bad.

The best filtering of the data, if random errors

(only) are present, uses a least square fit
(described in Sections E.2 and F) to curves con-

strained by the known (i.e., well determined)

laws of physics. Unfortunately, to use all the

points in the curve fitting procedure would de-

grade the orbit determination so much that the

computation would almost always result in an

ambiguous answer. (In other words, so many
orbits would fit the set of observations that the

estimates would not be consistent. ) Additionally,

if much of the bad data had been rejected pre-

viously by quicker methods, fewer computations

would be needed to reject the bad data.

An efficient filtering scheme must divide the
filtering between the tracking stations and the

central computer, such that most of the above

problems are minimized. It is instructive to

contrast the extremes of too much local filtering

at the tracking stations and no local filtering.

Excessive local filtering. If data is rejected

on the basis of simple curve fitting, the curve

being fit would be in error and there would be a

tendency to reject "good" data.

If data is fit to curves representing the known

laws of orbital mechanics, then a complex com-

puter is required at each station. However, each

station would have the disadvantage of not using
data from other stations.

If each station fits all data to curves repre-

senting orbital mechanics, then each is really a

central station and there is inefficiency in that

the same computations are being duplicated in
each station.

No filtering at local station. If no filtering
occurs at each station, the computation center

is swamped with bad data, unknown biases (e. g.,
biases known to local stations but not to central),

increased transmission errors, and less infor-

mation per unit time being fed to central.

D. DETERMINATION OF PRELIMINARY

ORBIT ELEMENTS

Two areas of the problem of orbit determina-

tion are generally distinguished:

(I)

(2)

Preliminary orbit determination--

more or less approximate calculation

of an orbit which was previously com-
pletely unknown.

Orbit improvement--refinement in ac-

curacy of elements already known

approximately.

This section considers the problem of preliminary

orbit determination; Section F considers orbit

fmprovement. Many methods of determining

preliminary orbits are available. The best

computation technique to use in a given problem

depends on the types of data available. Table 4
shows the appropriate computation schemes to be
used for the various combinations of observa-

tional data.

Several methods are described briefly below.

Reference 4 considers some techniques in

greater detail.

I. Method of Laplace

The method of Laplace depends on the solu-

tion of the differential equation of motion by

Taylor series. That is, a solution of the equa-
tion

d2_
(47)

will be written in the form

_--F0+a7 0 "'"(t - t012 +
0

(48)

Evaluation of the derivatives (the series coeffi-

cients) of Eq (48} from Eq (47) and collection of

terms gives

(t) =

I (t - t0)2 1
I - p _ +" • • "{0 + (49)

2r 0

(continued)

.....-

XI- 22



TABLE 4 *

Observation Requirements for Preliminary Orbit Determination

Observational Data Assumption Method

.
Three 3-dimensional fixes None Herrick-Gibbs or Gibbs (with or

without differential correction to
reduce residuals and/or discard
bad data)

Overdetermined system wtth
more than three fixes

Random error

distribut ton

Least-square differential cor-

rection of initial orbit

Fifteen range measurements

Eight range measurements

Four range measurements

Low eccentricity Gibbs

circular orbit

rectilinear Gtbbs

parabola
Gibbs

One 1-dimensional fix (can be

achieved [n several ways: one
vector measurement of range
and range rate; three range
and three range-rate meas-
urements)

None Laplace, Lagrange

T_o 3-dimensional fixes None Gauss (and variants)

Azimuth, elevation (a. G) None Laplactan

Azimuth, elevation ra_e (_, _

Azimuth, elevation change of

rate (_, _') all at one time

Three
elevation} ] for three times

Three _zhnuth

(That is, each E i - a i pair is

taken at three separate times)

None Convert to a, E, &, 4, _;, %"of
middle data (Laplacian)

Retain c,, c

Lagrange with Herrick-Gtbbs
velocity

Gauss

Gibbs expansion method

NOlle Differential correction of pseudo-

Lap lac Jan
Three range measurements

Three range-rate measure-
ments

Differential correction of pseudo-

Six range measurements None Laplacian

Six range-rate measurements None Probably only differential correction

Other combinations of six None Needs to be developed

observed quantities for three
or more times

Five observed quantities for Parabolic or one- Modified Olbers

one or two times condition orbits Laplactan or similar method

Four observed quantities: Circular or two- Standard circular orbit methods

for example, a, _, _, _ for condition orbits:

one time; 2a, 2t for two for example, two

times ranges or two r's

are assumed

Four ranges for four times

Two ranges, two range rates
for two times

_, _, range, range rate for
one time

Three observed quantities

Two observed quantities

Three-cond [tion

orbit

Four -condition

orbit

Needs to be developed

Needs to be developed

*Adapted from Ref. 3
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I (t-t0)2 I drn+(t-t 0 ) 1-_ 6r-_7 +-..

-- sF 0 + ar O

0

(49)

From Eq (49), if the position vector T 0 and the

velocity vector _0 are known for some time to,

and if the series s and a converge, the radius

vector at any time,_(t), is determined. But the
radius vector r is related to the observations by

sisting of two angular coordinates and the cor:

responding., time, are sufficient to determine _0

and _0 at some time tO (generally the middle of

the three observations), except when _ x _. _ = 0

at t =t 0, or if _ =0 at t = to •

A convenient computation method for determina-

tion of the preliminary orbit of an earth satellite

from three observations of right ascension and

declination,

t : A D
a a a

r = p_+R (50) to: A0 DO

where

= vector position of the observer

p = magnitude of the observation
vector

A

p = unit vector in the direction of
observation

(51)

Successive differentiation of Eq (50) gives

r;o0+2 +p +

The acceleration as given by dynamics (Eq (47))
can then be equated to that given by the geometry

(Eq (5 1))

_+2_+p_+_ =- _ (52)
r

The dot product of this equation with (_ x _)

gives

A A

• " ' 3
r

Dotting Eq (50) into itself provides the additional

relation

2 2 H 2r =p + +2 (_" R) p (54)

If only direction data comprise the observations,
p and r are the only unknowns in Eqs (53) and

(54). Each of the vector products can be evaluated

from the observations and the known position of

the observer. Three observations, each con-

tb: A b D b,

proceeds as follows.
unknowns

r =
a

_b _

Four equations in the four

s a, s b, e a and CZb are obtained

A

Pa Pa + Ra

+ ,OoZo+ +
,%

PbPb + Rb

where

A A A

Pi =c°s Aicos D.i+sin A i cos DiJ1

A

+sin D.k

The dot products of these equations with unit

vectors A and _,

^ A A

A = - sin Ai + cos Aj

(in the direction of

increasing right as-
cension)

^ A A A

D -- -sin DcosAi - sin D sinai +cos Dk

(in the direction of increasing declina-

tion)

1

give the following equations to be solved:

^ A _ ,% A

st (;0 " Ai) O0 + cz[At " r0 = " st (R0 " Ai) + Ri " Ai

A

= . D i) + R i • D isi(_0" _i)p0 +%Di'_0 -si(R0 ^ j55)^

(55)
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\ ....

where

i=ajb

2. Method of Gauss

If three position vectors, r I, r 2 and r'3 at

times t I, t 2 and t 3, are coplanar, and if-_ 1 is

not parallel or anti-parallel to _3 '

r 2 =clr" 1 +c3r 3 •

With the notation of the previous subsection

_i = PiPi + i' i = i, 2, 3.

(56)

These two equations give,

cl -6 *c3 ° -ci + -c3

Also, from Eq (56),

_I xr'2 =c3_I x_3

(57)

so that

_2 xr'3 -- C l _I x_3 "

r'2 x _'3 " _ Area AOP2P 3

Cl - - /k'rea AOPIP 3

_I x-r2 " _ Area AOPIP 2

c3=
rl x r 3 • k" Area AOP1P 3

-- P3

0 P2

--I

The c's are known as "triangle ratios" "Sector-

triangle ratios" can then be defined as

area of sector OP2P 3

nl = area of triangle OP2P 3

area of sector OP1P 3

n2 = area of triangle OP1P 3

area of sector OP1P 2

']3 = area of triangle OP1P 2

By Kepler's law of areas, the areas of the
sectors are proportional to the time. Therefore,

t3 " t2 '12 (58)

Cl = -t_---_- _-_

t2 -tl n2 (59)

c 3 = t3 _ vl 3

Additional conditions are imposed by Kepler' s

equation,

1 _ (tj - ti) = E. - E i - e (sin E. - sin E i)E j j

(a dynamic condition) (60)

where

E = eccentric anomaly

e = eccentricity of orbit

a = semimajor axis of orbit

/_ = gravitational constant

and

+ r = 2a - ae (cos E i +cos E j)ri j

(a geometric condition).

(61)

Defining 2E. = E. - E. as the change in eccentric
tj j I

anomaly and 28.. = e. - 9. as the change in true
Lj j l

anomaly, the last equation gives

+ r. = 2a sin 2 E. + 2_t rj cos O. cos E..ri J Lj tj tJ

(62)

and Kepler' s equation becomes

ly'_-(tj - t i) = 2E[j - stn2Etj

+2_
a _/_ rj cos 9ij sin Eij. (63)

The following definitions will prove convenient.

k 2 - 4r. r. cos 2 8..
J _J

r.+r.

1+21-= @

m2 =_k__ (tj -ti) 2

x -- sin 2 _ .

Solution of Eq (62) for a gives

(64)

k (r i + rj)
2a sin2Eij = k -k cos Eij

or

k (i + x) (65)a -

sin 2 E..
tj

Substitution of this a, obtained from geometrical

constraints, into Kepler's equation, Eq (63),

gives

_-(tj - t t) = (2Zij - sin 2Eii) a 3[2

+ 2 4s73 cos% sin Eij
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or

2Ei_- sin 2_ii [k(_+x)3_I_
_/_-(tj- ti) = sin 3 E..

x3

+k 3/2 (I +x) I/2 = mk 3/2

With the definitions

2
ITl

_ + x - ---_
n

2 E..-sin2E..
X (x) - tj tJ (667

3
sin E.

_3

this equation reduces to

3
m -- = m (67)--3-- X (x) + m
Y

or

2

n=l+ % X(x)
,l

Differentiation of the above definition of X (x)

with respect to Eij gives

sin3 E.. 9X - 3 sin2 E.. cos E. X
tj _ Lj tj

tj

+ 4 sin 2 E.
t3

Then

dE..

cLX dX

tj

4 - 3 cos E.. X
= x_ 1

sin Eij i
2 sin Eij

Then expanding X (x) in series gives

X (x) =_ A i x i

iffi0

whe re

A i = A(i_l ) from -_ i A t x

From Eq (66), A 0 = _ . Therefore,

X(x) = + • x+ " _" 7 x +...

(68)

The solution for a preliminary orbit by Gauss'
method then proceeds as follows:

(I) Select approximate values for PI'

P3" X=4 "3" " ']2 = n3 -- 1, these values

(2)

to be improved by iteration. Take

t 3 - t2 t 2 - t 1

C1= _ andc3--_ •

e,

Determine r I and r 3 from _ = Pi Pi

+ R i and determine 01. e 3 and k from

Eq (64).

_2 =Cl?l - c3_'3

(3) Determine m from tl, t 2 and k by Eq

m2X 2
(64). Revise _2 = 1 + 2- (iteration
loop), q 2

(47 Derive t from rl° r 2 and k by Eq (64).

2

Derive x from x = (-_.) - t. Revise

X from Eq (68) (iteration loop). From

x obtain 8j,-O i and a from Eqs (64) and

(65). From Eij and 8i, O.jdetermine t.

(5) Repeat (I) to (4) with Pl' P2 to get ,13,
X 3 •

(6) Repeat (1} to (4) with P2" #3 to get ,ll,
X 1-

(7) Obtain improved values for c 1 and c 3

from Eqs (58) and (59).

(87 Obtain improved values of Pl and P2

from Eq (57). Note that this is ac-
complished by dotting in turn by

_ x _3 a_ _l x _2" The values of Pl

+ P2 are then obtained from the follow-

ing equations.

c,(_l" _2_ _3)pl"- e,(_ • _ x_3)

+ (R2"_ _ _37

c3 (_l " _2 x_3 ) P3 =" cl (RI" _i x ;2)

+ (R2' _, x _27

-c 3 (K3- 9, x_2 )

(9) Repeat (1) through (8) wRh improved

values of Pl" P3 ° until iteration con-
verges.

3. Gibbs' Modification of Gauss' Method

There is an aRernative method of solution for

c I and c 3 in Gauss' Method due to Gibbs. If
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T1 = G (t3 "t2)

T 2 • _ (t 3 -t 1)

T 3 = _ (t2 - tl)o

T3÷ T32- Ta3 T¢ -.

--

_3 = _ + a'l T1 + _2 T12 + _3 T13 +_4 T14 +...

d2_.

Determination of 7 from these series, set-

ting

d2r.

dt_ rt

elimination of the _ s and substitution in

_'2 =cIFl +c3_3

gives

Here

c 2

i + Bl/rl3

i - B 2 [r23

I + B3[r32
-- n

1 - B 2/r23 J

2

T 2

B 1 ffi(ran + n-m) I_

(69)

T22

B 2 = (ran+ 1) -'T2-

2

T 2

B 3 = (ran - n+m) ----I-2"

where

m + n = I and n ffiT3/T2,_ m = T 1 _/T2

4. Method of Olbers

The method of Olbers is a technique for de-

termining preliminary parabolic orbits. As in

Zq (57),

Cl _1- P*2 +c3_3 = - Cl RI + if2

" c3R3 " _7 (70)

The dot product of this equation and (_2 x _)

where _ is coplanarwith _ and P2o

/)2

is

ClPl (_2 " _2 _ if) +% P3(_3 " ;2 xff_ = 0

(71)

Then

P3 = MPl (72)

where

c,( l
M = - (73)

c3 (_3 " _2 x if)

The computation then proceeds as follows:

(I) Select initial approximate values for

Pl and for c I and c 3 such that

c 3 t 3

c I tI

Obtain P3 from Eq (72).

(2) Obtain r*l' c2 and P2 from Pl' P3 and

c 3 by Eq (70).

(3) Obtain r'3 and S = It-2 - _1 [ from

the law of cosines

S 2 = rl 2 + r22 - 2rlr 2 cos (92 - 81).

(4) Obtain

2%/'_ (t 2 - t 1)
X=

(r I + r2 ) 312

(5) Correct Pl in step (1) by iteration until

(r I +r 3) X Y =S (74)

where X Y is the term in Euler's

equation,

6 _'- (t) - t i) y)3[2

+rj) 3/2 = (I +X(r i

± (1 - X y)3/2 = 3 X (75)

(6) Obtain _i, '12" _3 from _2 =c1_I

:_c2_ 2 and the sector to triangle area

ratios defining the _' s.

(7) Determine c I and c 3 from Eqs (58)

and (59) and iterate antil they agree

with step (1).
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(8) From the corrected values of c I and

c 2 calculate _2 and compare with the

observed _2" This checks the assum-

tion of Olbers' method that e = I.

E. THEORY OF OBSERVATION ERROR

After a preliminary orbit has been determined

as described in Section D, the elements thus de-

termined, together with a theory of motion° may

be used to calculate theoretical positions of the

orbiting body at any time. If further observations

of the body are then made, the observed positions

will be found to deviate from the theoretical po-

sitions for the corresponding times. The dif-

ferences in observed and computed positions, or

residuals, may be attributed to three causes:

(I) Approximations involved in the theory.

(2) Inaccuracies in the preliminary orbit
elements.

(3) Errors in tim observations.

In the problem of orbit improvement, to be con-

sidered in Section F, these residuals between

observed and computed positions are used to im-

prove the accuracy of the preliminary orbit ele-

ments. Sine the methods of orbit improvement

are rather complex in themselves, some benefit
may be derived from a review, preparatory to

considering these methods in Section F, of those

areas of statistics and numerical analysis which
are basic to the orbit improvement theories.

i. Data Errors

Data errors are of three types: systematic

errors, which affect all measurements alike;

mistakes, generally large errors due to carelesls

reading of indicators or incorrect recording,

which do not follow any law, and accidental
errors, causes of which are unknown and inde-

terminate, and which are usually relatively

small and follow the laws of probability. Syste-

matic errors can be corrected to some extent by
calibration of instruments, and large mistakes

can be eliminated from data by use of an appropri-

ate data rejection philosophy. The mathematical

theory of errors to be discussed applies only to

accidental errors, and only these errors will be

considered in the analyses.

All kinds of accidental errors may be de-

scribed by frequency distributions, or probability

density functions, curves which give the relative

frequency of occurrence of the various values in

a set of observations. By far the most useful

frequency distribution is the normal or Gaussian

distribution,

f (x) - ,$'-; _ (x - .) (76)
v

which is found to describe most random or acci-

dental data errors, A special usefulness of the

normal distribution is also indicated by the math-

ematical theory as expressed in the central-limit
theorem of statistics:

2
"If a population has a finite variance

and mean _, then the distribution of the

sample mean approaches,the normal dis-

tribution with variance _ and mean as

the sample size n increases. "

It is interesting that, regardless of the form of
the population distribution function, the sample

mean will be approximately normally distributed

for large samples.

The parameters of the distribution, as pre-

viously indicated, are the variance a 2 and the

mean_. Sometimes, however, other parameters

are employed:

modulus of precision = h = a

probable error ; 0. 6745e (normal distri-

bution only)

In practice, since the actual parameters e and _

of the theoretical population distribution are not

known, they must be estimated from the avail-

able data. Statistical analysis shows that the

maximum-likelihood estimates of these param-
eters for the normal distribution, are

n

i=1

n
^2 1

= _- L (xi - _2 (78)

i=l

where n is the total number of data, xi, in a
sample.

The significance of the distribution function

is further indicated by noting that the area under

the function contained between two arbitrary

limits, x I and x2, is the probability that a given

observation will lie between x I and x2, i.e.,

x 2

Probability [Xl <__x<x2] =_ f(x) dx

x 1

X 2 _____I (x - p)2

= 1 ._ • ^_2a
2_cr dx (79)x

1

Viewed from this aspect, the parameters of the

normal distribution can be interpreted as follows:

# = data value corresponding to the maxi-

mum value of the frequency distribution

a = a span of x such that 68.26% of the area
under the distribution curve is con-

rained between the limits u-a and _+_.
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Probability distributions for several variables
(multivariate distributions) may be defined in a
similar manner, i.e.,

Probability ixI < x < x 2, Yl < y < Y2]

x2 Y2

Xl Yl

f (x, y) dy dx (80)

where f (x, y) is called the joint density function
for x and y. In particular, the bivariate normal
distribution is

f (x, y) = 1 exp

2_xCry _/1_ p2

- 2p _ Uy \ (;y /
(81)

which represents a bell-shaped surface over the
x-y plane. The parameter p is ealled the cor-
relation between x and y. When the correlation
is zero, f (x, y) becomes the product of two
univariate distributions

f (x,y) = gl (x) g2 (y)

and the variates are said to be independently dis-
tributed. It is sometimes convenient to write

EQ (81) in matrix notation:

f (Xl, x2 ) _ 1 exp

i=1 j=l

(82)

[ ij]

• determinate of the matrix [o'tj ]

- the variance-co-
variance matrix

2 2
all •"x and "22 =ay

"12 = "21 = covariances

The extension to the general multivaria*.e dis-
tribution is obvious:

k

f (Xl' x2 .... Xk) = k-_V_-J _ exp

I-21 _ ij(x i-ui )(xJ_uj
i=1 j=l

(83)

Error analysis frequently requires consid-
eration not only of random errors in measure-
ments, but of errors in functions of the measure-
ments. That is, the quantity sought is some
known function of several measured quantities.
Of particular interest :s the function consisting
of a linear combination of random variables, if

Xl, x 2.... xk are independently and normally

distributed random variables with means # and
2

variances a. , and if
t

k

u = _ ai xi, (84)

i=l

where the a. are arbitrary constants, then u is
i

normally distributed with mean

k

i=l
(85)

and variance

k

2 _ 2 2
"u = L._ a i a t (86)

i=l

This case is of special interest because, even
if the function of interest, u, is nonlinear, the
errors in u, _u0 can usually be accurately ap-
proximated by first-order differentials, i.e.,

8u 8u

_u = x_-_lAXl+ x_2 _x2+...

au 5xk

which can then be treated as Eq (84).
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2. The Method of Least Squares

The method of least squares is a method of

finding the best possible values for a set of m

unknowns, Xl0 x 2 ..... Xm0 satisfying n linear

equations, where n > m.

all Xl +a12 x2 +''* +alto Xm =Yl

a21 Xl +a22 x2 +''" +a2m Xm =Y2

anl X l +an2 x2 +''" +anm Xm =yn

Since the number of equations exceeds the num-

ber of unknowns, and since the Yi may contain

observation errors, the system of equations is

not solvable exactly, i.e. , there is no set Xl,

for which each of the n equations isx 2, ... x m

exactly satisfied. Each equation then has a

residual of the form

6i --Yi -ail Xl - ai2 x2 - "'" - aim Xm"

(i: ,. 2.n)

The least squares technique attempts to find

values for x 1, x 2' ... x m which will make

n

6i 2 as small as possible. This is the crt-

i=l

terion for "best" solutions in the least squares

method. If sucha set ofx. exists, [t then sat-
isfies the condition t

n

8 Z 6"2 = 0,

-_I i=l t

n

8 --0,

i=l

n

8 Z 6i2 _0

n i=l

This differentiation results in the following m

equatiOnsn n 1

Xl_ ailail+X2 Z ailai2 +

i=l i=l

(continued)

n

• .. +Xm_

i=l

n

=_ ail Yi

i=l

at 1 aim

n

i-1

n

ai2 ail +x2 Z at2 at2 + ....

i=l

n n

+Xrn_ ai2a[m = L a[2 Yi""

[=i [=i

n n

Xl _ aimail+X2 _ aimai2 +...

i=l t=l

7° 2+

x /-_ a. a. = Yim tm tm aim

i=l t=l J

(88)

These equations comprise a system of m linear

equations in the m unknowns Xl, x 2 ... x m, which

may be solved in a routine manner, e. g., by

Cramer's rule. These equations are called the

normal equations and are sometimes written in
the following shorthand form:

[al all Xl + [a I a2] x2+...

+ [a I am] Xm-- [alY ]

[a, "l + [a a4 +...
(89)

+ [a2 a A Xm = [a2Y ]

oo. o,,

[aI am]xI+ [a2am]x,÷...

+ [amain] Xm-- [amY ]

These equations apply in the case in which the
equations of condition, Eq (87), are of equal

weight, i. e,, all observations are assumed to
be made with the same precision. If this is not
true, then each of the residuals 6. must be

1
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assigned an estimated weight Pi,and each equation

of condition multiplied by the square root of its .

weight. Then the normal equations become

n

I
i-I

Pi ail (Xl ail+ x2 ai2 + " " "

+ x a. - Yi)7 J = 0m lm

n

!
i=l

n

Y_ [Piai2(xiail+X2 ai2 +''"

i-- I

+ x m aim - yi )] = 0

Pi aim (xi all + x2 ai2 + ...

- yi)]+ x m aim = 0

(90)

The weights normally utilized in these equations

are inversely proportional to the variances, i.e.,

2
(Y

Pi =
O',

1

, (91)

where a.2 is the variance corresponding to weight
1

Pi and o 2 is the variance corresponding to unity

weight.

Use of the least squares method is not strictly
limited to sets of linear equations. The method

can be applied directly in the case of certain

functions of an exponential type, but the usual

procedure adopted in dealing with sets of non-
linear equations is to replace the functions by

linear Taylor series approximations. Let the
n observations a. be related to n nonlinear

1
functions of the unknowns to be determined, L e.,

fi (Xl' x2 ..... Xm) = ai - _i

i = i, 2, ..., n, n> m

where the xj are the unknowns to be determined

and the 6 i are the residuals, or errors in the

observations. The desired solutions may be

represented by sums of approximate solutions,

(x 1)0 , (x2} 0 ..... (Xm) 0, and corrections to

these approximate solutions,

xj - (xi)0 + axj.

Then expansion of the fi in Taylor series gives

fi [(Xl)0" (x2) 0 ....

af.

1 I _Xl' (Xm)0]+ _ 0

Of. 0 %fi
+_ Ax 2 +... + _ _Xm

Ox2 m 0

--2

= cei - 6 i, /xj = 0 (92)

On setting

ai- fi [(Xj)o] = Yi

O fi 08 _ -= aij '

Eq (92) corresponds to Eq (87), the 1in_ar equa-

tions of condition, and may therefore be solved

for the "best" values of the xj in the manner out-

lined previously.

For the present purposes, it is convenient to

formulate the weighted least squares estimate in
matrix notation. Consider the equations of con-

dition, Eq (87)

m

6i = Yi - I aij xj ,

j=l

the weighted least squares condition is that

2

-- - a i_ x

t=l ai 2 j=l

be minimum. If the oi2 do not vary significantly

with xj, setting the m derivatives

axj = 0

gives the following normal equations,

4
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nI 1-- i " ai3 x

i=l ai 2 j=l

k = 1, 2 .... m

aik=O

or

n
i=l ui2 j=l i=l

In matrix notation, with

aij aik 1

x. =0
J

-cri2 0 0 ... 0 "_

0 0-22 0 ... 0

-2

a 3 0

-2
_0 0 0 ... a n _

the normal equations become

n m n

i=l - 1

x. = 0
J

since

n n

![va] Lk = vif a£k= _ ai 2 5i_ a,k

t=! _=I

where 6i! is the Kronecker delta and is equal to

1 (i =t) or 0 (i #t). Thus, [va] Lk = ¢i °2 aik"

But

n n

t__ ik ki Yi a]

i=1 i=l

and

m h

a..)x.:
j=l

m n ),kia..x.Iv a] _J J
j= 1 i=l

(continued')

m

I ( Ira] ta) kj

j=l

x.
J

: t_aJt_xtk.
Therefore, the normal equations may be written

k = 1, 2, ..., m

or

crafty(_va_t_)x:0
Finally, the explicit solution for the m-vector of
unknowns is

or

[at v a]-i [a] t [v] {Yt

(_)3)

where

a = n x m matrix of the a..
1J

v = n x n diagonal matrix of the inverse
variances

y = n-vector of known data

Several examples of the application of the method

of least squares are given in the following sections

for the cases of equiweighted data.

a. Least squares fit of a straight line

The sum of the squared residuals to be mini-

mized in fitting a straight line by the least squares

technique is

n n

i=l i=l

n

y(2Yi - 2 m x i Yi

i=l

+ m 2 x. 2 + k 2)
1

- 2 ky i + 2 km x i

which is quadratic in k, i.e. ,

n

I 6i2 = n k 2 + 2 k

i=l

n 2)(_Zx_yi
i=l i=l

+C
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where C contains all terms not involving k.

The minimum occurs for

2= 2 nk+ 2 m xi - Yi

i=l .=

or

n n

? y_ =m? x.+nk

i=l i=l

(94)

Similarly, the quadratic in m gives

n n n

i=l i=l i=l

(95)

Example: Consider a plot of the inverse of the

nondimensional acceleration versus time. Then

l =_.t_

Isp = -_, x i = time points, Yi a t

From the raw data or specific impulse of an

engine in the table, compute x, y, x-y and x 2.

Raw Data for Specific Impulse of an Engine

(120 sec)

x

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.8

6.0

6.5

7.0

7.5

8,0

8,5

9.0

9.3

(130 sec) I0, 0

Ex" 105.0 _y"

=0

___ x_22

O.I?S5 O 0

0.1748 0.0874 0.25

0.1731 0.1731 1.00

0.1715 0.25725 2.25

0.1697 0. 3394 4. 00

0.1680 O. 4200 6.25

0. 1563 0. 4989 9. 00

0.1645 0.57575 12.35

O. 1837 0. 6508 16. O0

0. L608 0. ?238 20. 25

0.1590 0.7950 25.00

O. 1571 O. 88405 30, 25

0.1553 0.9318 36.00

0. 1537 0. 99905 42. 25

O. 1521 1. 0647 49. 00

0.1504 1.1280 58.25

0. 1484 I. 1872 64. O0

0.1463 1.24355 72.25

0, 1444 1.2996 81.00

O. 1438 t. 3547 90. 25

0. 1409 I. 4090 100. 00

3. 3381 _xy- 16. 00285 _2 717--50 (120 to 130 sec)

Then, from

Ey=mEx+nk

Exy = m Ex 2 + k Ex,

3. 3381 = 105 m + 21 k
16.00285 = 717.5 m + 105 k

Simultaneous solution of these equations gives

m = - 0. 003572207

I = 279. 938 sec from 120 to 130 sec.
sp

b. Least squares fit of an e11ipse

A determination of the "best" elements of an

ellipse from application of the least squares

criterion to q sets of data (r, A, L, t),

r = radius vector

A = right ascension

L = declination (geocentric latitude)

t = time

may be based upon q sets of equations of the form

: +a a cos-i T)"t k tp

+ Ve2 _ (l ____.)2] (96,

cos A k cos L k tan i sin

- cos L k sin A k tan i cos _ (97)

+ sin L k = 0

where

k= 1, 2 .... , q, q>3.

Approximate values of the elements are assumed

known. These rough values will be designated

a0, e 0, tp0. Then corrections 6a 0, 6e 0. 6tp0

must be computed such that

a = a 0 + 5a 0

e = e 0 + 6e 0 (98)

tp = tp0 + 6tpO

(tp = time of perigee encounter)

are the elements that best satisfy Eq (96). Equa-
t.ion (96) can be written in residual form as fol-

lows:
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[,

tpO + 6tpO - t k+ (a 0 + 6a O) [_(ao

+ 6a 0 cos (aO+ 6a 0 - rk) (a 0 e 0

+ e 0 6a O+ a 0 6e 0 + 6a 0 6e0)-1

rk± eo+  ed- (1-aO+ aO/]

This equation may be linearized in terms of the

corrections by means of Taylor_s expansion,

8t k 8t k 8t k

6 k = 5a 0 _ + _e -b-6- + 5tp _ + tp - t k

/
(99)

±_/e02- 11- ar--_)3 ] ,

where terms of order 't5( )i2' and higher have

been neglected. This approximation of the Taylor

series terms involving higher powers of the cor-

rections will not affect the accuracy of the final

solutions for which the corrections are very small,

provided that further corrections of the form

Eq (98) are applied, i.e. , that the solution is ob-

tained by a convergent iteration of the form

+ 6aan+l = an n

= + 6e (i00)
en+1 en n

tPn+l + 6t= tpn Pn

Then the orbit elements which represent a least

squares fit of the (r k, t k) data can be determined

a

by stipulating that _. 6k2 be a minimum. Eval-

k=l

uation of the partial derivatives of Eq (99) and
substitution in Eq (100) yields the following final

solutions for the planar elements:

-'-k @k k_ -'-k*k k_ -'-k

(lOZ)
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en+ 1 = en+ _

k_ --'k 2 "k_'-k_k k_ "-k

(102)

t
Pn+l = tpn +

-'k k _

k k_ k

k k k

k k k

(to3)

where d =

_k / Ek _k

k k k

k k k

_k Z Wk q

k k

3 _ (Rlk R2k) - 1 _n (rk_ 2

o)*k ]_2k _n-_t n e

_k = tpn " tk + an_ (Rlk " R2k)

-i :
Rlk = cos \ enan /

R2k = e n sin Rlk

In terms of true anomaly instead of time, the

solution is much simpler:

J



' I0krk " Pn- ek 2 _ " Pn-I _ _k 3 col 0k

k'l k = ] qkSl /

%3 i
"1 km! k=l |

!

L!-:
r

where

p : semilatus rectum of ellipse

(104)

(lO5)

D=

t _k 2 - Pn-I _ 8k 3 cos 8k

k = 1 k: I

i 3 _ 4 28k cos 8k Pn-I e k cos ek

k: I k= 1

I

1 + en_ 1 cos e k

This routine is suitable for computing ellipses;

parabolas or hyperbolas. There are no dls-

continuities since the denominator of _ k becomes

zero only for cos 0k = -le, i.e., only for InP,nite

orbital radius.

The previous routines are concerned with the

computation of the elements which describe

satellite position in a plane. There remains the

problem of solving for the elements which define

the orientation of the orbital plane in space. The

equation for the orbital plane in spherical

coordinates in Eq (97). Then the q data points

can be used to write q residual equatio_ns.

PI cos L k cos A k -P2 cos L ksln A k

+ sin L k = 6k

The best values of the elements _ and i are then

determined as follows

n = tan-I P(--_2) (106)

t =tan-1 ( P1 ) (107)

where

Pl "

k

co, L k Sln L k cOS A k

cos L k sin L k sin A k

cos 2 L k cos A k sin Ak[

cos 2 L k sln 2 A k

P2 "

J_
I

k

cos 2 L k cos 2 A k

cos 2 L k sin A k cos A k

cos 2 L k cos 2 A k

cos 2 L k sin A k cos A k

k c°s2 Lk cos A k sin Akl
cos2 L k sln 2 A k

k

cos L k sin L k cos A k

k

cos L k sin L k sin A k

k

J- _ cos 2 L k sin A k co, A k

k

t

_ c°x2 Lk c°s2 A k !- _

k k

cos2 Lk cos A k,ln Ak

COS2 L k sin 2 A k

k

Equations (101) through (107) may be used to

investigate the effects of number, accuracy and

spread of data points on the accuracy of compu-
tation.

These equations may be used to show the ef-

fects of spread of data over limited arcs of the
orbit by letting sets of identical data be associated

with various arc lengths. Errors due to limited

sample size are to be precluded as far as possi-
ble; therefore, each set of data was selected to

fit a normal distribution of zero mean and 1000-ft

standard deviation in range and 0. 005 ° in azimuth
and elevation. The orbit selected for the first

series of computations was the circular 6-hr orbit

(r = 5. 488164 x 107 ft). The results of the com-

putations are shown in Figs. 3, 4 and 5. Errors
in computed eccentricity, semiparameter, incli-

nation and nodal longitude are plotted against the

spread of equally spaced data points for sets of

four, nine and twenty-five data. For data spread
over arcs of 40 ° < are < 90 ° , the fleration con-

verged very slowly and for arcs less than 40 ° the
solutions drifted. These figures provide a quali-

tative indication of the improvement of results

with spread of data over wide arcs.

As indicated in the statement of the central-

limit theorem in Section O. 1, the failure of a

small sample of data to yield the mean of the

true population gives rise to another type of error.

The qualitative effect of this error may also be

investigated with the previously derived solutions

for least squares fit of an ellipse. Limited data

samples of 6, 10, 20, 30 and 40 points were

selected randomly from a normal population of

a = 1000 ft. For the case of Fig. 6, the data were

taken at equal intervals over two 15° arcs at

opposite sides of a 6-hr circular orbit. In Fig. 7
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the results with a limited number of data are

shown for data taken at equal intervals around two

sample orbits, a circular 200-star mi or 322-km
orbit and an ellipse of e ffi 0. 4 and p = 3. 07425

x 107 ft or 0.937031x 104kin. The errors in

computed eccentricity and semilatus rectum are

shown as functions of the number of randomly
selected data.

3. Other Methods of Parameter Estimation

Although the least squares method is most

widely used, it is not the only technique avaLlable.
Some other approaches are the minimum variance

technique, the maximum likelihood estimate and
the method of moments.

a. Minimum variance

The minimum variance estimate is that esti-
mate which has a minimum variance-covariance

matrix. When the errors are uncorrelated0 i. e.,
when the covariances are zero, the minimum

variance and weighted least squares methods are
identical. However, when the errors are corre-

lated, the minimum variance approach may be

superior because it includes the effects of the cor-

relations. That is, if one data type is highly cor-
related, the least squares technique may overly

weight that data type. However, the least squares

technique is generally used because the minimum
variance computations are more complicated and

require more detailed information about the co-

variances which is frequently not available. The

improvement to be gained by use of the minimum

variance technique is not of great significance.

The basic equations of the minimum variance

approach may be developed as follows. If x t is

the true value of the unknown parameter x, and

x is its estimated value,
e

Yi = ai xt + 6i (xt)

where Yi are the observed data and 6i (x t) are the

errors in the true unknowns, and

n

Xe = ! bi Yi"

iffil

The refore,

n

Xe =I bi(ai xt + 6i)

i=l

is a random variable since x e is a function of 6 i.

The variance of x e, from Eq (86), is

n

a x = bi2 ai2

e i= 1

where

2
a i = variance of 6.

1

ff the 6.'s are uncorrelated.
1

n

2=I 2UXe bi2 a i +
i=l

whe re

If correlation exists,

n

T b i bj Pij (108)
._a

ili--1"j

Pij = covariance of 5 i and 6j.

The first summation of Eq (108) comprises the

diagonal terms of the variance-covariance matrix,

and the second summation represents the off

diagonal terms. The minimum variance tech-
nique, as the name implies, is based on a mini-

2
zation of _x , subject to the condition that the

e

expected value of x e is x t. This minimization

results in the following minimum variance esti-

mates.

{Xel: [at -I a]-lat c-1lyl (lO9)
whe re

c : the nxn variance-covariance matrix

This equation is completely analogous to that for

the least squares estimate, Eq (93), and the two

estimates are obviously identical for the case of
-1

zero correlation, c = v. The variance of the
estimates in matrix notation is

c" 1 ] -iaXe2 = a t a
(110)

b. Maximum likelihood

The maximum likelihood estimate is the esti-

mate which maximizes the probability distribution
of the data sample. If the errors are normally

distributed, the maximum likelihood estimate re-

duces to that obtained by the minimum variance

technique.

c. Method of moments

As an example of the method of moments, the

problem of fitting a straight line, solved in Sec-
tion D. 2. a by least squares, is presented.

For a set of n values of (x i, yi ) the rth moment
ofy is

n

xi Yi

1

whe re

r is zero or a positive integer.

Now obtain two equations in m and k by equating

the zeroth and first moments of the observed y' s
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to thezerothand first moments, respectively, of

the y's computed from an assumed y = mx + k line
fit. All moments are taken about the origin of x.

These two equations may then be solved for m and

k. Let oy be observed y's and cy computed y's.

Then for observed y's the first moment is

n

1
I xi °yi

I

and zeroth moment is

n

1

! oYi"

1

Obtain computed y's from
moments

cy =mx i+ kand get

n

In I xi (taxi + k)

1

and

n

1 _" mxi+k.
n 2.,

1

Equating as previously indicated,

n n

1! 1! ,mx,+k,Yi =

i i

n n

,: ,]xiY i =_ x i (rex i+ k .

1

Simplification of these equations gives

n n

lYi°mlx,+ 
1 1

(IIi)

n n n

I  iYi=mlxi2+klri"
1 i I

(112)

These equations are the same as Eqs (94) and (95)

in the least squares example.

Solve these for m to get

m -

n n n

lYnx'n!

1 l 1

n(
1 1

x7

Example.

I when {Isp -- m

x. = time points
1

Yi = g/aT (corresponding
to x points).

Thus

Isp =

2

n_ xi 2 - x i

I

n n n

! Yi ! xi - n __.#xiYi

1 1 1

When n goes from 1, 2 ..... n

n

_x i n(n+ I), 2
__a

1

n

xi 2

l

= n (n + i) (2n + I)

F. ORBIT IMPROVEMENT

It has been noted that the basic problem of

orbit determination is solution for the six defining

parameters of an orbit from a set of observations.

Orbit improvement, as distinguished from pre-

liminary orbit determination, assumes that ap-

proximate parameters are already known and that

these are to be improved in accuracy. The six

parameters may be the classical orbit elements

(a, e, i, c_, r4 tp), or the Cartesian position and

velocity components at a specified time, or any

set of quantities which uniquely determine the

orbit. Other quantities, in addition to the six

orbit parameters, could be refined in the orbit

imp_-ovement process. For example, the accuracy

of any geophysical constants which appear in the

equations of motion (of which the six orbit param-

eters are constants of integration) may be im-

proved. Examples of these constants are drag

coefficients, the various coefficients of the gravi-

tational potential function harmonics, inaccurately

known locations of tracking stations, thrust cor-

rections, etc. The basic method of computing

corrections to these constants and orbit parameters

is known as the differential correction technique.

1. Differential Correction Technique

The equation of motion can be written, as indi-
cated in Chapter IV, as

d2 F - I Fi
i

(li3)

where the F i are perturbative forces due, for ex-

ample, to drag, oblateness, thrust, etc. If there
were no errors in the observations or inaccuracies
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in the physical constants of Eq (113), all data

would be exact solutions to this equation. The

six constants of integration (the orbit parameters)

involved in the solution of this equation could then
be evaluated exactly. That is, if there existed an

explicit solution for Eq {113),

fi (Xl" x2 ..... Xm) = Yi i = i, 2 ..... n

where

Yi = the observed data

x. = the unknown orbit parameters and physi-
J cal constants

f. = some nonlinear function,
i

the m values of x. would be determined if at least
J

m values of data Yi were available. However, no

observation will be exactly correct, and so this

equation becomes

fi (Xl' x2 ..... Xm) = Yi - 5i

i = I,... n, n> m

where 6. is the error in the ith item of observed
1

information Yi" Although the functional relation-

ship expressed in this equation is very compli-

cated, simple linear approximate functions of the

corrections to the unknowns, Ax i, can be written
from Taylor series

afi I. .. * &x I
fi fXol" x02' ' Xom) _X'l

0

°fl xm, fiI• v',x m]" A x2 +" "+ _'-'-I
+_-2o 0

= Yi - 6i

or

o°xi.°.i
j=l

where x01, x02 ..... X0m are known approximate

values of xj Ay i are the differences in observed

and computed or anticipated data and the corrected

values of the parameters to be determined are

xj = x0j + _xj.

This procedure is useful in the problem of orbit
improvement, where approximate values of the

parameters are assumed known from preliminary
determinations. Then, if an excess of data is
taken, n > m, the '_est" values for the corrections

can then be determined by the method of least

squares as outlined in Section E. 2 for

%f.

a,,.
The normal equations corresponding to Eq (90)
are

i=l j:l J

j, k : 1, 2 ..... m (I14)

This process of correcting parameters which
are known approximately, is referred to as

differential correction, and is not strictly limited

to orbit improvement. In the case of launch of

an artificial satellite, for example, the nominal
trajectory parameters can be used as the initial

approximate values to be refined. The only
restriction is that the approximate values be

sufficiently accurate to validate neglecting
higher terms in the Taylor series (i. e., assure

convergence of the iteration). The results of

Section E are applicable to this method of esti-

mation of orbit parameters. In particular, the
matrix formulation for the estimated values,

from Eq (93), is

where

[a]

[v]

: [,'v,]-,[,1 't 1 I-,l

: nxm matrix of the partial derivative
coefficients

: nxn dzagonal matrix of the inverse
_ariances

and the variances of the estimated values are,

from Eq (108) or Eq (110)

11

2 _ hi2 2a x : a i (no correlation)

e i=l

or (116)

aXe2 : [at a]"lv

2. Determination of Partial Derivatives

Fe, q
In the matrix |a'a| there are elements of

the form

i:l

where x i and x k are parameters at initial epoch.

It is convenient, in the calculation of partials

ayi
of the form _q., to separate the partial into

3

components which may be determined individ-
ually with greater ease.
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m: i

axj

°Yi 8Z_Yi 8X OYi %y +

- %-_ _ +_ir" _j = axj

8Yi aX 8Yi a9 87i eZ

aX _xj a? _xj ,92, axj

where (X, Y, Z) and (k, _, Z) are the current

position and velocity components. The partials
of the observed quantities,

etc., are derivable in analytic form from the

definitions of the Yi' The derivatives

•ax ak

etc., are obtained by numerical integration.
From the equation of motion,

X = F,

d 2 8/ _ aF aX 0F %Y . OF OZ

"$Z"

Equations of this type are doub b- integrated
numerically to give

ax ay az

J 3 3

and differentiation of these partials yields

a:_ a;,, a_

_." _o-_j"J J

3. Analytic Solutions for Partial Derivatives

Corrections in a set of orbit elements may be
related analytically to corrections in the Cartesian
coordinates. One convenient set of orbit element

correct o., is d,x. d5, d,.. dMo, d,. de.
the d_' s are rotations about the Cartesian axes,

dx = zd Sy - yd Yz

dy = x d$ z - zd Yx

dz = y d' x - xdSy (I17)

and

dM 0 = correction in mean anomaly

da = correction in semimajor axis

de --correction in eccentricity

The differentials dM00 da, de are obtained from

the equations of Keplerian motion. If _ and

are unit vectors along the x¢_ and Y¢0 axes (the

orbit plane coordinates defined in Section B. )

a (cos E - e) p + a_-'-_e sin E _ (118)

_(cos E - e) da + a (-sin E dE - de)]

+ I_1-- e-2 (sinE da + a cos E dE)

[

E e__ae ]- a sin _ _ f119)

The nomenclature is that of Chapter IH.

But. from Kepler,s equation,

E - e sin E = M0 + _/2 (t- to) ,
a

dE - ar tFsinE de + dM 0

" --f- /2 " to) --
a

(120)

Substitution of this equation in Eq (I 19) and n<>t:r:g
that

r
sin E _ - ___w___

v = --i _ -asinE_+a osE_
r

(12i)

gives

dx - • m

- --_-- sin

x

d e + m dM 0
n

dy
w [ [',da ""_2 "

" )'w + m "a"- l- e

Y

• _ dM 0n
(1.22)

de

where

n--%
m = - (t -to).

(123)

(124)
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It is desirable to write the eccentricity sensiti-

vities in the form

ax
- Hx+Kx, x-,y, z.

8e

Solving the simultaneous equations

I_ey_axb) = "

Hx + Kx= Hy w + Ky

gives

bx °w x 8y_

H = ....

x -Yw - Y_ _

8y 8x

Ks _
x y -y -_ "

bJ _ CO CO

ax

Substituting for e_ and _aY_ from Eq (122) and for

xw " YCO ' )_CO' #c_ from Eqs (118) and (121) gzves

I (cos E + e) (125}
H= -------2

1 -e

1 sin E e 2

K " n 1_ e _ (2 - - e cos E). (126)

Then the final form of the differential correction

equation ts

dx 0 z -y _ Hx+ K _ x+ m _ d$ x

dy = z 0 x Hy+K y+m d_by

d -x 0 _" Hz+K _ _--J_ z+m dd_z

dM o

de

da

_t

{127)

where m, n, H and K are given by Eqs (1237

through (126). This equation is due to Eckert

and Brouwer, Ref (5). In vector notation,

dM 0+ (Hr + K E) de

+ (7 ÷ m _ da (128)"E-"

Eq (127) can be transformed to the satellite oriented

system (X s, Ys 0 Z s) by

d_ -dr -_
s

dys - _ -i_

dz s = d_ " _.
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Evaluation for each term of Eq (128) proceeds as
follows.

(L
(_xr) • _ = d_" (_x_) = d;" r_n = rd_b m

(L • - L. (;

If d* = d+p_+ dd/q _ + d*s _.

(L xr). _ " rd_b s

d_ ; rd_p A^• = - rq-n( x ) Am p.n - d_bq

=d@p bslnE -d@q a (cos E - e)

Also

-- V 2

v • _ , r = --a esinE
n r

v ^ 1 __ . a 2 2
-- -- e

• n ffi n r r

v ._= o

- 2

v a e sin E
(Hr + K -_- ) • _ = rH+K -F-

; - 2v; 2v a - e(H + K'-ff) " _ " K'-'7-

(Hr + K _-) /"
• In = 0

(_+m v__) • _=r+m a----.esinE
n r

_+m )" _-m a--_--
r

v _ 0._+m _)- -

Then Eq (127) can be written

dx s I 0 I 0 I 0 I B_rH _e

I I I I I

dy s " 0 i0 IrlCIK c imC d_q

z Lblin_l - a (c°s E - e)IOlO_01 I I ,10 d* s

dM o

d_

a

where
2

B= a estnE
r

a 2 _/1 - e 2

(129)
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and H, K, and m are defined by Eqs (124) through

(126). The transformations f_'om the rotational

element corrections (the de,s) to the classical

element corrections proceed from a consideration

of the accompanying sketch. From a projection
of all vectors on the nodal line,

di = d_bp cos _ -dCq sin_. (130)

k

dn d_q

+p

dI

J

From a projection of all vectors on the line

perpendicular to the nodal line in the orbit
plane,

dr2 sin i = d_q cos _j + dd/p sin _j • (131)

From a projection of all vectors on the normal

to the orbit plane,

d_ + df_ cos I = des. (132)

Eq (129) can be transformed to topocentric

coordinates by means of the transformations of

Section B. 2.

where T0 symbolizes the transformation from ECI

to topocentric coordinates.

The final step in formulating the differential
correction equations hi the transformation to

the differentials in the data. For example, from

Eqs (42 or (45),

I'l t ldm = TI JO

n

(134)

or

os _ d x Tr

L d,

(13S)

If Doppler data are available, the Eckert

Brouwer equations must be modified, as indicat-
ed in Ref. (6}.

The orbit velocity is

- l _ (-s_E_+_-,C-VcosE_).v = i- e cos E

Since

dE = _r [sin E de + dM 0

3 _ (t-.__ t) da ]
2 "---T/2 0 -y--J,

a

[dv = _ (- _ _-
2--_ mx

r

- _ a 3/2 x dM 0
bJ

r

) da

-_ a3/2sinE{cosE
r

4- 3"r (cos E- e)} de 1

[ %Y

4- _t (-"_a - my) da
I"

- _ a 3/2 y,.,dM 0
r

•
Then, after a procedure similar to the derivation

to isOf _d_s_, the result, analogous Eq (129_

obtained. For example,

r

C a3/2-- r'_ " 0
r

a3 _ /x/2 r.m = 0

r

CV a Vr

-_- - m "_= "a_-- -

= - /z _" sin E + m
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- m _ • -I/2 ;, (l-e 2)

r " a

F inally,

0 _3 0 I_5 6

1 ¥2 0 0 0

dd_p

d_q

ed_ s

dM 0 + d_

de

da

-q-
(z3G)

where

u 3 P _ cos E + 1

r I+ sln E + m +I

a
=_/._ sin E

_3 v a r

,F=--.a
cos E V _"_5 " "-F" , p

iI 6 = .1/9 .+ _/ la (la e2)

_1 =_ -_e2 c°e E

-_ sinE
Y2 r

The velocity of interest is not the total velocity

but the component of relative velocity along the

ILne of sight. I_ 1R is the position vector of the

observer in geocentric equatorial inertial
coordinates (x, y, z) and _ is the position vector

of the satellite in topocentric coordinates,

Z

.--A.

_e

/
X

_atellite

X 0 y

Dt.fferentiattng,

_t

where d_ is the velocity of the sate11ite
dt

relative to the observer and _e is the angular

velocity of the earth's rotation, or

= v'-_e x r

The Doppler shift being measured _s

where _ is the unit vector along the line of sight.

Then, considering varlattons due to changes in

the orbit elements only,

6 : _'.(6_-_eX 67)

+(_-ne x _). 6

Since &R = 0 (i.e., the observer'sposltlon

is not a function of the orbit elements) and

6p = 6e" _',

dp " {,;I-

- {,;I.
where 6 U and _ _o as previously given, are the

differential correction expressions involving the

corrections in the elements.
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G. ACCURACY OF DETERMINATIONS

i. Sources of Error

The accuracy of an orbit determination de-

pends on not only the precision of the measure-

ments but on knowledge of the errors and how

the errors can be eliminated. Errors are broadly

divided into two classes: systematic and random.

Random errors can be minimized if the statistical

properties of the noise spectrum are known: sys-

tematic errors, if known, can be removed by

various techniques such as calibrations against

known standards.

Systematic errors. Systematic errors are
errors which occur In the measurements (sensors),

the station location (geodetic), and the description

of the orbit (simulation). Equipment sensor

biases may be due to refraction effects in the

measurement of angles, mechanical misaligu-

ment of the electrical axis with the geometrical

axis of a parabolic reflector antenna Cooresighting),

drift of d-c reference voltages, surveying errors

of true north or of the local horizon plane in the

measurement of azimuth and elevation, error in

the adopted value for the velocity of light, back-

lash in the servo gears which move the antenna,

and sag in the antenna at different attitudes.

Range measurements, assuming a monopulse

radar, can have systematic delays in propagation,

false signals due to reflections, timing errors

and gating errors. Some of these errors are re-

moved by using a beacon on board the satellite
which changes the frequency of the return with

a known delay.

Range rate errors, using a doppler technique,

can acquire systematic errors due to variable
ion densities which change the frequency of the

carrier to give spurious doppler effects. If a
transponder is used on board, there could be

small systematic retransmission errors. If the
station location is not well known, there will be

systematic errors for example due to errors in
the calculated velocity of the station about the

earth, s axis.

Other geodetic uncertainties, such as in the

figure of the earth, gravity anomalies, and

representation of the potential function may con-
tribute to significant errors in orbit determination.

The degree of completeness of the simulation

model, for example the inclusion of nongravitational
losses (radiation pressure, atmospheric drag

fluctuations, etc. ) and perturbations due to, say,

other planets or other bodies, will contribute to

errors.

Noise. Some of the sources of noise which

degra-_d'_'_servational data are atmospheric,

cosmic, man-made, and thermal. Atmospheric

noise is due mostly to electrical storms and

varies widely throughout the year. Cosmic noise
comes from the center of the galactic plane, the

sun, and from a certain number of "radio" stars

such as Cassiopeia.

Man-made noise comes primarily from ex-

traneous electromagnetic radiation generated by
electrical devices.

Much of the above noise can be minimized

by modulation techniques which translate the in-

formation band to carrier frequencies that lie

outside the noise bandwidths.

On the other hand, thermal noise covers a very

wide bandwidth of frequencies and can be mini-

mized by using specialized techniques such as

phase-locked loops and cold-temperature re-

ceivers.

One obvious method of minimizing aLl noise

is to increase the signal power. This can be

accomplished by putting a transmitter on board

the satellite thus eliminating the need for skin

tracking.

The best set of carrier frequencies to use to

minimize cosmic noise lies in the band bet_veen

I000 mc and i0,000 mc. Man-made and a_.mos -

pheric noise are also extremely low in this band.

Thermal noise power at the receiver of a

tracking antenna is caused by thermal agitation

of electrons in the resistances in the input net-

work. Thermal noise received power can be

expressed by

PN=k • T • Af. NF

where

PN = Available noise power at the receiver
(watt s )

k = Boltzmann' s constant = 1.38 x 10 -32

w-sea/° K

T = Effective input temperature (not neces-

sarily the physical ambient temperature)

(°K)

Af = Effective input noise bandwidth (cps)

NF = Noise figure of input circuit (up to the

de modulator).

Reducing T, A f, or NF will reduce the noise

power. Temperature T can be reduced by bathing

the receiver in a cold environ_nent, using re-

ceivers whose effective temperature is low (such

as reactive amplifiers and masers), and by

'Rooking" only at cold space. Noise bandwidth can

be reduced by using narrowband filtering but this

also limits the signal bandwidth.

As long as the signal is above a certain thresh-

old, modulatio_ techniques such as frequency

modulation and pulse code modulation can be

utilized which very effectively suppress the noise.

The improvement of signal to noise ratio is _J-

by using an f-m system instead of an a-m system

with identical input bandwidth (for random noise).

Another method of suppressing noise is to use

a phase-locked loop in which a ground transmitter

transmits to the satellite transponder which trans-

mits back down to a ground receiver. The ground

receiver is kept locked in phase to a multiple of

the transmitter frequency by a voltage-conlrolled-
oscillator which beats against the received fre-

quency and whose frequency is controlled by an
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error voltage from a phase detector. The voltage
controlled oscillator "follows" the received fre-

quency but with just enough lag to allow a very

narrow band of frequencies to filter through the
loop. This narrow band is used as the information

band; and the information can be picked off by
filtering. Since the bandwidth is so narrow the

noise content is very small.

2. Examples of Probable Errors

Examples of the probable errors of orbit
determinations based on measured standard de-

viations of radar stations versus various param-
eters follow (see l:tef. 7).

Description: The sets of curves are plots of the
la errors of the classical elements

versus radar errors. Notice that

the correlations between orbital

parameters have not been plotted.

Altitude Observations

370 km

650 km

93 0 km

3700 km

Angles and range rate (range rate
held fixed)

Angles and range (range held fixed)

Angles and range (angles held fixed)

Same

Same

Same

Briefly, the studies produced outputs which

were the standard deviations ( 1 sigma) of the
geocentric spherical coordinates (r, A, D, v,

v, _), orbit elements (a, e, i, _, _, M), and

periods (r) of various orbits of earth satellites.

Key to Symbols:

L v A v

L s A s

=latitude, longitude respectively of vehicle
being tracked

--latitude, longitude respectively of sta-
tion(s) tracking vehicle

A

D

V

M

T

= right ascension of vehicle

= declination of vehicle

= velocity angle with the local geocentric

vertical

= velocity angle with north on the local

horizontal plane

= geocentric distance

= inertial velocity

= semiro_jor axis of ellipse of vehicle orbit

= eccentricity axis of ellipse of vehicle orbit

= inclination of orbit plane with the equa-
torial plane

-- location of node of ellipse with respect

to vernal equinox _"

= argument of perigee of ellipse

= mean anomaly

= period of orbit

= standard deviation of any quantity j (a = _)
Ot

N = number of observations

T_ = distance (in degrees) of earth track of
vehicle at closest approach to tracking
station

h = altitude from surface of _)

The spherical coordinates, orbital elements

and periods were calculated by the computer

program and were based on least square fits of
observations. The observations were generated
from trajectory tapes with noise added.

The inputs to the curve fitting program were
observations (range, range rate, azimuth and

elevation) of a "satellite" by a tracking station(s)
versus time, the station location(s), assumed

standard deviations of the observational data, the
nominal orbit of the satellite, and the data rate of

the station(s).

To obtain the tables and graphs included in
this section, many of the input variables were

varied to obtain various outputs.

Quantities varied were: observational sigmas,
station locations, orbit parameters, number of
iterations, earth tracks of satellites and data

rates. The earth track (designated _ track) of

a satellite is the projection of the orbit upon the

surface of the earth; the earth track was speci-

fied by the number of great circle degrees away

from the tracking station at closest approach.

Thus graphs were obtained which were plots

of _L' ap, aS

<_A' aD" ar' av' _V' av versus

a E, ap, a/_, _ track, h, r, A, L

(;a' _e' _i' (;CZ (;,.,' aM versus

a, _p, a_, _ track, h, _-, A, L

c;_. versus a c, sp, a_, @9 track, h, _-, A, L

Only graphs showing the spherical and orbital
errors versus a and a are given in this section;

c p

these result in 36 graphs.

Other pertinent points:

(1) All observations were some combina-

tion of range, range rate, azimuth and
elevation.

(2) All output sigmas are normalized to 16

observations by multiplying by

where N is the number of observations

in a given pass of data.

(3) Azimuth and elevation sigmas are al-

ways assumed equal and are usually

plotted as a E. (_a = a )
t

(4) For comparison, most runs used only
one iteration.
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(5) Asymptotes are drawn on the graphs as

straight lines•

Most of the graphs tend to show dirainishing

returns in accuracy of orbit determination in at-

tempting to improve the angular accuracy better

than 0.5 ° (if the sigma of range r_te is held fixed

at I fps (0.3 raps) and no range observations are

taken).

Using only range and range rate observations,

the same accuracies in orbit determination as

above i.e., (_E = 0.5 °, ap = I fps 0.3 raps) can

be obtained if the deviations are 600 ft (183 m) in

range and 1 fps in range rate.

Hence a "balanced" tracking system could be
defined as one whose measurement standard de-

viations are as follows:

a. -- 1 fps 0.3 mps (range rate observation
P error)

_p = 600 ft 183 m (range observation error)

c; = 0. 5 ° (azimuth and elevation angular
E observation errors)

The word "balanced" used here is not to be

used in the sense of optimum but rather in the

sense that improving the accuracy of one (only)
type of measurement does not produce a propor-

tionate increase in the orbit determination (as-

suming a balanced system).

3. Graphical Display of Observation Errors

Three basic sets of information are presented

for the mission analyst: (1) angular observation

errors for an assumed standard deviation of 1 fps

(0.3 mps) in range rate measurement a. (2) angular
P

observation errors for an assumed standard devia-

tion of 600ft (183 m) inrange measurement a b, and

(3) range observation errors for an assumed
standard deviation of 0.05 ° in azimuth and ele-

vation angle measurement a. For each set are

shown the six spherical coordinates (a: A, D, r, v,

,7, v) and the six orbital elements (a: a, e, i, _, _,

M) for orbits of four different altitudes (approxi-

mately 370, 650, 930 and 3700 km).

(1) Figures 8 through 19 (Set 1). These
figures Show the standard deviations of

the six geocentric spherical coordinates
and the .standard deviations of the six
orbital elements as a function of the

angular observation error for four alti-

tudes, where a. = 1 fps (0.3 raps).
P

(2) Fibres 20 through 31 (Set 2). These
ffgures show the same variables where

<z = 600 ft (180 m).
P

(3) Figures 32 through 43 (Set 3). These
figures show the _tandard deviation_ of

the six spherical coordinates and the
six orbital elements as a function of the

range observation error for four alti-
tudes, where a = 0.05 ° .

The initial conditions for both the angular and

range observation error computations are given

in Table 5 as a function only of orbital altitude.

The asymptotic values of the standard devia-

tions of the six spherical coordinates and six ,2t'-

bital elements for Sets I, 2 and 3 are given in

Table 6. These are the limiting values in eaci_

dependent "variable as the independent variable
becomes very large. Because the data rate is
the same for each orbital altitude, 18 observa-

tions are contained in the results for the 365-km

orbit, 27 for the 645-km orbit, 33 for the 922-km
orbit and 91 for the 3710-km orbit.

TABLE 5

Initial Conditions for Angular and Range Observations
(see Figures 8 to 43)
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TABLE 6

Asymptotes of Dependent Variable, Figures 8 to 43

Set of I as _ -* ® (a_ = I fps) (0.3 raps)

365 645 922 3710

(height in km) (height in km) (height in km) (height in km)

c A (deg) 0. 033 0. 040 0. 015 0. 040

a D (deg) 0,041 0. 038 0. 017 0. 0036

a u (deg) 0. 018 0. 018 0. 008 0. 0012

¢_ (deg) 0. 018 0. 022 0. 009 0. 023

ar (km) 3. 688 3. 658 1. 768 3. 048

a v (m/sec) 0.43 4.27 2.0 0.30

a a (m) 96.0 122 65.8 131

_e 0. 625 x 10 -7 0. 063 x 10 -7 0. 030 x 10 -7 0. 870 x 10 -7

a i (deg} 0. 018 0. 021 0. 009 0. 023

a_2(deg) 0. 032 0.04 0. 015 0. 041

a,,, (deg) 2.6 26.0 12.4 2.1

a M (deg) 2.6 26.0 12.4 2.1

Set 2 as a -_ ® (a = 180 m)
p

aA (deg) 0. 040 0. 031 0. 026 0. 019

_D (deg) 0. 038 0. 021 0. 016 0. 005

Gv (deg) 0.018 0.010 0.007 0.0015

Or/ (deg) 0. 022 0. 016 0. 014 0,002

a r (kin) 3. 658 2. 377 1. 615 4.88

a v (m/sec) 4.27 2.0 1.6 0.30

a (m) 122 99.1 94.5 110a

ae 6.7 x I0 -7 6.3 x 10 -7 7.6 x 10 -7 0.55 x 10 -7

a i (deg) 0. 021 0. 017 0. 014 0. 019

a_(deg) 0. 037 0. 031 0. 026 0. 019

a (deg) 25.5 14.0 21.0 2.2

a M (deg) 25.6 14.0 21.0 2.2

Set 3 as _ -*_ (a = 0.05 deg)

a A (deg) 0. 015 0. 014 0. 014 0. 013

a D (deg) 0. 017 0. 017 0. 018 0. 022

a v (deg) 0. 0085 0. 0083 0. 0090 0, 0085

a (deg) 0. 0087 0. 0082 0. 0082 0. 0077

a r (kin) 1. 768 I. 798 I. 890 2. 012

a v (m/sec) 2. O1 1.92 1.89 1.83

a a (m) 70.4 79.2 88.4 131

a e 3.0 x 10 -7 5.3 x 10 -7 9.0 x 10 -7 2.9 x 10 -7

a i (deg) 0. 009 0. 008 0. 006 0. 008

af2 (deg) 0. 015 0. 014 0. 018 0. 013

a¢_ (deg) 12.2 13.0 25.7 12.0

a M (deg) 12.2 13.0 25.7 12.0
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Fig. 1. [nterferometer System
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South

The claimed accuracy in angles: 20" to 40" (0.1 - 0.2 mrad)
in optimum atmosphere conditions

400" in bad weather

Frequency: 108 mc ( k-- 9 ft)

Fig. 2. Minitrack Modified Interferometer System

4

XI-53

Precedingpageblank



3,5

3,0,

- 2.5
N

.o 2.o
_w

° 1
1.5 ,

0 1.0

0.5 !
i
i

o I
o

Arc over Which

; %

\\

1 i\
I

--t- 't l
I00 I00 300 360

Equally Spaced Data Are Spread (deg)

_25 data

Fig, 3. Effect of Spread and Number of Data on Accuracy of
Eccentricity Determination

Fig. 4.

I000

e,,

>

_ 600

o 500

o 400

0
m 300

o 200

0
0

i ! : i

' ' ' ' 270

O.
240

21o

180

! 15o
! i o
r ! 12o =

2

I !so
e_
o

30

0
100 200 300 360

Arc over Which Equally Spaced Data Are Spread (deg)

E£fec¢ o£ Spread and Number of Data on Accuracy of Semilatus
R_ttm Determination

.J

XI- 54



0.009

0.008

0.007

0.006

0.005

_2
D

0. 004

@

0.003

0.002

0.001

Fig. 5.

I

I

%

• i

t I
b

i

' _ T

I
I
I

t
'--'"_ l

,I
I I"

I

i t

I
q

r
I

b

i
I
i
t

4

i
_ i

i00

!

!

I

h

O0

!

I

i

I
t
I

l
300

Arc over Which Equally Spaced Data are Spread (deg)

Effect of Spread of Data on Accuracy ot Inclination and Nodal

Longitude Determination

XI-55



Fig. 6,

1.50

120

i \
6O

Number of Randomly Selected Data

e_

v

e_

_q

o

Confidence Interval

Associated with 0.99

Confidence Coefficient

Data selected randomly
from a normally

distributed population,
cr = 300 m

Data spread equally over

two 15 ° arcs at opposite
sides of a 6-hr circular

orbit

Effect of a Limited Number of Data on Accuracy of Orbi_ Determination

4,

u3

N
3

.u.

2
OJ
0
0

.E 1

0

N

0

Fig. 7.

Data selected randomly for a normally
distributed population, _ = 300 m, Data

taken at equal intervals around the entire
orbit

p = 0.937031 x 107 m p = 0. 669307 x 107 m
Orbits:

e =0.4 ------e = 0

400
A

30fl

E

._ zoo
0

0

-.__p \\\
\\\

I 1 I •

0 10 20 30 40

Number of Randomly Selected Data

Effect of a Limited Ntmber of Data on Accuracy
of Orbit Determination

XI-56



3.05

0.04

0.03

0.02

0.01

Fig. 8.

i

I

J

i

t _

Jl

i+

_L

I I

0.4

a (deE)
E

O.G 0.8 1.0

Angular Observation Errors, _A Versus o¢

0.006

0.005

_D

0.004

C_
0

O. 003

0.002
0

Fig. 9.

I

I
]
I

+

+
i

]
0.4 " 0.6 0.8 1.0

cr (deg)
(

Angular Observation Errors, oD Versus 0¢

XI-57



0.04

" 0.03

0.02
;=

b

0.01

0
0

Fig. i0.

0.2 0.4 0.6 0.8 1.0

_c (deg)

Angular Observation Errors, _v Versus a c

0.002

o.ooi

0
0

Fig. 11. Angular Observation Errors, a Versus a

0.8 1.0

XI-58



v

2000

1500

1000

500

iiiiii

iiiiii

A

300
L

150

Fig. 12. Angular Observation Errors. a r Versus a

1.4

1.2

A 1.0

>
O

0.8

0.6

0.4
0

.h = 365 krn

!!l_i;i:
! ii:ii[

iiiii!_l
h ; 645 km

h = 3700 k_

h ; 920 k.m

t[ I_L
11i_ ,'-

,11 _ i
'll 1

111
Ill i

I[I I

III

ill Till '

=0.3 mp$ ___
IliIIlIJl_l l

] [I [
,]Ililllltl ti]

I I [ II i I I 1

0.8

Fig. 13. Angular Observation Errors. _v Versus

0.42

O. 36

0.30

0.24

0.18

0.12
1.0

'"6

v

XI-59



Fig. 14.

0.4 O.

(deg)
E

p
I

!

6 0.8

..... 240

: 3_oo_
il,11_8o

-_h : 920 kml
ill!!, i

Angular Observation Errors, _ Versus
a ¢

_'4,_,!!I!i__,

1.2 iiiiiil
I Ill I I I I i I 1

I _i '_ I I I I I _.
I I[I I t I I11 I

l. Ollll ' ' l i '. I I[ I [ i [ i
I_'I :!!!!!i

II/I llllli

'_ Ill I I I t I I !

_-'rt i I i [

II_, II];il
I/1 ";i i , '

Illl!l

IJi i

o._,,I_ i ii!ii
N. iillii, 1
wli [lilli

0|i ; ] [ [ i i '.

0 0.2

Fig. 15.

h : 1700 km

!I ii_ir

I I ....

,, !!!_t
II iitll

rF lilll

!I .....

8 1.0

Angular Observation Errors_ a Versus
• (

J

XI-60



0.04

0.03

.,..0.02
Q

0.01

I[llIIi
IiII]]l

llllll
IIIII
11Ill
Illll

llllll

]]11[I
i[ltll
!1l[11

I]lll; _
IIltli!

._il[ll

II!!iil
_11[]!

lilll!
I]i[11

Fi!!J 
I]!i]_

IIXil [

FIE[_I

0 0

IiI]lil tll

Ii11111111

O. 3 mps_
I[111 I11111
lill!llllll

IL[IIII;I]J
lilIlllrl]/

llllll_ll_!
h = 920 km

h = 645 km

h = 365 lcm

I[]1[1_[1
I_]illill

illiEl!ll

i li[lli]
iliillill
_1IIIt111

li[lllIl[

[7,[7![1l

= 3700 km

[liii I!

itIII ][
Ill]t II

0.4 0.6 0.8 1.0

a(deg)

Fig. 16. Angular Observation Errors, (7. Versus

0.05

0.04

A 0.03
b_
o

b

O. 02

0.01

O0 0.2 0.4 0.6 1.0

a(deg)

Fig. 17. Angular Observation Errorsp a m Versus _e

XI-61



3

2

O 3

1

0 o

iil [llllf
[i I ,LttiJ

;;I, 1;:;::

... iiiiii
Ill] illllZ

I;II _

iiii ......
II11 i;;;11

!!!! .....

,,11

::11 :::::

::ll _

:,!!
!!!i !iiiJ
i_:i !!!ii....

0.2 0.4

ll!!
If;;
iiii
!!!!

i

" Ji!

il;

0._

ee (deg)

Fig. 18. Angular Observation Errors, G

4 :::::::....... Ili]l [I
iiiiLJ._,, "i't'_[ ill
....... iiJJi _;::;

• , , , . .

t_,::

ii:fiiiii i_iii _!!!!

3::::::: iiiii llIll
:=::::: .....
: :: :: : : :: ! !! I { I II

....... iiii_ III]1
iiiL,,I-l-t ..... i_ti
I1_"I I I I I 1 t I I

::iiiiL "'' r,_,
i_ t I L_I"T ii _ _ ; .....

2mlt..mn] !!!!! i iii,,
l_/lll l[/iJ

WIlII ::::: itlll
=IZilil iiiii fllll

ii111 ,,..

....... !!!!! .....iiii;

............._ iiiii
l:::iiiii ..... ::::: llill

........ i_iii :_ll_
:::::: : ::: : : ] I II I.....

]!iiiii iiiii iilii....... Ill II
....... !!!!! ....
_iiiiii iiiii iii_i
::::::: ......

iiiiiii iilll iiiii
O0 0.2 0. 4

iiii
: : .- ,.

!iii
iiii

i[lli

M-g.M

;;;':

iiii
!!!!
)ill

:I;I

! ! ._ !

i!!!!

,iiii
'!!!!

i1111

!!!!

:iiii

0.6

e (deg)

0.8

Versus o-

h = 920 km

0.8

Fig. 19. Angular Observation Errors, _M Versus

1.0

1.0

)
J

XI-62



O. 04

O. 03

"-' O. 02
.,_

b

0.01

a (deg)

Fig. 20. ,_gular Observation Errors, o Versus
A e

!!!![

iiiii
itl;i

I1[11

!!!!]

!!!!I

iii i

Oo '_ .... 0.5

ir_

_44",

i i : :

iii

[ii!
iiii
0.2

(deg)

VeTsus o

Fig. 21. Ansular Observation Errors, oD ¢

XI- 63



v

O. 020

O. 015

0.010

Fig. 22. Versus o
C

0.020

O. 015

0.010

O. O0

0.1 0.2 0.3

a (deg)
E

Fig. 23. Angular Observation Errors, o Versus o

XT-64



b_

16

12

0
0

12.000

8.000

4,000

0
0

i
i

k

i

I
I

-L

--r-

l

-p

i

Fig. 24,

0.2 0.3 0.4

ffc (deg)

Angular Observation Errors, o Versus o
V ¢

Gp =183m

0.1 0.2 0.3 0.4

_(deg)

Fig. 25. Angular Observation Errors, o Versus o
r ¢

0
0.5

3

,L,

0
0.5

A

,. k

..J

XI-65



0

Fig. 26,

iiii_i ....r.....

÷.-+-+-.+-+___

l "

i i i i _ ___7_L_t._.,,:
, i i. I 1

_]i:t !1tit II!C
...... w-l-,-::444-1-4-
H-.!-t.,Tt- i iii rtlTl-t:
+i;;il illJIi_',[l
_+--+-+-,-+-_' _ ' ! : _ _p = 183 rn

_-+-+-+-+-+-...... +ll_illl;!l.

_t-?i i i ,T : ! _ : i i i i !

i i 1-_-F it i i till I!
,!!+!! III+i+_iii
++++:+ III [ I lllti

i i _ i _ , i i + ,

:!!!! i;iii;i t:
0.2 0.3

a (deg)

120

9O

5O

I0

O

0.4 0.5

Angular Observation Errors, o Versus o
3

A

B
v

>4

b

0

0 0.1

! i-!2Mfi++F!-
Hh = 920 _ml,

.-Hh : 365 km__

4 [_ i 16:45 :kn,-+. ! +

lli,+ 11-
_lU] +
iiii. -
II :"
|illli

!!!!!!
iiiiit
! !!!! !

! ! ! ! ! _

_T

;iiiii

I I ,

lili]I

0.4 0.5

Fig. 27. Angular Observation Ez_rors, a Versus o
• ¢

XI-66



0.01

,,_ 0.01

0.005

0 o 0.1 0.2 0.3 0.4 0.5

a ((:leg)
E

Fig. 28. Angular Observation Errors, _i Versus o e

0.04

0.03

0.01

0
0 0.I 0.2 0.3 0.4 0.5

Fig. 29.

(_ (deg)

Angular Observation Errorsp _ Versus G

XI-67



32

24

16

0
0

Fig, 30. Angular Observation Errors, _ Vcrsus z

32

24

16

t::,

0
0

Fig. 31.
Angular Observation _rrorsp _M Versus _E

0.5

XI-68



<

v

P

0

0.016

0.012

0.016

0.012

0.008

0.004

Fig. 32.

o (m)
O

400 500 600

ml ] i I

iiii
iii i

-_-+._-+-

iiii
: ; : I

'. : : :

iiii

1500 2000

_p (ft)

Range Observation Errors, a A

700

L i , i i

[!11t
!!!!!
;;;;;

: : : : :

i!!!

iiii

iiii

'tii

iiii

iiii

iiii

2500

Versus

i00 200 300

! ! '!"!

l..d,_ l
_.!!!

llii

: : ." :

!!!!
: ;,: :

iiii

iiii
iiii

!!!!
: : :-:

iiii

500 I000

(m)
400 500 600

1500

(R)
P

2000

700

iiii

iiii

iiii

iiii
ii!!
iiil

!!!!
!!!i

ii!!

iiii

]iii

Fig. 33. Range Observation Errors, OD Versus o 0

800

3700 km

800

2500

900

3000

900

3000

XI- 89



a_

0.00(_

0.002

0
0

100 200

500

a (m)
D

300 400 500 600 700

!!ii

ii!!
t!!!

i[i£

; : : ,,

iiiJ
2000

Fig. 34. Range Observation Errors, _1v Versus o

800 900

3700 km

2500 3000

0

0.008

0.006

O.004

0.002

0
0

leo 200

500

Fig. 35.

(m)
P

300 400 500

I_[I!'!!

i_iI!I!
ill[!!i

600 700 800 900

h = 365 km

,t_ h = 645_m__

h = 920 kml

: : : ] I ! I I d _ 7-"

lllllltll

iii ll_llll_u
• " Iltlllll!

i ii h = 3700 km-

iiii

iiii
• i •

2000 2500 3000

Range Observation Errors, ar_ Versus ap
J

4

Xl-70



o_

v

:>
t_

v

0 o

o
8000

60OO

4000

2000

0

crG = 0.05 deg

300

_*"m-ILi
!_!!!!i

iiiiiii
iiii]l!

1000 1500 2000

(ft)
O

Fig. 36. Range Observation Errors, _ Versus
v p

(tO (m)
200 300 400 500 600

.... !! _iiiiii !!
iiii ii _ ...... ii
,:_:_ !! iiiiiii i;

cr,¢ = 0.05 deR, I[ i i i i i i i i

' _'" ' [ ! : : : : : : ; I i

..-_. ! l ......
ii_,r ,_ iiiiiii :,

,_ i', iiiiiii !!

'¢!!! I i iiiiiii ,:,:

iJi _: . ii
• ,, , ,iiiiii ,•
: : : : [ j ...... : :
i_m .-_

.... i _:::::: i_J
, I : : : : : : :

1000 1500 2000

e (ft)
P

loo
• ,f, , .

! ! _ ! !

I l _ I

I I l I

v--¢.---¢._---_

H-TW7

[!!!!
iii_-
[lEVi
i 1_ ', I

[_ I It

_'l TA"I

I lIl_

! W"! Ja"l
M'I J#=l 1

: : : : :

iiiit

e'3 [ I I ::::

: : : : : : : : :

ii]ii ....
i i I '

500

Fig. 37. Range Observation Errors, a r Versus aP

700 800

2500

9OO

F2.5

2500

0
3000

800 0
2.5

2.0

h = 920 km 1.5 _

0

3000

3700 km

c.

1.0

0.5

Xl-?l



0

¢)
b

300

i000

(m)

500

1300

cr (ft)
P

Fig, 38. Range Observation Errors. o e Versus _

(m)
P

0 i00 200 300 400 500 600 700 800 900

3ooi I,, 1 I tliii ! t iI I;-._--_L-,. J t I i i 'i ,_IL'O

_..r__ ii; '_ ii I?ii! i __'.!!I,I t I i-rl) i ! , L I i i _ i i i i i [ [

_'o" =O.05degli!l;ii il! !lii;, [!J..* ;
l ] I , , I ] I I ,r_,. T 4-,-i i j I i t I i } [ . f/

I I I I i i I ] i i I I , I i i [ I i i I i i I i I i i _ : '.i _ i , I I. '

I _! IIII}]I lilt
20_ii I ] , I I I ] [ I i I I I I I I i ] I 1 i _ i ! I I i J J ', ] i 1 r

£ II , , , ! I , , , I , , I , _ , , ' , r : 645 k m ........

lO01llll[l_ I I11 i tllll IlillIIl!llli ]I[1111111 Ill IT 30

i l I I I I_i,,T l I I I I i I I I III I I I I I ! I I I ,ll I /I t I I i ; I i I I I
I I I I I_I I I I ! I I ! I I I I I I I I I I I I I I I ]_LLi _'TI I I I I I I I I I

•

IBI I I I I I I I I I I I I I I I I I I : I I I I I I I I I I I I I I _ I I I I I I I I
IIIIIIIIIIIil li iIIIi iIIIII!IT_,, if _ I Jill IIIlil

O0 500 1000 1500 2000 2500 3000

(ft)
P

Fig. 39. Range Observation Errors, _ Versus G
a p

XI-72



¢)

6"

100 300

0.0081 ! !!'!!
:::::

• O. 05 deg

o.oo 
:::::

:::::

:::::

:::::
;::tl

0.004 !!!!!
:::::

:::::

iiiiJ

0.002 _ !!!
:::::

iiiii
iiiii

0 500 i000

600 700

_

: : : : : : : : : :

: : : : : : : : : :

iJ ii iiiii
::::: t!lll: : : : : ....
: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

..... iiiii
: : : : : .....

iJiii .....

..... iiiii
iii!! _!!!!
: : : : : I I I I I

iiiii i_iii
1500 2000

(ft)
P

Fig. 40. Range Observation Errors, o. Versus a
I 0

800 900

h : 365 km

h = 920
"T'I"T7" -'r-

Illl I
III1 ,
I111

iJJl i
1111
1111 i

1111 [
h : 3700 km

Illl I

liii !
II11

Itll i
IIII
I_1I i
Illl '
i_I_ i
IIII

llll i1111

11t! I
tlti ,
I1[I
_1_ i
I111 t

IlJl Ifill .
IIII

2500 3000

o

0.016

0.012

I00 200

• O. 05 deg

500

Fig. 41.

ep(m)
300 400 500 600 700

...... ,.r.I !!!!'!
iiili Jiiii.... .....

!!!!_ .....
::::: :,::: !iiii....
..... ii_ii iiiii

; .... :!!!! ii!!!
iiiii '!iii, _!!!!
_ :iiii; .....

_it._ 'iiiii .....
_,'FTII _,_ iiii....
,,11, :::: :iiiii_ iiiii

: !! ::::

iiiii.... ilii, i:i::
:::: IIIII..... :::::

!iiii,.... ::::: iiiii

il ....
i I ! ..... :

i II ilili : : :::IIII .LI I ] I iiiii

1000 1500 2000

p

Range Observation Ezcors, oa Versus aa

2500

800 900

i

1

3000

XI-73



0

30

2O

_3

10

0
24

2O

16

IO0

0

I00

Fig. 42.

a (m)
P

300 400 500 SO0 700 800 900

Fig. 43.

I000 1500 2000

ap (ft)

Range Observation Errors, _ Versus
P

a (m)
P

300 400 500 600 700

2000

Versus o
M P

1500

o fit)
P

Range Observation Errorsm

25OO

2500

3000

900

3000

XI-74



CHAPTER XII

GUIDANCE AND CONTROL

Prepared by:

J. D. Kraft

Martin Company (Baltimore)

Aerospace Mechanics Department
March 1963

Symbols ...............................

A. Introduction ............................

B. Guidance and Control Requirements ............

C. Space Vehicle Guidance Techniques .............

D. Design of Attitude Control Systems for Earth
Satellites ..............................

E. References ................... "..........

F. Bibliography ............................

Illustrations ............................

Page

XII- 1

XII-2

XII-2

Xll-2 8

XII-31

XII-56

XII- 56

Nil- 63

_II-I

4



LIST OF ILLUSTRATIONS
b

Figure

i

2

3

4

9

i0

ii

12

13

14

Results of Optimization for Equal a in Pitch and

Yaw Equal to _ ......................

E0

Normalized Density Function of A v (Equation ii0)

Vacuum Ballistic Trajectory Error Analysis (ve-
locity and radius, cutoff to apogee, partials) .....

Vacuum Ballistic Trajectory Error Analysis (ve-

locity and radius partials, expanded scale) ......

Vacuum Ballistic

rection for r0/r f

Vacuum Ballistic

rection for ro/r f

Trajectory Error Analysis (cor-
= 1.02) ..................

Trajectory Error Analysis (cor-
-- 1.04) ..................

Vacuum Ballistic Trajectory Error Analysis

(radius partial, apogee to rf, rf = r0 .........

Vacuum Ballistic Trajectory Error Analysis

(radius partial, apogee to rf, rf = r0/1.02) ......

Vacuum Ballistic Trajectory Error Analysis

(radius partial,apogee to rf, rf = r0/1.04) .......

Vacuum Ballistic

(flight path angle

Vacuum Ballistic

(flight path angle
r0/r f = 1.00)

Vacuum Ballistic

(flight path angle

Vacuum Ballistic

(flight path angle

Vacuum Ballistic

(flight path angle

Trajectory Error Analysis

partial, r0/r f = 1.00) .........

Trajectory Error Analysis

partial, extended velocities,

Trajectory Error Analysis

partial, r0/r f = 1.02) .........

Trajectory Error Analysis

partial, extended;r0/r f = 1.02)...

Trajectory Error Analysis

partial, r 0/rf = 1.04) ..........

Page

XII-65

XII- 65

XII- 66

XII- 67

XII- 68

XII- 6 9

XII-70

XII- 71

XII- 72

XII- 73

XII- 74

XII- 75

XII- 76

XII- 77

XII- ii

I



LIST OF ILLUSTRATIONS (continued)

Figure

15

16

!7

18

19

20

21

22

23

24

25

26

27

28a

28b

Vacuum Ballistic Trajectory Error Analysis
(flight path angle partials, extended velocities

r0/rf = 1.04) ..........................

Vacuum Ballistic Trajectory Error Analysis
(circular velocity as a function of altitude) .....

Vacuum Ballistic Trajectory Error Analysis

(r0/r f as a function of h0 and hf).............

Altitude and Velocity Influence Coefficients

Versus Range (for values of elevation angle _0 ). . .

Elevation Angle Influence Coefficient Versus
Range (for values of elevation angle _0 ) ........

Time of Flight Versus Range ...............

Overall Control System Block Diagram with

Radio Guidance Loop ....................

Functional Block Diagram for a Radio-lnertial
System .............................

Actual Antenna Radiation Pattern Showing
Important Trajectory Steering Constraints ......

Gravity Computer.. .....................

Steering Computer .....................

Motor Shutoff Computer ..................

Torque from Solar Radiation as a Function of
Area and Lever Arm ....................

Field Intensity Versus Altitude for Earth's
Magnetic Field ........................

Maximum Torque per Ampere-Turn for a
0.3m Radius Coil Versus Altitude over the

Magnetic Equator .......................

Page

XII-78

XII- 79

XII-80

XII-81

XII-81

XII-82

XII- 83

XII- 83

XII- 84

Xll- 84

XII- 85

XII- 85

XII-86

XII-86

XII- 8 6

XII- iii



LIST OF ILLUSTRATIONS (continued)

Figure

29

3O

31

32

33

34

35

36

37

38

39a

39b

4O

41

42

Flux Density in Inertial Space Versus Position in
400-Naut Mi (741 kin) Orbit ................

Component of Flux Density Along Earth's Local
Vertical in 400-Naut Mi(741 kin) Orbit for Several
Orbit Inclinations .......................

Magnitude of Earth' s Magnetic Field at 400-Naut Mi
(741 km) as a Function of Latitude Assuming the Mag-
netic Dipole Is Along the Earth' s Spin Axes .....

Typical Conical Earth Scanning System ........

Geometry for Using Edge Tracking to Generate
Attitude Information .....................

A Wide Angle Passive Scanner ..............

A Possible Yaw and Array Sun Sensor Arrange-
ment ...............................

T Shadow Bar Sun Sensor .................

Coordinate System for Computation of Yaw
and Solar Array Laws ...................

Yaw and Solar Array Control Laws ...........

Torque in Body Coordinates Due to Solar Radiation
Pressure for One Orbit ...................

Momentum Change in Inertial Coordinates Due to
Solar Radiation Pressure for One Orbit ........

Total Stored Momentum During One Orbit Due to
Gravity Gradient .......................

Block Diagram of Simple On-Off Control System . .

Phase Plane Portrait of a Contractor Control

System ..............................

Page

XII- 87

XII- 88

XII- 88

XII- 89

XII- 90

XII- 90

XII- 91

XII- 91

XII- 92

XII- 92

XII- 93

XII- 93

Xll- 93

XII- 94

XII- 94

• / /

XII-iv



LIST OF ILLUSTRATIONS (continued)

Figure

43

44

45

46

47

48

49

Block Diagram of Gas Jet Reaction Wheel

DuaI Mode System ......................

Typical Phase Portrait Dual Mode System

with Constant Disturbance Torque

Example Attitude Control System Block

Diagram for Acquisition Mode ..............

Phase Portrait of Roll Error and Roll Error

Phase of Acquisition ....................

Angle and Angular Rate at First Switching Line
Versus Acceleration for Initial Conditions of
l°/sec and 180 ° Error ...................

Angle and Angular Rate Versus Time of Acqui-
sition ..............................

Basic Attitude Control System Block Diagram
for Normal Mode ......................

Page

Xll- 94

XlI- 95

XII- 95

XII- 96

XII- 96

XII- 97

XII- 97

XII- v



J



a

e

E

g

i

L

M

r

R

t

t
P

V

O/

7

e

XlI. GUIDANCE AND CONTROL

SYMBOLS

Semimajor axis

Orbit eccentricity

Eccentric anomaly

Acceleration due to gravity

Orbit inclination

Geocentric latitude

Mean anomaly

Orbit radius

Radius of the earth

Time

Time of perigee passage

Magnitude of vehicle velocity

Azimuth of velocity vector relative to
nominal

Azimuth of the orbit path relative to the

north point on the horizon

Flight path angle relative to local
horizontal

P

2
Cl

Gravitational constant of the earth; also,

mean value in statistical discussions

Angle from the ascending node to the

projection of the radius to the vehicle

on the equatorial plane

Range; also, correlation

Variance

Orbit period

Earth central angle in the orbit plane

from ascending node to the vehicle

position

Earth central angle normal to the orbit

plane

Argument of perigee

Longitude or right ascension of the

ascending node.

Subscripts

Apogee value

Perigee value

True anomaly
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A. INTRODUCTION

The purpose of this chapter is threefold.

(I) Develop the guidance and control re-

quirements as functions of the tolerances

imposed on the trajectory.

(2) Introduce the subject of satellite guid-

ance with a discussion of guidance tech-

niques.

(3) Introduce the subject of attitude control.

The first item can generally be discussed by de-

veloping an error analysis relating the errors in

a specified set of orbit parameters, or, analogously,

in position and velocity at a specified time, to

errors occurring at injection and then by relating

errors at injection to errors in the pov,,cred ascent

phase. The first analysis is presented in Section

B of this chapter (powered ascent trajectorics are

not covered in this manual) in a general form ob-

tained without sacrifice or assumption. The re-

maining discussions will be of a more qualitative

nature. The difference in emphasis is due to the

fact that the field of guidance and control involves

studies both of techniques and hardware to imple-

ment the desired changes; however, discussions

of hardware have been omitted from this text due

to its constantly changing nature. These dis-

,:ussions are presented in Sections C and D.

B. GL_DANCE AND CONTROL

REQUIREM ENTS

Since the goal of a guidance and control system
is generally to bring the vehicle to a certain

position with a certain velocity, the first step in

design of such a system is generally ascertaining
the accuracy in this position and velocity required

by the mission. The mission requirements are

usually expressed in terms of allowable tolerances

in orbit elements or required position and velocity
accuracies at some terminal point in the trajectory.

Therefore, the designer must be able to relate
these mission tolerances to tolerances in the

final position and velocity of the trajectory phase

in which the guidance system is operational.
Relations between these tolerances are derived

in tMs section. Errors in elliptic orbits are

considered in Subsection 1, and errors in

powered flight trajectories are considered in
Subsection 2.

1. Error Analysis of Elliptic Orbits

An elliptic orbit can be completely specified

by assigning six independent parameters. Of

particular interest are the classical elements

(semimajor axis (a), eccentricity (e), argument

of perigee (¢o), time of perigee (tp), inclination of

the orbit plane to the equatorial plane (i) and the

celestial longitude or right ascension of the

ascending node (e) and the polar position and

velocity components (radial distance of the vehicle

from the center of the earth (r), central angle in

the orbit plane from ascending node to vehicle
position (_), position angle normal to the orbit

plane (_ = 0 nominally), vehicle velocity magnitude

(v), flight path angle in the vertical plane relative

to local horizontal (N) and flight path angle in the

horizontal plane (azimuth angle) with respect to
north (_). Differentiation of the equations re-

lating these two systems provides a set of error

formulas which serves as a basis for specification
of guidance system requirements.

a. General dLfferential analysis

Since the equations relating the planar

parameters (a, e, _, tp and r, o, v, 7) are not

coupled with the equations relating the parameters

defining planar orientation, the derivation can be

conveniently considered in two parts.

(i) Planar parameters

Generation of the four error equations

da = fl (dr, d_, dr, d_)

de = f2 (dr, d_, dv, d_)

cho = f3 (dr, de, dv, d-_)

dip = f4 (dr, d_, dr, tiT)

must be based upon four independent relations

between the variables (a, e, _, tp)and
(r, _, v, ,_):

2 2 1
v = _ (F "_) (I)

2 2 2 e 2)r v cos ,_ -- ua (1 - (2)

a (1 - e 2)
r - i + e cos (_ - _) (3)

tp - t -- - (E - e sin E)

= - _ .a_3 IV[ (4)

where

cos-i a - rE

These equations are, respectively, the energy

equation, the law of areas (Kepler's second law),
the equation of conic form (Kepler's first law) and

Kepler.s equation. The establishment of these

laws is considered in Chapter III. Taking dif-

ferentials of Eq ('1) gives the required linear

error formula for the semimajor axis.

2a 2a2v
da = 2 --_r dr+-- dv (5)

r"

This equation is most conveniently expressed in
normalized form with coefficients written in

terms of only one variable, either r or e = _ -¢o.
From Eqs (1) and (3)
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or

da

2

=2 _,/dr
r

2 (1 + e cos e) 2

(1 - eZ) 2

dv

dr

]1+ 2e cos v+ e2
+ 2a V_ V 1 - e2

(6)

dv (7)

dr (2 a I) dvda - 2 i a) -?- + 2 - (S)a F -9-

1 + e cos 8 dr
= 2

2 r
1 -e

+ 2 (2 1 + e cos O . 1) d__VVv" (9)
1 - e 2

(Also. sincetheorbitperiod_ = 2Tr la--_,

d, 3 +_ -_" a F_- F __--"
/

ferentials of eccentricity may be determined
from Eq (2).

2 2
de _ v cos _ (a-r) dr

;_ea

2
+ 2rv cos "f (a-r) dv

pea

2 v 2
+ r sin ¥ cos ,f dY (I0)

yea

Substitution of Eqs (1), (2) and (3) and simpli-
fication gives

de- l'e2er (ra- " i) dr

2
+2 1 -e (a-r) dv

er

(e+ cos 8) (l+e cos e) dr

a (i-e_)

2 _1/z
2(e+ cos B)F a(l - e ) | dv+

Lp (I+ 2 e cose+e2_

e 2) sin 8 dY (12)
+ (1 - 1 + e cos B

or, in normalized form,

de

2
1 -e

(_"- I) -b- + 2 F- "_-

(13)

+ 1 t(1-e2) [(r- 1)2- e2; dY

dr 9 (e * cos 0) dv
= (e+cos 0) T _" -_-

e 2) sin 0 d'/ (14)+ (I - 1 + e cos8

From Eq (3),

a (1 - e 2) - r
cos (ep -,_) = er '

differentials of the argument of perigee may be
written.

1 + e cos 6 da
- sin (* - co) (d¢ - d_) - e a

i + e cos O dr
e F

Substitution for da and de from Eqs (5) through

(14) gives d_.

d_ =+g I- L T

d_ = sin 0 dr + 2 sin O dv
e r e v

2e+ (1 + e 2) cos O + d,
e (1 + e cos o} (16)

The linear error relation for the final planar

element, tp, is obtained from Eq (4).

d (tp - t) 3 da sinE

tp-K-- = _" a E-esinE
de

+ 1 - e cos E dE (17)
E - e sin E
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where

'- esTE" La a --_) T
dE

18)

Substituting for da and de from Eqs (8) and (13)

or (9) and (14). and substituting Eq (18) in Eq (17)

gives the required relation

d (tp - t)

tp - t

a a

= 7± 2_- i-( ) (I

-'-1/2 I-- e2}_ 2+ ra

1 - e 2

e

)]j dr ( (2, 1)-1 7÷ 3 a

a i - e 2

I (I- 1 r 1
+iT[ e 2 - _ d7

(i.q)

=(3 (i + e cos 8)+ 1 II - e2 [1 - e 2 , _ _ -2

1-e 2 ]_dr

+ (e+ Cos 8) cos 8 + l+ecos_J r

+F 3 1 + 2 e cos 8+ e 2
L 1 - e 2

]2
v "v sin O 1 + e cos O j--v

1+ e cos O+ e2_dv
-l_ e

1 (l-e2) 3/2 cos e d7 (20)
+]_ @ l+ecos8

where M = mean anomaly = E - e sin E.

(2) Orientation parameters

The out-of-plane coordinates and injection

parameters (d@. the displacement in central angle

normal to the orbit plane at injection, and dE, the
error in orbit azimuth or orbit orientation in the

horizontal plane) determine the orientation of the

orbit plane in space, as defined by the orbit

parameters i, the inclination of the orbit plane

to the equator, and _. the right ascension of the

ascending node.

AL

The required error relations

8i d.+_ d_di = ._

dfl d J#+ _ d_d_:

can be determined from consideration of the

accompanying s_etcn and Table 8 of Chapter III.

the table of spherical trigonometry identities.

cos (i0 + Ai) = COS (L 0 + AL) sin (_0 + A_)

Since only a differential approximation to the

error is required, the terms of this equation

may be expanded in Taylor series, and terms of
second order in the errors may be neglected.

cos i0 - sin i0 Ai = c_s L 0 sin _0

+ cos L 0 cos 60 A_

- sin L 0 sin _0 &L

Since cos i 0 = cos L 0 sin 80,

cos L 0 cos 80 sin L 0 sin _]0
Ai = - A_ +

sin i0 sin i0
AL.

(2i)

A relation

AL : f CA,, A_3)

is then required for substitution in Eq (51). Such

a relation is obtained from application of the law

of cosines to the spherical triangle formed by

two meridians and the side A, in the sketch.

cos (90 ° - L 0 - AL) = cos (90 ° - L 0) cos Aq_

+ sin(90 ° - L O) sin A9 cos (90 ° + _0 )
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Simplifying and expanding in series gives

AL = - sin 130 A_.

Substitution of this equation in Eq (21) gives the

error in inclination

cos L 0 cos _0 sin L 0 sin 2 _0
di = A_ - A_.

sln 10 sln i0

The error in nodal right ascension may be deter-

mined by noting that

cos (_0+ _)
cos (v 0+ &A - &_) =

sin (i0 + /',i)

and

sin AN sin (90 ° + E0)

sin A _ = _in (90 ° - L 0 - &L)

These equations on expansion give

tan v 0 (AA - Aft) = tan fl0 AE + cot i 0 /xi

cos E 0

AA= cos-65-_-[70_ _.

Then

I tan 60 cot i 0 cos L 0 cos /30] A_d_ = - tanv----_ + tan v 0 sin i 0

Fc°s ;30 cot i 0 sin L 0 sin 2 ;30t
+L_O + tan v 0 sln i0 2'4"

The di and dfft solutions can be written completely
in terms of L and i as follows:

sin L 0 cos 2 i0 I sin2 L0

di = - 2 dq_¥_l - _ dE
sini 0 cos L 0 sm x0

(22)

I sin2 L 0
1 1- d_

df_= + 2

cos L 0 sin i 0 sin, 0

sin L 0

--7"I-?-dE
sm 10

(23)

The orbit plane orientation errors can also be

derived in terms of a velocityazimuth error, da
referenced to the local nominal direction of the

velocity vector, rather than the orbit azimuth
error dE. That is, from the following sketch, if
the orbit orientation is in error due to a Aqj but

Aa = 0, the incorrect orbit (as well as the correct

orbit) is normal to the arc & qJ. The new orbit

azimuth angle, El, is not equal to the nominal

orbit azimuth angle, E0, even though the velocity

azimuth error is zero. Then, from the spherical

trigonometry relations of Chapter HI,

cos (i0 + _i) = cos L' sin (fi'+ _'_)

in _NPIN I, where the primed quantities relate to

the intersection point of the nominal and incorrect

orbit planes. Expansion of this equation in Taylor

series and neglecting higher order terms as b_fore

_ives

.%i = _ cos L' cos $' A*.
sin L 0

Since

tan _' =
cot i0

cos (90 - _0 )

where

_0 = arc N O S O

and

cos i0

sin ;3' = cO--6-sI['

sin L 0

Ai = - sin ¢0 & * = -_ A_"

Similarly, from

tan(v' +A_) = sin L' tan (_' + &,)

when

&f_ : arc N O N I

sin L' cos 2 v' _y
All = 2

cos E t

or

cos ¢ _ _ 4 sin2 L0

sln 10
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Now consider an error due to 6 a superimposed

on the previously considered incorrect orbit as

shown in the accompanying sketch. The addi-
tional errors due to 6a will be denoted by 6 ().

C'-Orbit in error

\ due to both

&_ and 5a

Orbit in error_ \ _ S1

- due to_ only_/ I /_,_

/"io+ _ io?\ .-_"6_7 _ I

cos (I0 + 6 i0)

sin (_I - 5a) - cos L 1

where

IO : iO + &i O

or

cos E1 cos L 1

5i0 = sin I0 6a

cos _0 cos L 0
bet

sin i0

Also, from

cos (_i - 6a)

cos (v I - 59) = sin (I0 + 6i)

cos E1 /3Icos sin/31

-- in--Wo --c°tI° +
5a

sin L 0

The the total error formulas, analogous to Eqs
(22) and (23), are obtained by adding the con-

tributions due to A@ and 6v_ (that is, forming

Ai+ 6iand A_ + 6_).

sin L 0

di = - sm I-_ d%b + cos $0 cl_
(24)

cos _0 sin L 0

d_= sm i--_d_ + _ da

(25)

The differential error expressions derived

in this section (Eqs (8), (9), (13) through (16),
(19), (20), (24) and (25)) are presented concisely
for reference in Table 1,

The inverses of the relations expressed in

Table 1 (that is, the errors in polar position and

velocity components as functions of errors in the

classical elements) are also useful error formulas.

These formulas can be generated simply by in-

verting the matrix of coefficients given in Table

i. If Table 1 is expressed as

where

(p} {_ d(tp - t) fl}i = , de, dtJ, tp- t , di, d

= the six vector of nondimensional

orbit parameter differentials

Iqj) {dr dv Jt= -_--, --_-, dT, d_, d% d

= the six vector of nondimensional

polar coordinates

I "all a12 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 i 0 O

a42 a43 0 0 0

0 0 0 a55 a56

0 0 0 a65 a66

ai_ = a41

0

0

Then the required inverse matrix is

where

St= adjoint of -_[aij _ (transpose

the cofactor ,na_rix)

laijl = determinant with elements aij.

Inversion is most conveniently accomplished if
the 4 x 4 submatrix of planar parameter coeffi-
cients and the 2 x 2 submatrix of orientation

parameter coefficients are inverted separately.
The process is also simplified by noting that

all a12 0 0

a21 a22 a22 0

a31

a41

a32 a33 1

a42 a43 0

_ 2(1 - e2) 3/2

M

all al2 0 I
= - I a21 a22 a23

la41 a42 a43]

(1 + e2+ 2e cos 8)

e (I + e cos 8)2
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i

The resulting inverse matrix is presented in

Table 2.

With the relations of Tables 1 and 2, errors

in one phase of an orbit can be determined as

functions of errors several phases prior to or

subsequent to that phase. For example, errors

in position and velocity at orbit injection can be
used to solve for errors in the orbit elements,

which can in turn be used to determine by the

inverse relations, errors in position and velocity

at any future time.

b. Errors in orbit extrema

Orbit tolerances are frequently specLfied in

terms of allowable errors in apogee or perigee

conditions. For example, in establishment of a

low-altitude orbit, a perigee altitude tolerance

may be specified in order to assure a long orbit

ILfetime. Equations for these errors in apogee

and perigee conditions can be easily determined

as a special case of the previous general analysis

(Section B. I. a. ).

From Eqs (i) and (3)

r = a(l + e) (26)
a

r = a (I - e) (27)
P

1 - e (28)Va= 1.7

_-_ l + e (29)
Vp = va I -'_

where subscripts a and p denote apogee and perigee

conditions, respectively. These equations yield

the following differentials.

dr = (i + e) da + ade (30)
a

dr = (i - e) da - ade (31)
P

V V

adv a = - _-_da - -- de
(1 + e)

(32)

V V

dVp = - _a da+ (1 -ae) 2- de (33)

These equations may be expressed in nondimen-

sional form as follows.

dr__a= d__a+ d__e_e (34)
r a 1-re

a

dr
= d a _ de (35)

r a 1 -e
P

dVa 1 da de (36)
--_-'--=-_-

a l-e

d v

= 1 da+ d_____e

vp - _ a l - e 2
(37)

Then

r

i

=

1

1
d1
de

all a12 0 iI_- "

a21 a22 a23jl_
_-dy

and

dVa -

v a 2 t_e-2

1 i

1 -e 2

I -! -i
2 1 -e 2

=

1 1

1 - e 2

Fall a12

I

a21 a22 a2_ L_d-y _1

Substitution of the a.. from Table i gives the
1j

differentials of the apogee and perigee values.

dra - a !2+1_--_ (1 ar-)l drr a r - -_

(38)

J r 2 _2 a- l)
± _ V(_)

(I - e--_) 1 dy

drp a 12 (1 + e)(i _r)l dr- %-
rp r e

c -rl;°v+2 F -_ -_

I

_1+ e r 2 (2_- l) 1 d 7

(a) (1 - e 2) -

-_a -Y+_ %-+ " 2F

(39)

i i
. 1 r2(2a-l)

2 (1 a_]dv :F (_) -1 d 7

(40)
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E ]__p = a+l a dr

Vp r F (F " 1 -T

I a+2a _dv+ 1 - 2 r _-(_-- 1 _-
J

I a _ I)
1 r 2 (2 7

-1

upper sign for + _, lower sign for -

With coefficients expressed in terms of the

variable 0, Eqs (38) through (41) become

dy

(41)

4 r
1 dra

- (2 - e + cos 6)
r _ -7-

+ -_e (I+ cos c) dVv

sin 0
+ (I - e) f-,+ e cosO dY (42)

drp _ _(2+e-cos O) dr
r r

P

2
+ _ (1 - cos O) dvv

sin 0

- (i - e) I+ e cos 0)
dN (43)

dVa = -I (I + cos O)
dr

v l-e r
a

- _ (1 + e + 2 cos O) dVv

sin O d¥
1 + e cos 0

(44)

__dVp = -+_e (I- cos O) dr
V r

P

- +_e (i - e - 2 cos @ d__Vv

sin O
dY

l+e cos 0
(45)

Eqs (38) through (45) are collected in Table 3.

e. Evaluation of critical cases (e _ 0, i _ 0")

Many of the error formula coefficients in-
volved in transformation from polar coordinate

errors to orbit element errors (Table 1) are

indeterminate or inaccurate for e _ 0 or i _ 0%

Error formulas for these special cases may be

developed by a Taylor series approach, as used

inRef. (i). Ifa =a0+Aa, r = r0+Ar, v=

v 0 + A v are substituted in Eq (1),

a 0

Since a 0

orbits,

1+ Aa =

r 0

+Aa =I 2 (v 0 +_%v)2_-1
r0 _-Ar p J

= r 0 and v 0 = /r--_- for nominally circular

-1

iI +_r (1+ )2 (46)

r 0

Neglecting terms of second order and higher in

the Maclaurin series expansion

(1+¢) n t + n_ + n(n-t)_
= 2!

+ n(n-l) (n - 2) _3 + . . . (47)
3'

(2 << i)

of the various terms of Eq (46) gives

A r 0 A v 0 2)A___a _ 2-- + 2-- (1>>,

r 0 r 0 v 0

(48)

which checks with Eq (8) for nominally circular

orbits (a 0 = r 0 in the coefficients). However.

similar evaluation of A e from Eq (2) (that is,

letting r = r 0+At, v = v 0+Av, Y=Ay in

2 4 r2 v4 2 2 2 2e = 1 + cos y -_ rv cos

requires retaining second order terms in ap-

proximations by Eq (47) since the first order

terms vanish. The resulting solution is

2

2 =(2Av +Ar) + 2
e _0 r0 Y

(1 > > e 2)

(49)
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Similarly the series approximation of Eq (47)
gives, from Eqs (26) and (27),

a r
a Aa

r 0 r 0
(50)

Ar A a
mt _ -- e

r 0 r 0

(1 > > e 2)

(51)

Substitution of Eqs (48) and (49) in Eqs (50) and
(5 I) gives

A r0 A v0
Ara _ 2 --+2--

r0 r 0 v 0

(52)

A r0 A v0Arp _2_ +2_
r 0 r 0 v 0

- 2v-_- Y
(53)

The elements _ and tp are not defined in the

circular orbit case and, therefore, will not be
considered. However, di and d_ are indeter-
minate for i = 0°. For this case, from spherical
trigonometry,

cos Ai = COS z_d_sin (90 + A_]).

d

The Maclaurin series approximation gives

or

1 - _._2__ - _

Ai2 =AS 2 +A]32 (54)

The error in _ is not defined (since, for the

nominally equatorial orbit, the ascending node
is not defined). However, the node of the in-
correct orbit can be determined from

sin v = tan /x_ ZX_b= _ (55)

The case of near circular orbits is also con-
sidered for the inverse transformation (errors
in polar coordinates as functions of orbit ele-
ment errors) in Ref. (1). For the small eccen-

tricities of this special case, the planar
variables can be expressed by the following
series expansions, as given in Chapter HI.

2

ra = 1 -e cos M - _2- (cos 2M - I)

(continued)

XII- ii

e 3

(3 cos 3M - 3 M) -...

v e2

a_--- = I +e cos O +-_- (3-cos 2e)
tt

3
+ _ (4 cos 8- cos 3E) -7) +. o i

o

8 = M +2e sin M + 5_ sin 2 M

Y

M

3
e

-_ y,/ (13 sin 3M - 3 siu M)

2 3

%_ e= e sin_ - sin 20 +-,j-sin 3e -...

= mean anomaly - (t - tp) (56)

2
For e < < i, approximate relations can be
written.

r = a (1 - e cos M) (57)

v- ff(1 +e cos M) (58)

8 :M + 2e sin M (59)

= e sin M (60)

From Eq (56)

or

Ir ll/2
M : M 0+/_M = u (t- - _tp)

03 (1 + _) 3 tp0

3 Aa C7AM : -_ -_0 M0 - Atp. (61)

The errors at any later time Ar2, AV2, A'_2

and A82 will be determined as functions of Arl,

AVlo and A _1 by varying one injection parameter

at a time and assuming a linear combination of the
individual errors.

Case (I) JAr I =0, AV 1 -0, AY, # O]

If Y1 is the only launch parameter which is in

error, Ar 1 _0, Av 1 = 00 Y1 "A'_I" and from

Eq (49)° e= IAYll, where AY 1 is an error due

to a velocity component normal to the desired
circular orbit velocity at launch. For the cir-

cular orbit, M and tp are referenced to the

perigee direction in the incorrect orbit. Since
the semimajor axis a is a function of r and v but
not Yo Aa _ 0 for this case. Then, from Eqs
(57) through (61),

Ar(l ) --er0cos M0:-r01A' 1 COS M 0

av(z) _

"_0 ~ I_ Vll c°s M0



= r_ +2 [AYllsinlVI0AS(1 ) - ---_ Alp

oh,)= la_lL sin M0

From the dr(1 ) equatior{, ±r = 0 when cos M 0 = 0.

Therefore, for ease (1), M 0 = 90 ° (for "_1 positive)

or M 0 = 270 ° (for _1 negative) The absolute

magnitudes in these equations may be removed by

defining a mean anomaly M0, referenced to the

initial point. Then)_0 = M 0 - 90 ° for positive

_'_I' and -_0 = M0 + 90" for negative A--N1 Sub-

stitution in the previous equations gives, for

either positive or negative /_Vl'

&r(1) ~ A7 sinTr_0 (62)
r 0 1

av(i )

v 0

_8
(11

(63)

(64)

_(I) = a31 cos _o (65)

In derivation of Gq (64) use is made of the fact

that ,_ _(11 = 0 at 2_0 = 0 since the correct and

incorrect orbits intersect at the initial point.

Case (2) I&,l =0, AVl =0, 'hrl# 0_

For _Y1 = 00 AV 1 = 0, &r 1 # 0° Eqs (48)

and (49)

give

Ar 1a(2) = 2 --

r 0 r 0

e(2 ) = rl

_V 0

Arl e

Then, from Eqs (57) through (61)

At(2) ~ 2 Arl ]Arl]

r 0 r 0 r 0
cos M 0

Av(2) at, ]arll
= - -- + -- cos M 0

v 0 r 0 r 0

Arl r_/xB(2 ) = -3 r-'-_ M0- -'_ Atp

I rll
+ 2 r-----0--sin M 0

I rll
A Y(2) _ r 0 sin M 0

But M 0 = 0 ° for &r 1 positive, and M = 180 =

for &r I negative. Then, for "_0 = 0° at launch,

Ar(2) _ _rl

r 0 r 0
(2 - cos _0 ) (66)

&v(21 ~ "-%r 1

v 0 r 0
(cos 9tl0 - I) (67)

a_(2)

_Y(21 -

Case (3)

Ar I

(2 sin 7_-0 - 3_0 ) (68)
r 0

&r I

sin -)_0 (69)
r 0

I-_ r 1 = O, _'_I = O, # O_&v I

For'the remaining case, where Ar 1 = 0,

Y1 = 0 and AV 1 # 0, Eqs (481 and (491 gives

A_a (3) _ 2 ''V1

r 0 V 0

I_vl!
e(31 _ 2 T "

A procedure similar to that used in cases (i) and

(2) gives

_r(31

r 0

" v(3 )

v 0

AO(3 )

Av 1

- 2 V--o--- (I- Cos 7_0 )
(70)

" Y(3)

Av 1

Vo (2 cos _0 1) (71)

_v 1 Av 1

+ 4 -- sing_0= -3YqO v_ V 0

(72)

= 2 --&vl sin_l (72)

v 0 O"

The total error solutions are obtained by combin-

ing the effect of all three errors linearly (adding

Eqs (62), (66) and (70)_ Eqs (63), (67) and (71h
etc. ). j]
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Ar 1

Ar sin_0A._l+(2 _OOS_0 )
r 0

Av 1

+2 (i - cosgh 0) -_0
(74)

iv

-- - sin _0 AYI +(cos _0 " i)
v 0

ZXv 1
+ (2 cos P2_0 - 1)

v 0

Ao = AWl +2 (COS_0 - I) A'_ I

Ar
I

+ (2 sin_0 - 3:_ 0) r0

Ar I

r 0

(75)

Av I

+ (4sin_0 - 3}%)
(76)

AY

i r

= COS --_0 A _1 + sin_ 0
r 0

2
e <<1

(77)

d. Statistical analysis

The error formulas developed in previous

sections serve to convert a specific set of errors

from one system of orbit determining variables

to another. However, [n preliminary design

work, specific sets of errors are frequently not

of interest. Rather, the design engineer must

determine the probability that a certain error will

be less than the tolerable limit. That is, he re-

quires a probabalistic relation rather than an

algebraic relation between the errors. This
section concerns the determination of the error

probabilities from the previously determined

error formulas.

(I) Probability of Linear Error Functions

The majority of these error formulas are
linear differential approximations of the form.

u ffi_ a i x i, i = I, 2, .... k

i

where the a. are constants. If the x. (the errors
1 1

to be transformed) are independently and nor-

mally distributed with means ui and variances

cr. 2, then the moment generating function _ (t)
t

for the distribution of the variate u is given as
follows:

k

,_._ t - _ , cr. dXl dx2" '
i 1 1

• dx k

Transformation to the standard fovm is conveni-

ent.

Let

x: - ;_i

Yi = a
1

Then

re(t) : !_)

k/2 /_,_

exp (taiu _) exp (taiYfcr i

, 1 k/2
[_[) _ (exp (tai. i) e I,(½t2a}o})

i exp(- ½ [yi2- 2ta iyiui + t2a}u}l) dYi)

-ec

= exp ai/_i + -2-- a} at (7S)

However, the moment generating function for the

normal distribution is

m n (t) = exp (t_ + _ t2 a 2)

Therefore, Eq (78) is the moment generating func-

tion for a normal distribution

l exp [-½ (U__._;____)2;
n(u) = {-_

with mean and variance given by

(79)

i

a : a i a i (80)

1

Similarly, if the x i are correlated instead of be-

ing independently distributed, u is distributed

normally with
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=T a i _i (81)
J

i

a  oi, ,82,
t 1,3

The covariance, aij, is sometimes written Pij_iaj

where Pii is the correlation. These results (Eq

(79) and (80) or (81) and (82}) then describe the

probability distributions of the left-hand column
vectors of Tables 1, 2 and 3 if the distributions

of the right-hand column vectors are assumed to
be normal. For example, from Eq (48), if Ar and

Av are normally distributed with zero means, then

Aa is normally distributed with zero mean and
varianco

aAa = 4 + + 2 PAvAr _&vaA

---T- v 0 r 0 "
r 0 v o r 0

(nominally circular orbits)

Once the distribution of the transformed error

is determined, the probability that u will lie be-

tween two given values u 1 and u 2 is given by

u 2

P l < u< u = n(u) du.

u 1

Since areas under the normal error distribution

curve are widely tabulated, the probability that

the error u will be less than a specified tolerable

limit u*,

U m

P[lul < u*l = ._ n(u) du, (83)

0

may be readily evaluated from tables. The solu-

tion for error probabilities has thus been obtained

in all cases in which the error formula can be ap-

proximated by a linear function.

(2) Probability of Nonlinear Error Functions

Although most of the error formulas are linear,

certain formulas for nominally circular orbits (for

example, Eqs (49), (52), (53) and (54)) involve non-

linear relations of the form

Determination of the probability distribution of the

function of Eq (84) is not so simple as in the case

of the linear error formula, and the resulting dis-

tribution is not normal. If x 1 and x 2 are assumed

normally and independently distributed, their joint
distribution is simply the product of the individual

distributions,

I exp 1 Xl

n(xl'x2) = 2_r x_--lX_-2 _ + "x2 JJ

The distribution of u may be obtained by elimi-

nating either x 1 or x 2 in terms of u to obtain

a density

g(u' x2) = i n _xl (u' x2)' x21
/ i
1

where each term in the summation represents

one branch of a possibly nonmonotone function

u(xl). The desired distributmn, g(u), may then

be obtained bv inte_ratine over the x, in _(u, x2)...... d

g(u) = i g (u,x 2) dx 2

In particular, for u : x I + x 2

x I = ± -x 2

0x 1

-b--ff
U

12 2u - x 2

g(u, x 2) = 2,v exl

:)

iX 9

+2
C;x2 l

Thus,

exp
Cr

x 2

2 j

g(u) =

l x2

-g

Xl.

dx 2

l u2 l

uexp '< i I

_x 2 -_ lu 2 : 2°Xl - x2

• exp - ½ x 2

After the transformation

2
t = x 2

this expression may be integrated to yield the re-

quired distribution

= u exp - T +

g(u) aXl ax2 Xl x2

. 1 , 0 < x 2 < u , (85)

x 1

: 0, x 2 > U 2

x 2
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Thisg(u)(and,in particular,thedistributionof
correctedorbit eccentricityerror) is a skewed,
single-sideddistributionwithpositivemeanand
a shapesimilar to thatof thegammadistribution.

In manipuiationof thedistributiong(u)thefol-
lowingdefinitionsareconvenient.

l
K1 _

x 1 x 2

K 2 _ -_ +--

2

l 1

K3 : -_ --"I'-

x 1

The distribution is then

2
-Kou

g(u) = K 1 u e " I 0 (K 3u 2)

Quantities of some significance in describing the

properties of the distribution (e. g., central values,

spread, skewness, etc.) are the moments of the
distribution. The rth moment of g(u) is

_r :._ u r g(u) du

= K 1 ._ u r+l exp(-K2u2) I 0 (K3u2) du

After the transformation t = u 2, the integral can

be evaluated in various forms.

tn_ -K2t I v (K3t) dt = F(n + v + I)(K#

0

- K#)-_n+l) P-Y[ K-_2 1

n k_2]

K 2 > [K 3

where the generalized Legendre function is given

by

m/2

pm(z ) = 1 /z+ 1_ ._ (-n,n + 1; 1
n r(1 - m) _z----U--T} "12

1 1 z)
- m;g-l[

and the hypergeometric series is given by

rn_n (at ..... am; 71 ..... ?'n; z)

(al) " " " (am) i
= i I Z

• . ±*i_o(:_1 ) ...(_n )
1 1

Then

K 1 F (_. + l) K 3F'V 9 r+ 4

= -- 1;\

r+2
2i

In particular, the

given by

mean of the distribution g(u) is

K1K [-_1 3 5 K3 2 3 7 5 9 4
: )

3 7 11 5 9 13 6 ]

(3:)2 ....;

The second moment is of interest in determination

of the variance of g(u).

KI F K3 2 4

1 3 5 7 K3 ; 1• +..

Then the variance is

2 _'2 - (_i)2O"u =

Thus, the probability distributions of errors

given by nonlinear equations of the form of Eq
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(84) are rather complex. Therefore, the prob-

ability that the error u will be less than a speci-

fied tolerable limit u* must be computed by nu-
merical integration or by the Monte-Carlo tech-

nique. The probability could be computed, for

the case of Eq (84) by numerical integration.

u#

P Eu< u*] = _ g(u) du,
0

where g(u) is defined in Eq (85). However, in

general, this probability may be more readily
computed from

C(" ("
P

U < U _¢

(86)

where f(x 1, x 2 .... x n) is the multivariate distribu-

tion of the errors Xl, x 2 .... x n and the integration

limits are defined from the region in which u < u*.

If the number of random variables x i is larger than

five, the IVlonte-Carlo method is a convenient al-

ternate solution for the probability P that a multi-

variate normal variable lies in a region R. These
methods of evaluating the probabilities are con-

sidered in the following section.

The determination of the surface definin_ the

region u < u_ (that is, the limits of integration) is

generally not difficult. In some cases, however,

this surface may be difficult to construct. In this

eventuality a more general technique may be em-

ployed. Consider for example an error function

which is expressible as a sum of a normally dis-

tributed error &Pn and an arbitrary known func-

tion f(&q) of a second normally distributed vari-

able, &q.

Ap = Apn + f(Aq)

For a complicated function f(Aq), the determina-

tion of constant Ap surfaces in the Aq, &Pn space

become unwieldy. The individual density func-

tions of Apn and f(Aq) are readily obtainable, the

latter by dividing the Gaussian density of Aq by

-_q). f(Ap), density function of Ap,Hence, the

can be formulated as a convolution integral of the
individual density functions

f(&p) = ._ g (Ap _ {) z ({) d_ (87)

where

g(Ap n) = density function of APn

z [f(Aq)] = density function of f(Aq)

(3) Evaluation of Multivariate Normal Probabilities
(Ref. 2)

Error analyses and success probability deter-
mination for space missions (as well as other

areas) frequently require the integration of a

multivariate normal distribution over some ap-

propriate region. In some instances, it is pos-
sible to use special computational routines to

obtain this integral. In other situations, the

Monte-Carlo method may have to be used. A
general formulation and an illustration of both
methods follow.

Theoretical discussion and special computa-

tional routines, The probability P is sought
where

U' 1 U' 9 U' U'- n-1 n

.. .....
L'I - nrn l

(88)

with f(x 1 ..... x n) the multivariate normal distri-

bution with mean vector (Pl ..... #n ) and vari-

ance-covariance matrix

_ = (aij), i,j = I... n, _ij = aji"

That is,

f (x 1..... xn) - 1/2

(2':)n/2
t

exPI

n n

- g _, (xi
j=l i=l d89)

i _-l
with 1j the (i, j) element in the matrix

and _i t denoting the determinant of the matrix

and whereJ

U' = U' .... L' = L' Xn_ I)n n (Xl' Xn-l) ' n n (Xl ....

U ! ! ...,n-I = Un-I (Xl' Xn-2)'

L' = L' ....n-I n-i (Xl' Xn-2) (90)

U_ : U_. (xl), L_. = L_ (x I)

U_ = constant, L_ = constant

In order to obtain the number P via the com-

putational routines, a transformation must be

made to new variables z 1 ..... z n which have

mean vector (0 ..... 0) and variance-covariance

matrix I n, the unit matrix of size n. That is,

the distribution of (z I ..... zn) is

(2a') n-'_l exp[_ ½ (Zl2 + z22+'''+ Zn2191)
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Of course, when a transformation is made to

these new variables (z 1..... Zn), the limits of

integration change as well as the integrand.

Therefore, among all the possible transforma-

tions, one must be chosen which will render the

limits in a suitable form for the computational

routines. Such a transformation is

i

xi = _i+ _ zj, i = i, ncij ....

j=l

(92)

with the coefficients c defined recursively by
D

Cil =

°il
, l<i<n

fill

i_l 2Cil = Oil - c ik , 1 < i <_ n

k=l

j=l

aij - _ Cik Cjk

k=l
c.. = , n>i > j> 1

1J c.. --
JJ

(93)

CpJ O, l < i< j< n.

Now the integral of Eq (88), giving the probability

P, iS

p _ 1 U1 _ U2 _Unll Un exp[

+...+ Zn2)l dzn ... dz I

(94)

with

U n = U n (z I ..... Zn_l), L n : L n (z I ..... Zn_ I)

Un_ 1 : Un_ 1 (z I ..... Zn_2),

Ln_ I = Ln_ I (z I ..... Zn_ 2)

U 2 = U 2 (Zl), L 2 : L 2 (z I) (95)

U 1 = constant, L 1 = constant

where the limits U k and L k are obtained from U_

and L_ by substituting into the relations L_ < x k

< U_ expressions (92) for the x's in terms of z's.

The following example may illuminate the

preceding generalities. Let the requirement for

a successful orbit be

-B<5 rp<_Sr a <A
(96)

for given positive numbers A and B. Equations

(52) and (53) can be written more concisely in

the following form:

5rp = t 3 - I tl2 + t22 (97)

l 9 t225r a : t 3 + t 1" + (98)

where (t I, t2, t 3) has the multivariate normal

distribution with mean vector (Pl' _2' _3 ) and

variance- covariance matrix

la II °12 °131
= 21 °22 a23[

Lcr31 _32 °33j

The numbers A and B are specified in the

mission requirements; and_l, ;_2' P3' °If' _12'

ff13' °22' and o33 (oij = oji) may be computed

from the definitions of the t i (Eqs (52) and (53)),

the linear error analysis of Section B. i. d. (I)

and given values of _&r' _v' _y" To obtain

tile probability P that Eq (u6) holds, Eqs (t_/) and

(98) are substituted into Eq (96) and the condition

for success is symmetrized by making the pre-

liminary change of variable x 1 : t 1, x 2 = t 2, x 3

= t 3 - 1/2 (A - B). Then the criterion for success

becomes

l O
-1/2 (A+ B)<_x 3 - Xl2* x 2- <_x 3

+[x12 + x22 < 1/2 (A + B) (99)

where (x 1, x 2, x 3) has mean vector _1' _2' _3

- 1/2 (A - B) and unchanged variance-covariance

matrix _ .

The region in the (x 1, x 2, x 3) space is com-

posed of two conical segments, as shown in the

following sketch.

It is desired to integrate the distribution of

(x 1, x 2, x 3) over the region determined by Eq

(99). The resulting probability, analogous to

Eq (88) is the desired result. The upper and

lower limits analogous to Eq (90) are

l 2 + x22U_ = 1/2 (A+ B) - x 1

L_ : -I/2 (A+ B) +IXl 2 + x22
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U_ = 11/2 (A+ B) 2 . x12 •

L_.: - 11/2 CA+ B) 2 _ x12 (I00)

U_=i/2(A+m, L_=-I/2(A+m.

x I

. . . , x 2

In this instance, the transformation of Eq (92)

to the variables (z 1, z 2, z 3) is given by

Xl = /_l + Cll Zl

x2 = P2 + c21 zl + c22 z2 (101)

x3 = P3 - 1/2 (A - B)+ c31 z 1 + c32 z 2 + c33z3

with the coefficients cij given explicitly by

Cll = (all)1/2 = or21 = a31
• c21 (ell)l--f2'c31 (all)i_

l 2 0.32 - c31 c21c22 = _22 - c21 ' c32 - c22

(102)

t 2 2c33 = 0"33 - c31 - c32

Introducing these c's into Eq (101) and the x's

from Eq (101) into the relations L_ <_ x k < U_ (k =

1, 2, 3) yields, analogous to Eq (95),

U 3

L 3

= 1._c33 F- _3 + A - c31 z 1 - c32 z 2

+iI( i+CllZi)2+( 2+c21z1÷c22z,)2]

% + %1 zl)] J

L2 = i"-_ ('_2 - c21zl - II/4(A+ B)2c22

-(pl+ Cll Zl)_ I/2) (103)

uI + 1,2(A+ B)]

L1 : l-i-- I-,Ul - I/2(A+ B_.
Cli

Now the probability

U I U o U
1

oL ,JL3 L

+ z22 + z22 t dz 3 dz 2 dz 1

can be obtained from a suitable computational
routine,

Monte-Carlo method. Consider again the

problem ofobtairl-ing the probability P that a

multivariate normal variable lies in a region 1R.

The Monte-Carlo method may be used, for

example, in situations where the number of com-

ponents of the random variable is larger than
five (the routines previously described are no

longer applicable).

The method proceeds as follows. Select a

sample of size N of the random variable of

interest. Count the number N O of these sample

values which lie in the region 1%. The fraction

N O/N is an estimate of P.

The question arises: how to choose the sample
size N so as to estimate P with assigned precision.

An answer can be given if the problem is formu-

lated this way. Choose N large enough for the

probability that IN0/N - PI < d to equal a for

preassigned d and a. Then if a "guess" for P is

available, choose

2
P (I - P) z a

N - (104)
d 2

where z is defined by
a

exp (- i / 2 t 2) dt = a

za

and is obtained from tables of the normal distri-

bution. If no "guess" for P is available,
2

z

an upper bound on the choice of N is _.
4d-
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Thus,to estimatePwithin0.I witha proba-
bility of 0.95, a conservative choice for N is

(1"96)2 = 96.04

4 (0, 10) 2

To estimate P to within 0.01 with a probability

of 0.95, N must be 9,604 at most. To estimate

P to within 0.01 with a probability of 0.95, if

there is reason to suppose that P is near 0.9,

Eq (104) yields

N= (0"9)(0"I)(1"96)2 =864.4.

4 (0.01) 2

Thus, a reduction of almost 9000 in the sample

size necessary to meet a certain criterion has

been achieved by using additional information

known to the experimenter.

In conclusion, a remark should be made on
the usefulness of the Monte-Carlo method in

evaluating probabilities when the random variables

of interest are not necessarily normally distributed.

The estimate of the sample size required given

above does not depend on the normality of the
variables under consideration. It is valid no

matter what their distribution is. (The fact that

z a in the formulas is obtained from tables of the

normal distribution is incidental. )

(4) Probability Analysis of Vehicle Position and

Velocity (Ref. i)

By means of the previously considered statis-

tical theories and the equations of Table 2, the

probability distribution of the position and velocity

of an orbiting vehicle can be determined at any

time. This section deals with a convenient method

of analysis for the problem. Let

represent the relation between the position and

velocity errors Pi and the orbit injection errors

qj. If the qj are normally and independently

distributed without biases, their multivariate

distribution is given by

f (ql" q2 .... q6) =i='_l
l

qi 2

Then the multivariate distribution of the trans-

formed errors is

la(ql, q2 ..... q6) I
g (Pl' P2 ..... P6 ) = f (ql' q2 ..... q6) 8(Pl' P2'" 'P6 )

(106)

The region g (PI' P2 ..... P6 ) = constant is a six-

dimensional e11ipsoidal surface of equal probability.

This time-varying hypersurface provides a con-

venient definition of the region of occurrence of

the vehicle position and velocity with given prob-

ability.

For example, consider the simple case of
only two orbit injection errors.

Pl = all ql + q12 q2

P2 = q21 ql + q22 q2

Then if

2 2

i exp _ + ,
f (ql' q2 ) = 2_ (Yql (_q2

1 Q2
1 -2

g (Pl' p_)- = 2_ (_ql °q2Iall a22 - al 2 aoll. e

(107)

where the quadratic form is

Q2 =

-2

[( 21 _+ Pl 2

(all a22 - el2 a21 )2 (_ql Vq2

a 2 2 .)]

-,2---+ -- , aq-_l ' (_q2" ] p2(_ql (_q2

(10S)

Since the coefficients a.. are functions of time,
_J

the distribution changes with time. In this two-

variable case, g = constant defines an ellipse.

Equations (107) and (108) can be written in

simplified notation as

g(Pl" P2 ) = Kexp -2-(APl + 2BPlP2+eP22

If the axis of the p, - P2 coordinate system is
" I -i 2B

rotated through an angle = tan (_--C)' the
A J

cross product term is eliminated.

g(p{, p_) = K' e (109)

where p{ and p_ are the new coordinates. Also,

D can be absorbed by defining new coordinates

p{'=p{and opt.

g (Pi" P2 ) = _ exp (Pl + P2 Cll0)

Again, variables can be changed to polar coor-

dinates so that the polar angle can be integrated

from 0 to 2= and the radius (R 2 = pl 2 + p22) from

0 to R. The probability of a vehicle being within
R is then
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R2
-2-

P (R) = 1 - e (ill)

2_r K 1

because T = 1 for the normalized distribution.

2. Error Analssis of Powered Trajectories

Typical trajectory sequences consist of al-

ternating powered and free-flight phases. The
final mission errors are functions of errors oc-

currin_ in all such phases. This section considers

the contribution of errors in the powered phases

just as Section B.I. considered errors in the

free-flight phases. If the powered phases are

silort so that the impulse maneuver theories are

reasonably accurate, approximate analytic rela-

tions can be developed. However, the increased

complexity of motion in powered flight generally

requires numerical analysis.

a. Impulse analysis

(1) General case

The equations describing addition of a vector

impulse 5v are the laws of cosines and sines:

fl = -6v2 + v2 + v'2 - 2w"V cos (y' - },) = 0

(112)

f2 = 5v sin _ + v' sin (y' - y) = 0 (113)

Symbols are consistent with previous notation and

are further defined in the sketch. Errors in v'

and y' are to be determined as functions of errors

in v, 7, ( and 5v. From Eqs (112) and (113) the

error relationships, approximated by linear dif-

ferentials, can be expressed as follows.

-Sv d(6vJ+ v' d v' + vv' sin (y' - 7) (dy' - dy)

- cos (y' - y) (v d v' + v' d v) + v d v = 0
and

- sin E d(6v} - 6v cos c d c + sin (y' - y) dv'

+ v' cos (y' - Y) (dy' - d_) = 0

Terms may be eollected, and the resulting ex-

pressions solved by application of Cramer's rule

for the errors dv' and dy'. In this solution the
Jacobian

=2

V' - v COS (y' - y) w' sin (y' - y)

sin (y' - y) v' cos (y' - y)

: 2 v'Iv'cos(_'- _)- @

is useful. The results are

dv I = I vv' . 2 l
6v cos (y' - y) ---_-sm (y' - y

v' cos (_' - y) - v

+ cos (y' - y) dv - v sin (y' - y) d,

d (6v)

d_, I =
sin (y' - y)[{v' - v Cos (y' - y)) _V' _ 6v]

d (6v)

v'[v' cos(_'-_) - v]

sin (_,' - 7)dr + [i V- v-T cos (y' - y)] dc+ dy

In terms of (F' - Y) or, in terms of ( ,

f i r t6v v +v dvdv' = -Q-T+ _ cos ( d(Sv)+ 5v
- J _ cos_ v

• OV

- v 7 sin _ d_ (114)

V _ V

d 7' : ---7 sin (d(6v) - --7- sm
v ,_ v _-

( c_L."

6V

+--_ (6v + v cos E) d_ + d), (115)

(2) Nominally Tangential Impulses (E : 0) (Ref. 2)

In many missions a velocity increment, 6% is

added at the apogee of a coast period in a direction

nominally parallel to the existing coast velocity,

v. An attitude error, A_, during the apogee

burning causes a nonlinear speed error in the

system, in addition to a speed error representing
a linear transformation of the other Gaussian

sources. The geometry is shown in the accompany-

in_ sketch. The resulting spe_d _rror, AVl, due

to this source is

V

Vertical

o:::2,o,::o:}:
Y

/

Av I = v+ 5v - _ (Sv) 2 + v 2 + 26v v cos A,

(116)

For small A_, Eq (116) becomes

5v (AE)2 (117)

AVl = 2 (i +-_)

where terms up to second order have been

retained.

The A_ in Eq (I17) is actually composed of

two components in directions normal to v. These

are typically a yaw attitude error, AEy, and a

pitch attitude error, ACp, as shown in the sketch.
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ThusEq(ll 7) becomes

_Vl = 6v 5v _'y)2+(A'p)2;
2

(118)

To this must be added the Gaussian speed error,

Av n, due to a linear transformation from the

other sources (see previous section). The total

speed error, &v, then becomes

-_v : 6v 6v _ACy )2 21+ (_ACp) + Av
2 (i + --_-) n

(119)

The statistics of Eq (i19) are non-Gaussian

though A_y, _Cp, Av n are Gaussian, It is again

convenient to consider the space of /x_ A_
y' p'

Av which represents a trivariate normal density.
n

In this space, surfaces of constant _hv are parab-

oloids of revolution parallel to the axis AV n as

shown in _he sketch. An analogous procedure is

described in Section B.l.d(3). Hence integration

of the trivariate normal distribution of _ _c
y' p'

Av n within the paraboloid (from Av n = -_ to _v)

yields the probability that _v is less than some

specified value. Integration for different values

of AV yields tl_e entire statistics of ._v

/xV
n

r--- nk v

&_y

An interesting optimization theory is often

applicable, once the complete statistics of Av

are obtained. It may be desirable to modify the

nominal value of v in the trajectory such that it

is assured to any given probability (say 0.997 or

3a) that the magnitude of the resulting speed error

is less than AV 0, where it is desirable to minimize

Av 0. This might be the case for example in a

satellite which employs orbit corrections after

injection, where minimization of the speed error

at injection, AV 0, minimizes the propulsion capa-

bility required in the payload. This optimization
is carried out as follows.

The cumulative distribution function P (Zlv) is

obtained as described above. The-above optimiza-

tion requirement can be interpreted as a selection

of the minimum continuous span in AV over which

the P (Av) function changes by 0. 997. Designation

of the center of that span as the shift in nominal

injection speed would then complete the required

optimization.

P (av)
1.0

AV

The foregoing is easily carried out by choosing

a running variable Av 0 as a trial smaller extreme

of the 0.997 span of Av, and reading off in the
figure the associated span of Av which contains

the necessary 0.997 change in P (Av). P'otting

as a continuous function of Av 0 the quantities,

half tile span and th_ center of the span, p_rmits

determination of the optimum operating point as

that value of Av 0 which has the minimum half

span. This is shown in the following sketch.

The corresponding change in the nominal injec-

tion speed and the 0.997 error in speed, Av0,

are determined from the figure for this optimum

Av O.

Actual shift -_ Curve of trial shift- 7

from nominal in/ I from nominal in /

injection speed / injection speed _,.

I

ial

/ i_"--- I ha}f span

/ ,-%v 0 ,_

h

This optimization procedure for nonlinear

speed errors has been carried out for equal

variances in Ac and A, and the results are
y p'

presented in Fig. 1. The reason that the optimiza-
tion procedure is useful is the skewed and biased

nature of the density function of Avgiven by Eq (i19)_

which is shown in Fig. 2. This suggests a shift

in nominal operating value of speed as was for-

mally carried out.
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The technique Eq (87) could have been em-

ployed as an alternative method of solution in

Eq (119). Note that y(a_), the density function

of A, in Eq (119), is a Rayleigh distribution,

if the standard deviations of A _y and A _p are

the same, A,0.

_E

y(z E) =--2---- e

0

OF

0 < Ae < _ (120)

f(_)

0 <(_)< _ (121)

k =
5v 2

--O"

1 + 5---3v _0
V

(122)

and where f(g _) is the non-Gaussian part of

Eq (119). Hence, using Eqs (87) and (121) in

(119) yields . (_v - _)2

2a2v

p(A v) = _ e _

"_0 i '22_v
n

Equation {123) can be expressed in terms of

tabulated functions:

p_&v) = density function of &v
2

+ _ k '
e

=

k

where

(123)

(124)

_u exp(- t2/2) dt

R(u) -- " ® 2_

= a tabulated function

(125)

Also the cumulative distribution P(_ v) can be

found by integrating Eq (124)

p(AV) = cumulative distribution of AV

- R &V xp
aAV

n

aA V• -@)}} (12e)

b. General guidance error analysis (Ref. 2)

The guidance error analysis procedure to be
described is a universal one for satellite missions.

It can be applied to any type of trajectory, with
guidance provided by an arbitrary type of guidance

system, and with an arbitrary criterion employed
for error in final orbit.

The type of powered flight trajectory that can
be handled is perfectly general, although two or

three discrete burns, each followed by a coast

period, are the most common. The following

sketches show some typical trajectories. Continu-

ous low-thrust burning, characteristic of nuclear

stages, can also be accommodated within the error

analysis procedure. Also of arbitrary assignment
are the nominal orbit parameters at the end of

each burning phase.

_z__/.arfly " //_ond b,,rningJ/

(a) in3ection into Arbitrary Orb_.t

Using a Coast Period Between Burns

2 _/Burnout

Launch _

 eboost lar
(b) Re-entry from Orbit

i
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Theerror analysisprocedureis capable of

treating any type of guidance system, whether it

be an inertial platform, a radio guidance system,
an open loop autopilot system, or combinations

thereof on the different stages.

Finally, the statistical quantities of interest

in the final orbit may be the elliptic elements (such

as eccentricity, period, etc. ) or the band of alti-
tudes within which the orbit should be confined

according to some assigned statistical probability;
or the impact error associated zith a re-entry

vehicle; or some other criterion.

Basically, the approach may be considered as

consisting of four steps:

(1) Determination of the B matrix which

relates the injection error vector X to

system error S

X =BS

(2) Determination of the covariance matrix

which contains error-interrelations and

is normalized to the one-sigma error

value s.

(3) Determination of boundaries in Gaussian

space along which quantities of interest
are constant.

(4) Integration over this boundary (if one

variable is of interest)or over the inter-

sections of several boundaries (if several

variables are of interest).

(1) Determination of the B matrix

The linearity assumption is made that each of

the N statistically independent error sources pro-
duces a proportional error in each component of

the six-dimensional error vector at end of powered

flight, X. Hence, there exists a 6 x N matrix B
which relates the N-dimensional vector error

source, S, to the six-dimensional vector, X. The

element B. in this matrix is the partial derivative
13

of the ith component of X with respect to the one

sigma value of the jth component of the error
source, S (thus each component of S is normalized

by its standard deviation for convenience, as defined

below). The assumption of linearity is very good

in nearly all cases. The notable exceptions and

method of treatment have been noted (Section B-l-c).

In the following analysis the basic error sources,

S, are assumed statistically independent and un-

biased. The above definition is stated explicitly

as

X = BS (127)

where each component S. is expressed in units of
1

its standard deviation, a.. Table 4 shows the error
L

sources that usually are most significant for each

type of guidance system.

TABLE 4

Sources of Error for Various Guidance Systems

Guidance Inertial Platform Autopilot or Open

System Guidance System Radio Guidance System Loop Guidance System

Internal

and

external

error

sources

Platform and component

initial alignment errors.

Gyro drift.

Accelerometer errors:

scale factor, bias, cross

coupling, etc.

Airborne computer errors.

Engine shutdown errors.

Errors in measurement

of position and velocity
coordinates due to basic
measurement devices and

due to propagation refrac-

tion through the medium.

Ground based computer

errors.

Engine shutdown errors.

Initial alignment errors

of engine and inertial

elements.

Gyro driP.

Gyro torquing error,

due to power supply and

gyro itself.

Vehicle center of

gravity offset.

Accelerometer errors.

Propulsion system

errors: Isp and weight

flow.

Engine shutdown errors.

Timing errors.
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Themethodin determinationofthe B matrix

is to take each independent error source, one at a

time, and find the six-dimensional error in X due

to this, thereby yielding one column in the 6 x N

matrix. This is done most expediently by using

the same digital computer program which has pre-

viously been used in determination of the complete

powered flight trajectory. N + 1 machine runs are

made using this program, each one carried out

from liRoff through each burning phase and coast

phase until the end of the last burning period. On

the first of these runs, all input conditions are

nominal, and, of course, X is zero. On the second

and each subsequent run, one input is perturbed,

that being the error source under consideration for

that run. As stated above, the amount of the per-

turbation is taken for convenience as the one-sigma
value. The difference from nominal of the resuR-

ant output is X, which ts the desired column in the

B matrix, from Eq (127).

(2) Determination of covariance matrix, A

The vector X is a six-dimensional Gaussian

density function since each of its components is a

linear transformation of Oaussian error sources

from Eq (127). The complete statistics of X are

therefore given by the covariance matrix, A, de-

fined by

A = E (X X T)

where X T is the transpose of the column vector

and E is the statistical expectation operator de-

fined by

E Eh(x)_ = i h(x) f(x) dx

where h (x) is any function of a variable of distri-

bution f(x). Inserting Eq (127) in the equation for

A yields

A = E (BSSTB T) (128)

= BB T (129)

= 6 x 6 matrix

In deriving Eq (130), the following fact was used.

E (SS T) = unit matrix (130)

This follows because of the statistical independence

of the error sources in So and because of the way

B was defined in Eq (127).

In unusual circumstances where the assump-
tions given for Eq (127) are invalid, the same

theory applies, but the expressions previously
developed have additional terms. Such a situation

might physically arise, for example, in a radio

guidance system, if uncertainty in refraction causes
a correlated (though unbiased) error in several

basic measurements such as range, angle and
their derivatives. The only change in the equations

derived in this section caused by such a correla-

tion between the components of S occurs in Eq
(129), which becomes

A = BE(ssT)B T (131)

where the matrix E (SS T) is no longer a unit matrix,

but contains the correlation coefficients as off-

diagonal terms. Equation (131) then becomes the

basic 6 x 6 matrix defining completely the statistics

at final burnout, with all other equations remaining
the same.

If an error source is biased and the value is

known (which is really necessary if it is to be in-

cluded in the error analysis) then the true system

error can be reduced by inserting a compensating
offset.

3. Error Analysis of Various Trajectory Sequences
(Ref. 2)

As noted in the previous sections, the error

analysis procedure generally requires machine com-
putation, although the transformation of errors in

free-flight can be expressed analytically. These

analytic expressions are useful, especially in cases

where the errors at end of first burning can also be

obtained analytically (for example, in a radio guid-
ance system). Thus, in these cases, the complete

error analysis may be carried out analytically with-

out machine computation.

Table 5 gives the in-plane errors for a fairly

general trajectory, which invokes only the usual

constraint that second burn occur at apogee of the

coast ellipse. These equations become greatly

simplified for a Hohmann transfer ellipse, as
shown in Table 6. Table 7 is the transformation

of errors in a nominally circular orbit. Table 8

gives out-of-plane errors.

The in-plane equations given in Tables 5, 6 and

7 are derived by taking first order perturbations

in the two basic equations of motion in a central

force field given below. These are:

r 0 1 - cos @f cos(_ 0 +_

rf k0 e°s2 _0 cos _0

1 + e sln(_b - a)
-- (132)

k0 c°s2 _0
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t m

_f

A02r0c°s3_0 _ I 1 )1-2+ e sln(_ - a d_
v 0

0
(133)

where the zero subscript refers to conditions at
beginning of coast, and the f subscript refers to
quantities at apogee.

TAB LE 5

In-Plane Errors at Injection in Terms of Errors
Introduced During Each of Two Burns Separated

by a Coast Time, t*

Subscript 0 represents beginning of coast
Subscript c represents end of coast
Subscript f represents injection
An represents pitch attitude error in second burn
5v = velocity increment in second burn

= gravitational constant times mass of earth
k = ratio of twice kinetic to potential energy at

burnout

1. Altitude Error

8r / ar ]
Art ( t t + _ "5-90 t A_0- --o

rf _ + rf (1 - cos _f)l(_rr0) t =F0 ro k0 c°s2 '0J

rf rf 1 - cosCf

/ r' __D O/ -2 Vo r0 2
t k 0 cos ,t 0

,., r, p.,-oo..o,,1" -- _ L X0tan/_0 -sinet r0 cos 'YO

2. Velocity Error

Dv Dr

t v c rf

(_VVO) =[Vo_ /J Dr]

,"- , (continued)

TABLE 5 (continued)

3. Flight Path Angle

I Vc I D_

a__X_v
+ vf (An-z_f)

• v 0 sin_f v0 [ cosCf(_rr_o) t Vcr0 _0 cos _0 vc _0 cos _0

8o-cos (7o + st) (9--rr0) t

4 sin 2 ¢f

+ k 2
k0 r0 c°s2 "_0

2), 0 (k 0 - 1) cos 2 Y0

e r0

t v c x0 cos _0 vc ek0 cos _0

i a¢-cos (_o +_f (9-_0) t

IV-o0 8 sin 2 ¢_f
(_v O) = - (1 - e) 2 3 kl +k0v0sin 2_ 0 k2

t

4k 0 (k 0 - 1) cos 2 _0

e v 0

(continued)

$ Tables 5 to 8 are analytic expressions for deter-
minL,_ B matrix. The only constraint on the tra-
jectory is that the end of coast be apogee of the
transfer ellipse. Gyro reference is assumed for
apogee burn.
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TABLE5 (,

F

= (i - e)2 L3 tan Y0kl

/ 4 cos 2"_0 sin 2 cpf sin2 @f\ k 2+ 2 k +.---yq-)
k 0 sin2 2"/0 sin PO

k 0 (2 - k 0) sin 2"_0 l
e k3

_J

W

+_

(I - e2)2 (I - e cos_f)

TABLE 6

In-Plane Errors at Injection in Terms of Errors
Introduced During Each of Two Burns Separated

by a Coast Time, t, "_0" 0" (Hohmann Transfer)

Arf At0 (2+rf) +2 Av 0 _+ rf
/

Ar0 2 v°

Ar 0 AVo) V
= 4 _0- k5_0 v0 rf_¢f _00 + -- + At c

where
i/2

+ J

'iks

I

* The terms encircled are eliminated when a hori-
zon scanner reference is used for apogee.

TABLE 7

Coast Phase Transformation of In-Plane Initial

Errors _r 0, Av 0, _0 Into Final Errors 5rf, 5vf,

6_f, 5¢f After Traversing an Angle Cf in a

Nominally Circular Orbit

Arf

r 0

_v_____f
v 0

A%f

- cos ¢_f 2(1- cosCf) - s[n_bf

-(l-cos¢f) (- l+2cos@f) sind_f

- sin _bf - 2 sin @f cos @f

-3¢f+2sinCf -3@f+4sin@f 2(1-cosd_f

Ir 0

r0

_v 0

v 0

A Y0
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TABLE 8

Coast Phase Transformation

for Out-of-Plane Errors

Out-of-plane error a and _ in terms of initial

errors, a 0, ¢0 and el. d_ and a are defined in

Section B.

-] L-,,n°_oos0,jL_°0j
4__t.Ballistic Trajectory Error Analysis (Ref. 3)

The ground range over a nonrotating earth

achieved by a ballistic missile is given by

-1 sin "Y0 cos Y0

pg = R tan 2
--/£-_- - cos VO

r 0 v 0

2

+-_
"0 - r0 cos 2

(rf - rf "_

r0 v0 J_0 v0
(134)

where subscript 0 indicates a cutoff condition, and

subscript f indicates a final condition, and R is
the radius of the earth, as shown in the accom-

panying sketch. Differentiation of Eq (134) yields
the following error partLals.

IApogee

v0_l : k\\ /-Any final

no rotation

ar

v 0 _% - 2 K 1 K 2
(135)

4

Or (Rcos 7^F{Vc)(2r0r0 % - K, °L'Vo v_- _)

1 - 3 cos YO,1

,q--

- H _ 2.... !, Fv ] 2

+r_ c°s2 _0J) _ _02 -c°s2'0 J

L_.L-
A

+ sin2 Y0 c°s2 "¢01 )

t 2 _0 )2 1
r0 2 _'0 +2( vc r0I---_ cos _)-_.

rf

(136)

K 1

K 2

(R(Vc_2 _rVc
• L \Vo/ sin _0co_ILg=

-1

+ sin 2 01
'_0 c°s2 _'

2

- cos y

2 r0 _ 1))r__0 cos 2 +(vc) (_-f1 + 1 - rf _0 \v O-

I 2 2 )r0 2 Vc r0sin2 0 1----_ cos YO+2 _--_0. ,Tf -.( ) ( 1_
I

rf

-1

0r -- R c (I-2cos2_o)+ °°s2%
2 "1

2 "!

• Vc " J + sin2 _0oo,,0oo,,0}
v 2

c r0

ro 2 ¢C_ 4 1)]}+-- cos YO +2 ( r0 -
rf " \v0/ \rf

Vc 2 _ c°s2 _/0 + sin2 "¢0 c°s2 _/0

"_1 r02 1- 1oo.,,o•
rf (137)
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where

v -- circular orbit velocity at cutoff altitude.
C

These error sensitivities are plotted in Figs. 3

through 17. The quantityK1, which arises from

the first term (cutoff to apogee term) of Eq (134),

and which appears as the first xerm of Eq (136)

and as a factor of Eq (135), is plotted in Figs. 3

and 4. The multiplying factor K 2 is shown in

Figs. 5 and 6. The second term of Eq (136)

opg_

(that is, the part olthe error partial Or 0 arising

during that portion of the trajectory between

apogee and the final point) is given by Figs. 7,

8 and 9. The first term of (cutoff to apogee)

is shown in Figs. 10 and 11. The second term is

shown in Figs. 10 through 15. Figures t6 and 17

are useful auxiliary graphs in using Vi_s. 3

throu4h 15. The error sensitivities are also

given (Ref. 4) in Figs. 18 and 19 as functions of

range and Fig. 20 gives flight time as a function

of range.

C. SPACE VEHICLE GUIDANCE

TECHNIQUES (Ref. 2)

Once the requirements imposed bv the mis-

zion on the guidance system have been appraised

by the methods of Section B, a guidance philosophy

may be selected to meet that requirement.

Guidance may be defined as the processes of

measurement, data extraction and smoothing,

computation and control which are required to
assure that a space vehicle reaches a desired

destination from a given launch point. For the

present purposes, the destination may be a point

for injection into an arbitrary parking orbit from

a dLrect ascent trajectory to a po/nt in space,

with the proper six-initial conditions to place
the vehicle on a coast ellipse (for a transfer ma-

neuver), parabola or hyperbola to establish a

lunar or interplanetary trajectory, or some other
final-value condition. Thus, it is customary to

classify the problem by:

(1) Launch guidance

(2) Midcourse guidance

(3) Terminal guidance

and to further classify the guidance problem by
the form of the mechanization and constraints,
as:

{1)

(2)

Radio supervised (maximum radar range:

minimum elevation angle, required look-
angles for antenna patterns, maximum

slewing rates, etc.).

Inertial (platform stability, linearity,

threshold levels and dynamic range,

integration accuracy, etc. ).

(3) Radio-inertial (combination systems
where position may be derived from

radar with inherent radar constraints,
and velocity from inertial measurement

with inherent inertial system constraints).

The literature is now becoming extensive on

these more specialized problems of theory and

mechanization. It is nearly impossible within

the span of the handbook to do more than suggest

different approaches to the guidance problem
insofar as specific mechanizations are concerned.

The chief emphasis .rill be on providing the mis-
sion analyst ',vi:h _eneral methods of juidance

analysis applicable to any class of guidance sys-
tem.

1. Formulation of Guidance Equations

The formulation of the _uidance equations for
the launch _uidance phase may take the form <_f,

(1) explicit guidance, (2) d_ita guidance, or
(3) Q-_ui2ance.

_:_pliC!t gu_da:_c_=. The r_qu!rcd -.cloc,tv

vector, v , is obtained in closed form as a func-
r

tion of position and time. The velocity-to-be-

gained, ,/ , is then obtained as

v = v - v (I38_
g r

,vhere is the [r.stantaneous v_=io,:ifiv of the v,:-
hicle. "F]:e vehicle _s then s_er:d :n an e:;ic:en _

manner until Vg = 0, at which time the engines

are shut off.

Delta guidance. In delta guidance, the re-

quired velocity vector is approximated by a
functional expansion about the nominal expected

burnout position and time (Xn, ,- z n. t ) as
:n' n

Vr : _'rn+ _ (_n"x)+_ (y_ - y)+_'(_n-_)

+ D(t n-t) + second order terms (139)

where Vrn , A, B, C, Dare constant vectors and

x, y, z denote the platform coordinate system.
Several second-order difference terms such as

(x n- x) (z n- z) may be required to obtain the

desired accuracy. The advantage of the above

method is that only simple arithmetic operations

rather than the square roots and divisions re-

quired for explicit guidance need be performed
by the airborne digital computer. The disadvant-

ages result from the larger number of constants
that must be precalculated and inserted into the

onboard digital computer.

Q-guidance. Another method of guidance is

referred to as Q-guidance. This method gives

the velocity-to-be-gained directly by integration
of

3

• i At [ _ i iVg = - Qj Vg

J
(140)
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f_ •

f

where i, j = 10 2, 3 refer to xo yand z compo-

AtL are the components of thrust-drag ac-nents j

coloration as measured by the accelerometers;
i

and the matrix Qj is defined as

av i
i = r

Qj ax--_

In explicit and delta guidance, it is necessary to

perform a gravity computation, which is not
required for Q-guidance. The only guidance con-

stants required for Q-guidance are the components

of the Q-matrix and three initial values for v .
g

The components of the Q-matrix will contain about

10 trajectory-dependent constants. The disadvant-

age of Q-guidance is that the computer does not
evaluate instantaneous position or velocity. These

quantities are useful in orienting the body attitude

during the coast period and for resetting the digital

computer prior to the later burning periods.

2. Launch Guidance

a. Radio launch guidance

A radio guidance mechanization of a space-

craft steering loop may proceed along the most

general lines as shown in the sketch where the

guidance complexity is placed in the ground
equipment. An entire tracking network may be

involved in gathering the tracking data. Depend-

ing on the nature of the tracking data (range-only,
range-azimuth-elevation, angle-only) and the

number of participating stations, an initial and

then precision orbit is calculated by, say, an

IBM 7990 computerj the actual orbit is compared

to the desired orbit, and pitch and yaw steering
commands or discrete commands are generated

and sent to the control system of the spacecraft
for thrust vector control.

I Co°,rolI I M,.-i,. U Ve,oci,y[______.

i I H vector
/

Error I Tracking

,ig.al _or I data I
corrective " I "

maneuver Precision I

l _ _-_orbitl Least I I Orbit "l [

.Data _ squares I.--I determ-

hnk I y I fit II i._tton /
1

I Pr_-¢al_ I
I desired I
I orbit I

A single semispecial purpose guidance computer

located at the launch site may be schematically

represented as in Fig. 21.

The missile dynamics for either a symmetric or

nonsymmetric shape are given, together with all
equations of motion reduced to a form suitable

for digital computer calculation. Finally, a func-

tional block diagram is shown in Fig. 22 for a

combination CW and pulse radio guidance system.
One of the most severe constraints in a radio-

inertial system is due to the antenna radiation

pattern (see Fig. 23) and signal sensitivities of
the spacecraft receivers. One way of overcoming

such problems (though introducing other perhaps
more flexible constraints) is to consider the

usual inertial guidance mechanization.

b. Inertial launch guidance (Ref. 5)

To accomplish inertial navigation in a region

containing gravity fields some method must be

used for calculating gravity acceleration. If the
path of the vehicle can be accurately predicted,

the effects of gravity can be precalculated. In

this case, guidance dur'_ng flight would be done
in terms of thrust acceleration and its time

integrals only. As the path of a specific vehicle
becomes difficult to predict (relative to the ac-

curacy requirement), it becomes necessary to

make a gravity computation during flight.

The following sketch shows, with an exag-

gerated scale, the powered flight trajectory of
a space vehicle. A rectangular coordinate sys-

tem with origin in the vicinity of the trajectory

and with the y-axis vertical can be used to ex-

press the components of gravity relative to a
free-fall reference frame at the center of the

earth as follows:

2

x -go ro x

gx ='gr Ix2+z2 +(r0+y)_3/2 (141)

Y+r 0
= -

gy g r

2
-goro (Y +r0)

2 + z2 + (r 0 + Y

(142)

gx_ Trajectory___

/ X

I

i I

I
ro I

I
I

I
I
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The gz term is similar to gx' but for simplic-

ity will be omitted here. x can be taken in the

nominal plane of the trajectory and the problem

considered in two dimensions. These equations

are nonlinear and their mechanization requires

considerable computer complexity. Simple line-

ar approximations which are valid near the origin
of coordinates are

go

gx : r0 x (143)

gy= - g0 (1 - _). (144,

The acceleration equations in component form are

_" = atx + gx (145)

= + gy (146)_: aty

Block diagrams for the solution of these linear

equations are shown in Fig. 24. The x channel

has negative feedback and two integrations and
thus has a sinusoidal response to an input dis-

turbance. The y channel has positive feedback

and an input disturbance leads to a diverging
value of y.

The effect of the approximation in the gravity

computer can, of course, be calculated for a given
trajectory. Additional terms to include the non-

spi-,_ricai gravity field of the earth can be included

as necessary. If the acceleration free-fall refer-

ence frame is located in a satellite, for example,

then the gravity components which give the dif-
ference in gravity between the location of the ac-
celerometer and the reference frame, would dif-

fer from those given in Eqs (141) and (142). Be-

cause the satellite moves through the earth's

gravity field, the gravity components would vary
with time.

The effect of the gravity computation upon posi-

tion and velocity error buildup caused by aeceler-
ometer or initial condition errors is of consider-

able interest. It can be investigated analytically
in terms of perturbation equations of the form

a gx a gx .

A{C" = Aatx + Ag x = Aatx+ _ A x+_my

(147)

A)" = Aaty + Agy = Aaty + AX + _y Ay

(148)

The differential coefficients are functions of

space which can be obtained from Eqs (141) and
(142). They should be evaluated along the unper-

turbed path of the vehicle. However, this leads

to differential equations with time varying coef-
ficients which cannot be solved in closed form.

For flights in a region of a few hundred miles
breadth, the coefficients can be evaluated at one

point in the vicinity of the trajectory with adequate
accuracy for the purposes here. This gives the

following equations for the perturbation in position

caused by thrust acceleration perturbation or ac-
celerometer error.

A_" + g0 Ax = Aatx
r 0

(149)

A _" 2g0
r0 Ay :&aty" (150)

The physical meaning of these equations is

easy to see. For example, a positive error in
vertical position leads to a calculated value of

gravity acceleration which is too small and thus
to a calculated value of true acceleration which

is too large. This in turn integrates into an even
larger positive position error.

The solution to Eqs (149) and (150) for constanl

values of thrust acceleration perturbations (a_:-
celerometer bias or zero offset) are

Aatx i cos gr_
d

ax - g0--_0 1 - J
1151)

Aa

&Y = _ Icosh I 2go t - lj (152)
! r0

The terms for initial condition perturbations are

similar to these. Near the surface of the earth,

the sinusoidal oscillation has a period of about 84
mm, that is,

2_ /r0/g 0 = 84 min.

Position errors caused by accelerometer er-
rors other than a constant bias can be calculated

by well known methods. An offset in the attitude

reference will cause a cross coupling error, thus

Aatx = _aty, where _ is the attitude reference er-

ror. A gyro drift rate thus gives an increasing
position error.

These perturbations or error equations illus-

trate a basic limilation of inertial guidance for

long times of flight, namely, tNat errors in the

vertical direction increase exponentially with time.

However, errors in the horizontal direction camsec

by accelerometers are oscillatory with a period

of 84 rain. This makes practical two-dimensional

inertial systems for aircraft and ships which can

employ altimeters to measure altitudes. For

flight times less than about I0 rain, Eqs (151) and

(152) can be approximated by the simple equations

t 2

Ax : &atx T; &x = Aatxt (153)

t 2

Ay : Aaty T ; a) = Aaty t (154)

which are those that would be obtained by ignoring

the feedback error from the gravity calculation.

They would also be those obtained for navigation

in a constant gravity field.

Associated with the concept of this guidance is

that of the standard or reference trajectory. Such
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atrajectoryis onewhichastandardor nominal
missilewouldfollowunderstandardor nominal
aerodynamicconditions.Thepathof anyspeci-
fic missileshouldfollowthestandardtrajectory
quiteclosely. In general,thespecificpathswill
bestatisticallydistributedaboutthestandard
whichin somesensewill beameanof thedistri-
bution.

A schematicof a steeringcomputeris given
in Fig. 25. Theanglecommandedbythepitch
programmeris comparedwiththegimbalpitch
angle to give a pitch steering command to the

• missile control system. The overall guidance

loop is ilt_strated in Fig. 25 b,,, the feedback from

the missile control system through missile dy-
namics to the inertial measurement unit.

Lateral and pitch steering having been accom-

plished, the remaining problem is to terminate

the missile thrust at the proper time so that the

spacecraft will hit the intended aiming point. The

proper combination of burnout values can be ob-

tained by considering the effects on target miss

of small changes in the horizontal and vertical
components of position and velocity. To express

this analytically, the range of the missile is ex-

panded as a function of position and velocity com-

ponents about the standard burnout point•

p-ps = ap (x - x s) + ap_y (Y - ys )

_J _ •
__ (_ - _s)+ (?-

(155)

p designates range, the subscript s deslgmates

standard conditions, and the parnal derivative
coefficients are evaluated at the standard burnout

point, ap/ax -= Cx, etc. A computer which con-

tinuously calculates the downrange miss at the

aiming point is shown in Fig. 26. Prior to the

start of the flight, values of the standard burnout

conditions, x s, etc., are fed into the computer

along with values of the coefficients, C x, etc.,

which are calculated for the particular range de-

sired. At some zero time for guidance (which
should be within a few seconds of the actual lift-

off time of the missile) the accelerometers are

connected to the computer and torquing of the

gyros at earth rate is stopped. Position and ve-

locity components relative to the launch point

then appear in the channels indicated in the figure

and the computer calculates the downrange miss,

M r. Early in the flight• the calculated value will

be grossly in error because only linear terms

are used in the expansion. Near burnout, how-
ever, the computation will be quite accurate.
The thrust of the missile is terminated when the

computed miss becomes zero. This willalways
occur because the missile is flying toward the

impact point with an increasing velocity.

The inertial guidance scheme should be evalu-
ated from several standpoints. For example, the

need for the gravity computer should be investi-
gated. If the actual missile flight is sufficiently

close to the nominal flight, the effect of gravity

can be precalculated with sufficient accuracy and

no gravity computer is necessary. On the other

hand, and especially for extreme accuracy, addi-

tional terms in the gravity expansion might be

necessary. If the variation in missile thrust is

large, higher order terms might be needed in the

expansion of the motor shutofl_ Eq {155). Refine-

ments in the guidance scheme would include

means of compensation for time of flight varia-

tions. The design of the system should include

an error analysis of all of the principal compo-

nents so that a proper balance in design com-

plexity can be obtained. For example, higil ac-

curacy in tile cutoff expansion in meaningless if
tile accelerometers are low accuracy devices.

A thorough error analysis including the effects

of inert:at component toleranccz is presented in
Ref. 6.

3. Midcourse Gmdance

Guidance principles applied to launch guidance

have been discussed in tl_e earlier .sections. Thc-

spacecraft may be assumed to trave: along a fz,_:

fligi_t path to its destination _ith,)ut further appli-

cation of tilrast or guidance. TIKs type of guid-

ance is accurate enough m genera[ for establish-
ing earth satellite orbits, and possibly in more

refined operations. However, for precise navi-

gation to the moon, to establish satellite orbits
about the moon, or for interplanetary orbits mid-

course and terminal gm_mnce wtli oe needed.

Midcourse corrections for lunar trajectories are
considered in detail in the companion work, Lu-

nar Flight Handbook, Ref. 7. Diffcrent:al cor-
rections arc considered in Cbapt : ".l of this
n_.anua!,

D. DESIGN OF ATTITUDE CONTROL

SYSTEMS FOR EARTH SATELLITES

(Ref. 2)

The design of a spacecraft attitude control

system isa complex problem. The specific

stabilization and orientation reqmrements must

be met, and compatibility with oth,:r spacecraft

subsystems must be ensured. Tt_e early space-
craft, which were designed for long term oper-

ation, were spin stabilized. More stringent re-

quirements of present experimentai, commum-

cations, interception or reconnaissance missions

have demanded more precise or more complex

control. The purpose of this part of the Handbook

is to present several important problems which

must receive attention in the design of the atti-
tude control system. Tradeoff and systems prob-

lems, considerations involved in a particular

choice of an attitude control system, and design

data which may be helpful for preliminary calcu-

lations are presented. The scope of the section
is, by and large, limited to consideration of the

attitude control of earth-orbiting satellites.

The designer is confronted with the problem

of choosing among a number of possible solutions

for a particular attitude control system. Since

no attitude control system can be broadly classed

as optimal for every mission, a range of the pos-

sible control system selections must be reviewed

in the preliminary design as each relates to both

the required control system performance and the

design of other subsystems. Often, the number

of solutions can be quickly narrowed to one or two
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logical choices. The designer must define the

flight sequence, particular modes of control, and

control laws, evaluate the effects of disturbing

forces during operation, and assess the control

system reliability to provide an optimum correc-

tion technique for fine position and time control.

To aid the designer and mission analyst in this

task, the Handbook treats important system con-

siderations of the mission and control specifica-

tions; methods of obtaining control orientation;

control system sensors and control modes. One

typical satellite configuration is shown in the fol-

lowing sketch.

SUN

PITCH

YAW

ROLL

I. Mission and Control Configuration

The purpose of this section is to survey the

various types of spacecraft attitude control sys-

tems which might be used for various missions.

It is important to begin with a general discussion

of the broad specifications which are important

in the preliminary design. Because control sys-

tem specifications for the spacecraft often differ

depending on the mission, this section treats only

broad requirements. Once the mission is deter-

mined, the designer can look at various control

schemes for the particular payload or range of

payloads that can be launched by the available

boosters. This means that for some missions,

studies involving the tradeoff between booster

capability, weight of payload in a particular orbit

or set of orbits, costs, reliability, the basic re-

quirements of the mission, and other system in-

terrelations are required. Pointing accuracy,

maximum attitude rates, system lifetime, reli-

ability, allowable weight, cost, state of hard-

ware development, orbital requirements, boost

environment, etc., are typical inputs to the con-

trol system design.

a. Mission

A limited set of possible missions will indi-

cate the range of similarities and differences of

probable attitude control system requirements.

Broadly, the missions have been categorized into

experimental spacecraft, reconnaissance satel-

lites, communication satellites and missions re-

quiring orbital docking.

(I) Experimental spacecraft. The satellites

and interp---_f_h-et_y pr--r-6_e_-al-a-unc---hedto date have

wide and varied stabilization requirements. Sat-

ellites containing equipment for detailed solar or

stellar observations may need to stabilize with

respect to the sun or star under observation to

within a very few seconds of arc with very low

rates (Orbiting Astronomical Observatory). To

obtain information concerning the earth's mag-

netic field, cosmic radiation, and the like, a

satellite may need stabilization within the limits

of only i° or 2° (Orbiting Geophysical Observa-

tory). Spacecraft for investigating various as-

pects of the moon, Venus and Mars, may require

control during a landing operation as well as

stabilization during space transit. The mid-

course orientation requirements may be s_milar

to those of a satellite, but as the vehicle ap-

proaches the planet, separate terminal control

and guidance schemes are generally required.

The lifetime of experimental satellites must be

considered.

(2) Reconnaissance satellite. Two types of

vehicles to perform reconnalssance missions

may be distinguished. The first is similar to

the earth-pointing experimental satellite in that

the mission function is to obtain pictures or data

concerning earth topography or activities on the

earth. Basically, this system will have control

requirements which will be a direct function of

the resolution capability of the reconnaissance

equipment aboard: good absolute pointing accu-

racy, and very low pointing error rates are re-

quired. A second type of reconnaissance vehicle

is one for inspection in orbit of other satellites

and space vehicles. Such inspection will probably

require accurate orientation with respect to some

other object, like the earth or sun.

(3) Communication satellite. Various forms

of control systems will be required to meet the

needs of varying orbits, synchronism require-

ments and antenna pointing. An oriented antenna

may increase the antenna gain by as much as i0

db. This could simplify the communication sys-

tem at the expense of additional control system

complexity. The number of communication sat-

ellites depends on the orbit and coverage require-
ments. While more low altitude satellites are

required for the same coverage as higher altitude

satellites, the booster capability will allow more

to be launched at lower cost, or alternatively,

lower cost may be achieved through the use of
simpler, more reliable boosters. The altitude

also affects the control system design through
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altitude-dependent environmental characteristics

such as aerodynamics, gravity gradient, radiation

and other phenomena. The number of satellites

with synchronized orbits which require the addi-

tional complexity of a synchronizing or indexing
system must be compared with those required

in "random" orbits where such a system is not

required. For example, 18 satellites in a 6-hour

synchronized circular orbit are required for con-

tinuous coverage between New York and Paris,

whereas approximately 21 are required in "ran-
dora" orbits £or 99% coverage.

(4) Orbital dockin_. S_udies have indicated

that the physical mating of two satellites in orbit

is feasible. This system would permit the trans-

fer of fuel to provide additional velocity to one of

the vehicles (target vehicle) in orbit, essentially

yielding an increase in booster capability. The

actual mechanics and dynamics of the docking

process and the problems of terminal guidance

will require detailed attention by the mission

analyst. For" search, pretePminal and terminal

modes, the attitude control may require an earth

or sun reference in addition to the target vehicle
reference,

b. Control configuration

The limitations on size and shape which arise

from the limited booster capabilities immediately

constrain the configuration. The shape and partic-
u!arly th_ morn,eats of in_r:ia :_r< significa_;t. If,

for example, the spacecca£; is to b,: spa stabil-

ized, then for internal energy- dissipation to pro-
vide stable damping, the moment of inertia about

the desired spin axis must be larger than that
about the other two axes. If, however, the vehi-

cle is to be a low altitude, fully oriented satellite,
the inertia configuration will determine whether

or not the spacecraft is stable with respect to the

torques generated by the earth's gravity field. In

fact, the designer may choose configurations so
that there is sufficient control moment to stabilize

the vehicle from this effect alone.

If the center of aerodynamic pressure does not

coincide with the spacecraft's center of gravity,
there may be large aerodynamic overturning mo-
ments for the low altitude satellite which can af-

fect the control system design and methods for

generating countertorques. Principal axis/con-
trol axis alignment, difference in inertias, may

be significant in the spacecraft dynamic response.

In the design of momentum storage and mass ex-
pulsion systems, minimizing the moments of iner-

tia about the axes will help reduce the weight of

the momentum storage and mass expulsion device.

Unfortunately, the other subsystems, particularly

the power supply and temperature control, may

have a predominant effect on the configuration.

(1) Power suppl_, s_rstem. It is anticipated
that power supplies for earth satellites requiring

long life will continue to use the sun's energy to
provide primary power. Rechargeable batteries

will be provided to supply the power during peri-

ods of eclipse. The solar array size must meet
the electrical power requirements of the system

and recharge the batteries during periods of sun-

light.

The power supply efficiency is maximum if

the control system is capable of orienting the

faces containing the solar cells toward the sun

throughout the lifetime of the satellite--except,
of course, during periods of eclipse (see Chapter
XIII). If, however, a spin stabilized satellite is

chosen, a maximum of only 25% of this power can
be realized for a spherical satellite covered with

solar cells in any orbit. Two particular spin

axis orientations will provide more efficiency:

(l) where the spin axis is continually aligned along

the sun line, the efficiency is equivalent to that of

the oriented array; and (2) where the spin axis is

oriented normai to tim sun line, an efficiency el

approximately 32% of that of the fully oriented
array is achieved.

The cyclic life of the batteries is affected by
several things, including temperature, depth of

dischare'e and height of char,2e. The control svs-

t_nt r_sponse characteristics during acquisition

of the sun can effectively reduce the depth of dis-

charge required for a particqiar orbit through

minimizing the time required for the solar array

to reacquire the sun after an eclipse. The longer
this takes, the more the batteries wi21 be dis-

charged and the less time there will be for re-

charge before entering eclipse again. This prob-

lem is particularly significant in orbits with

eclipse periods which exist for a significant period
of time.

DtlPlntJ _)vblt8 witl] t_xtI'err':u2'- '-<) ;4 !}_-_rhJds _£

s_uiz_ht con',p_:cC to _ciipst" _imt:, ;t n;,_, be :t--

sir,able to inchui_ in the solar array centrol _a'.vs

a provision for charge-control to prevent over-
chafing the batter}'. Since both continuous sun

ann earth orientation are impossible without an

extra degree of freedom (except for spec:a_, orbits

and during particular periods in each orbit) sys-

tems which do not have a rotatable solar array
have a reduced efficiency. However, if the powe. _"

requirements are not extreme, it may be more
reliable to have an unoriented rather than oriented

array. This is an important tradeoff study to per-
form.

The electrical power obtained from rotatable

solar arrays must be transmitted from the array

to the body. The control system, as will be
shown later, can be used to eliminate the need

for providing complete rotational freedom which
would suggest the need of slip-rings for power
transmission. Control laws can be used which

limit the required solar array travel to ±90%

There are a number of other possible array

configurations for which specific control laws

can be generated. The problems associated with

continuous but very slow drives may indicate that

stepping the array or providing a set of multiple-

fixed positions is an easier and more reliable ap-
proach.

(2) Temperature control. A number of active

and passive temperature control systems are

possible for satellite application. One system

which has a great effect on both the control sys-

tem design and the configuration is one in which

the main body is attitude controlled, so that the
two surfaces perpendicular to solar array axis
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never see the sun. The temperature is controlled

by insulating those four surfaces which sometime

during the satellite lifetime will see the sun, thus

preventing heat absorption. The other two sur-
faces contain shutters which are actuated to con-

trol the emissivity or radiation of internally

generated heat into free space. These shutters
will not be exposed to direct sunlight for long

periods of time if the control system is working

properly. If the satellite is earth oriented, sun
control about the axis along the local vertical

(yaw) will prevent direct sunlight from impinging

on these surfaces suggesting four design con-

siderations for the control system. These are:

(i) Quick acquisition must be made to the

sun orientation following separation

from the boost vehicle to avoid long

periods of unoriented attitude.

(2) Special methods of control may be re-

quired by the temperature control sys-

tems. The time required to acquire

the sun when the spacecraft emerges

from the eclipse must be controlled.

The effect of low control gain during

periods of high noon (i. e., a condition

obtained when the sun is in or nearly

in the orbit plane) must be reviewed to

keep from exposing these surfaces to

the sun for long periods of time.

(3) Any other modes such as rotation out

of the required plane for velocity cor-

rections must take into consideration

the possible exposure of these surfaces.

(4) The sun-pointing accuracy during

periods of normal control must satisfy

the temperature requirements.

(3) Orbit control system. For many earth
oriented satellites, a system to provide change

in the satellite's velocity during its time in orbit

will be necessary. The indexing into a syn-

chronous orbit of a communication satellite, the

terminal guidance of a docking satellite, or the

deboost of a vehicle for re-entry, are examples

of systems which will utilize a propulsion system

to change the spacecraft velocity while in orbit.

The control system must be capable of properly

reorienting the vehicle in space so the nozzle or

rocket thrust will have the correct spatial attitude

when the rocket is fired. Furthermore, since

the thrust of this rocket will probably not pass

exactly through the spacecraft center of gravity,

an overturning moment will occur. Sufficient

control authority must be available to correct

for these moments. In addition, most orbit con-

trol systems will have a fine or precise vernier

correction and/or a station-keeping mode that

could easily use the control system nozzles and

obtain energy from the attitude control system.

Some simplification in hardware design will be

obtained through integration of these systems.

(4) Data link. Earth satellites will be re-

quired to communicate with earth based stations.

For many systems specific antenna pointing is

required, Antennm gain and beamwidth, com-

munication security, ground receiver flexibility

and coverage are areas which affect the system

design. For earth satellites, pointing accuracy

of a few degrees is sufficient to retain most of

the power in the transmitted signal, With proper

orientation of antennas for interplanetary probes,

increased data transmission rate may be possible.

The data link, or communication system, can

also be used to command special modes of con-

trol. For example, through analysis of telem-

etry data it may be learned that a component has
failed. The communications system may then
send a command to switch in a redundant com-

ponent.

(5) Control configuration environment and

reliability. The environment in which the attitude

c--6-6tr---_system will be required to operate is of

extreme importance. Control and disturbance

torque generation and sensing requirements are
discussed later, The principal considerations

which affect the control system reliability and

equipment design may be itemized as follows:

Boost environment. The control system in

the satellite must meet the requirement that it

be operable after boost into orbit. During the

first seconds of boost, the high accelerations

(say i0 g), vibration, and heat environment

impose severe restrictions on all components.

Vacuum. The pressure at 100 naut mi or

185 krn is approximately 10 -5 mm Hg, decreasing
-i0

rapidly to i0 mm at i000 naut mi (1850 kin) and
-13

to I0 mm at i00,000 n_ut nil (18,500 km) In

vacuum, there is no resistance to sublimation and

evaporation of molecules of surface materials

There is a tendency for systems to "out-gas, "

creating additional control system torques and re-

ducing the supply required for control torque gen-

eration. Substances with a low vapor pressure

should be used to reduce the evaporation. The

positive elimination or proper sealing of rubbing

surfaces can reduce the problem to negligible pro-

portions. As an example, slip rings for trans-

ferring power from the solar array to the main

body can be eliminated by employing special yaw

and solar array control laws (described later)

which limit the solar array travel to ±90% If

motor-driven sensors, inertial wheels, and servos

are used, they must be sealed to prevent the evapo-
ration of lubricants from reducing the lifetime of
the bearings.

Micrometeoroids. The average control sys-

tem torque caused by this effect is small and
can generally he ignored in comparison with

other torques experienced in space. Chapter II

considers the quantity and energy distribution of

micrometeoroids in space. Two additional con-

siderations are the possible puncture of the gas

tank by a large micrometeoroid, and the general

effect of bombardment on control system sensors

and other components which are directly exposed.

Particle radiation. Shielding is necessary to

proi'6-6l-s'uch components or surfaces as are ex-

posed to the bombardment of high energy protons

and neutrons. Radiation damage can occur to

sun sensors using solar cells, horizon scanners

utilizing susceptible optical and detector ma-
terials, solid-state electronics, etc. Radiation

damage depends on orbit altitude and inclination
and must be evaluated.
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Other considerations. Other environmental

considerations include ultraviolet rays which

serve only to increase the rate of sublimation;

X-rays and gamma rays which are only signifi-

cant during solar storms and can be essentially

eliminated by the same mechanisms that protect

against high energy protons and neutrons; and

cosmic flux which appears to be of insignificant

consequence in ionization.

Reliability. The degradation of system re-

liabi_ty_o space environment is difficult to

predict. The use of failure rate data to assess

the reliability of the control system is an im-

portant design tool and warrants further consid-

eration. The number of components in the pre-

liminary control configuration can usually be
estimated. These estimates then form the basis

for a reliability study.

Assume that the failure of a single component

will cause the entire system to fail and that the

extrapolation from a laboratory environment to

an operating space environment can be performed
realistically. Even in the event of errors in

extrapolation, the relative reliability of different

design approaches can still be evaluated.

P
S

The failure rate data for some commonly used
components are given in Table 9. These data re-

fer to a laboratory environment with an ambient

temp_:'ature of 30 ° C and applied electrical

stresses of approximateiy 25% of the rated. In
the period between "infant mortality" and "wear

out, " most components experience a constant

percentage random failure rate, ;_c" The prob-

ability of a system operating successfully for

time, t 1, is defined by

-at 1
= e (156)

k = composite system failure rate in

space environment

t 1 = length of operating time.

TABLE 9

Some Commonly Used Failure Rates

where

Component

Silicon transistors

Silicon diodes

Resistors (film)

Pots (composition)

I Capacitors (paper)

Capacitors (solid
tantalum)

Transformer/winding

(low voltage)
Relays (DPDT)
Motors and tachometers

(ac)

Magnetic amplifiers
i Control windings

[nhe rent Laboratory
Failure Rate

Per l09 Hours

153

51

8

38

3

40

10

296

200

30
10

The failure rate data is often expressed in
units of frits which are defined as the number of

failures in 109 hr. If there is a requirement for

a 1-year operation and the system in space en-

vironment is assumed to be degraded over the.

laboratory environment by a factor of 3, the
probability of one year's successful operation is
then

T frits x 3 x 8760 hours
z

Pl year = i09

(157)

2. Control Orientation Methods

This and the succeeding sections define some

of the methods, techniques, a_d problems as-

sociated with the design of the attitude control
orientation and stabilization system. A most

important choice in the early ,aesign is the meti:od

of obtaining attitude control torques. This

section provides brief discussions of the important
methods for providing control orientation.

Each method is specifically concerned with

the effects of space environment and other changes

of momentum the spacecraft may experience. It

is important to remember the fundamental dif-

ferenees between torques which are constant in

inertial space, always resulting in adciitional
mum,return to the system, and torques which are

constant with respect to body coordinates and are

in many cases cyclic in inertia[ space. Such
cyclic torques do not necessarily require the re-

moval of momentum from the system.

The following items and combinations of them

are briefly discussed: (1) methods such as in-
ertial orientation (spin stabilization); (21 the

manipulation of the natural forces of space, such

as gravity gradient, solar pressure, earth mag-
netic field, and aerodynamics ; (3) the merits of

internal rotating momentum storage and mass

expulsion. A choice from among the several
possible approaches is generally necessary quite

early in the design. Special modes, such as

separation rate control, acquisition, eclipse, in-

dexing, terminal guidance, etc., may dictate

special control requirements. These modes are

discussed separately in a later section.

a. Inertial orientation

The simplest means of obtaining control is to

spin the vehicle about a known axis. If this axis

is either the minimum or maximum principal

axis of inertia, the momentum imparted by the

spin rate will cause (without the influence of

external disturbances) the spin axis to remain

fixed in inertial space. If there is no need to

orient a particular axis or antenna on the vehicle

to the earth and if sufficient energy can be ob-

tained from the sun for electrical power, this
method is the simplest. Pioneer V, Explorer VI,

Courier, and others have been stabilized in such

a manner. The final orientation of the spin axis

in space will be the inertial orientation which
exists at the time the spacecraft is spun. If

there is initial momentum not along the spin axis,

the system is stable only if the spin axis is also
the axis of maximum inertia. Mercury ring
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dampers are sometimes utilized to remove the

wobble which occurs due to separation rates and
dynamic unbalance effects.

There are several possible control orientations

that might be required. Some of the more usual
ones are sun orientation and stellar orientation:

(1) Sun orientation. It is possible to orient

the spin axis toward the sun. This orientation

gives the same power efficiency as an oriented
solar array but it could complicate a communi-

cation system because of the time-dependent

orientation of a body-fixed antenna with respect to

the earth. To maintain the spin axis orientation

to the sun will require precession of the spin

axis at the rate of one revolution per year plus

that required to compensate for the regression of

the orbit line of nodes. A very simple attitude

system can be used to obtain this orientation, if

the pointing requirements are not too stringent.

(2) Orbit plane orientation. A spin stabilized

sate-r_e'_ith its spin axis normal to the orbit

plane can he used for a number of applicatiorts,

for example, satellites required to photograph or

otherwise survey the earth's surface and com-

munication satellites where the antenna provides

a toroidal pattern about the spin axis. If the

earth-sun line remains normal to the orbit plane,

then a high efficiency solar array can be mounted

normal to the spin axis. If the inclination of the

orbital plane to the ecliptic plane is small, solar

cells mounted on a cylindrical surface about the

spin axis will operate for the satellite lifetime but

provide a maximum power per cell of only 1 / _ x

the power per cell that would be achieved with cells

in a comparable fully oriented array. If the orbit

is unrestricted, then on the average each solar

cell on the spinning vehicle ,vill provide only 1/4

the power per cell of cells in the comparable fully

oriented array.

(3) Other orientations. Spin stabilized satel-

lites can conceivably be employed to maintain
other orientations than those discussed above. Such

tasks as pointing telescopes at fixed stars can

easily be performed; however, such requirements
are often associated with scientific missions where

data transmission considerations require earth

oriented antennas for communication, and an

oriented solar array for power. These auxiliary

tasks cannot easily be performed with a spin
stabilized satellite.

Spin stabilization does not appear to be a

satisfactory control scheme for earth orientation

of an axis of an earth orbiting satellite. Either
large torques (large energy expenditure) are re-

quired to maintain this spin axis rotation, or

internal moving parts such as reaction wheels are

required. Torque impulse, if applied properly,

will require an energy expenditure of H_ per
revolution where H is the total momentum of the

satellite and _ is the average satellite orbital rate.

If wheels are used, they must be capable of storing

momentum at least equal to the spin momentum;

for this reason they introduce significant stability

problems and require complex implementation.

Other problems, such as achieving the proper

initial orientation and devices for damping the
nutation must be considered. The spacecraft de-

sign yielding maximum flexibility will not, for

most cases, rely 6n spin momentum for stabiliza-
tion and orientation.

A symmetric body spinning at an angular

velocity, P0" about hither maximum or minimum

principal axes of inertia will, in the absence of

any external moments, maintain its initial orienta-

tion constant in inertial space. If the body total

angular momentum vector initially coincides with
the spin axis, and if an impulse angular momentum

is now _dded normal to the spin axis, the body

spin axis will precess about the new system total

angular momentum vector. The rigid body axes

are defined in the sketch. The body is considered

to be symmetrical about the spin axis.

AXiS

The motion of the satellite spinning at a con-

stant spin rate in the absence of any external

torques will generally be periodic about the spin

axis. To simplify the solution of the equations

of motion, a complex angular velocity, _n' is
defined as

_n x ]

Substituting this equation into Euler's equations of

motion for a rigid body, the solution which defines

the frequency of angular nutation is obtained in

body coordinates. This means if the total body

angular momentum, Hi, is about some other axis

than the spin axis, the spin axis will experience
nutation (free precession) about the total momen-

tum vector. The following sketch shows the trace
of the tip of the body spin axis under such an in-
fluence.

MS

SIgN AXiS

Z

\

H T

% r /'_--SplN A_IS

/ _,,_.s MOTION

A point on the nutating body rotates at a fre-

quency, given by

(159)
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/,"
where I z is the moment of inertia about the spin

axis and I is the moment of inertia about a trans-
x

verse axis. For an inertial observer watching a

fixed point on the body, this frequency is simply

IzP 0

_i = --[--- for small 8.
X

(160)

The hal/" angle cone, O, for the motion of z is

given by

lzP 0

tan e - I
X n

(t61)

Passive dampers dissipate energy to remove the

nutation (but do not change the system angular
momentum) causing tile z-axis to be aligned with

H t. Precession of the vehicle angular momentum

vector is obtained by application of a moment im-

pulse applied normal to the momentum vector.
Any nutation that results from momentum vector

reorientation can be damped passively by several
schemes and it can also be prevented by proper

application of another impulse also normal to the
Z - axis.

If an impulse is applit-d normal to the spin

axis to cause a precess.on, then the application
r,f _notl,er moment impc_!se (eq,.,'a! to the first

and also normal to the spin axis), after the body

has rotated through an angle _ g_ven by

I
X

Q = 1-'-
Z

radians (162)

will eliminate the nutation and will have caused

the z-axis to precess through an angle of 28.

Energy considerations will show that, for passive

damping schemes, the moment of inertia about

the spin axis must be greater than that about a
transverse axis.

The advantages and disadvantages of spin
stabilization as contrasted with control of non-

spin configurations are presented below.

Advantages. (1) Fixed inertial orientation
with limited accuracy can be achieved with a

completely passive system; (2) accurate orienta-

tion with respect to a fixed star or slowly rotat-

ing line of sight can generally be achieved with a
fairly simple, lightweight system; and (3) most

disturbances including torques from velocity cor-

rection jet misalignments have only a small effect
on the accuracy of a spin stabilized body.

Disadvantages. (1) Only one axis can be con-
trolled; (2) a complex control system is required
to point the spin axis along a rapidly rotating line

of desired orientation; and (3) spin speed control

may be required on systems where disturbance

torques may cause large changes in the sp_n mo-

mentum of the system.

b. Use of natural forces of space environment

This section discusses the major sources of

torques which will be experienced by the vehicle

during its lifetime in orbit. These torques may
be harnessed for control purposes or treated

simply as disturbing influences for which control

moments from other sources must be provided.

Four major sources of torque which might be

used for control are solar radiation pressure,

gravity gradient, earth' s magnetic field and aero-

dynamics. Gravity gradient, aerodynamics and
earth' s magnetic field have their greatest effect

at tow altitudes; solar radiation pressure is

largely independent of altitude, and depends on
the spacecraft surface area facing the sun.

(l} Solar radiation torque. The torque due

to solar radiation presst-_%7-77_forc,_s acting on a

satellite vehicle is significant ano must be eval-

uated. The combined equations necessary to

express these torques in the general equations

of melton of the vehicle are hia_h!y nonhnear.

The purpose here will be to discuss briefly _he

cause of so]ar radiation torque and its effect on

spin stabilized spacecr_'t anti sateiiites with
active agtitude control orientatiun m an earth-

sun reference.

Ever}, satellite vehicle is composed of a
number of distinct surfaces, each with particular

surface reflective properties and characteristics.

The bombardment of these surfaces by photons

emanating from the sun will create forces on tar

spacecraft. The magnitude and direction of ti__se

lOrcv, s art: deter_'nhled b_ ;:he r_:flcctp,'e prop,:_'-
ties of th< _ sut['ace, if tile <tfititw£ el radiation

pressure through whzch th_-se forces act is not

coincident with the vehicle center of mass, then

a torque acting on the vehicle will be developeci.

This torque may be of sufficient magnitude to
affect the control system design.

The radiation power in the vicimty of the

earth is 1.94 cai/cm2-min corresponding to a

pressure of 9.4 x 10 .8 psf (4, 48 x l0 -6 n/m 2)

for complete absorption. In preliminary design
it is necessary to calculate an upper bound on the

radiation torque in order to determine the space-

craft momentum storage requirements for control
system design.

The effect of the solar radiation torque on a

spin stabilized satellite depends on the orientation
of the spin axis with respect to the earth-sun line

and the vehicle projected area facing the sun.

The force parallel to the spin axis during one

spin cycle will have no net effect on the vehicle.
That force perpendicular to the spin axis can

create precession of the spacecrnft if it does

not pass through the center of mass. The nature

of the momentum change will depend on the orbit.
For example, in a polar orbit (where there is no

orbit plane regression) the net momentum caused

by this torque will average to zero in one year.

For a fully oriented satellite with sun-earth

orientation the torques will depend on the control

laws and the inclination of the orbit with respect
to the sun. Where the sun lies in the plane of

the orbit, the torques in two axes will be cyclic

in inertial space except for any rectification
because of the constraint of earth orientation.

Consider the example where the solar radiation

torques are due solely to a solar array, as shown
in the following sketch.
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The radiation force acts through the center of
pressure (CP) and creates constant moments

about the z- and x-body axes, M I and M 2 respec-

tively. If the z-axis is continuously oriented

toward the earth and the sun is perpendicular to

the orbit plane, the torques are cyclic in inertial

space. For tile sun in the orbit plane the moment
is constant in inertial space. A plot of these

torques in inertial space for orbits possessing
inchaation with respect to the sun of 90 ° and 15°

is shown in the following sketches.

Tile solar radiation torque may also be used

to provide useful control system torques. It has

been proposed to equip the spacecraft with a large

weather-vane type of reflective sail and control

the vehicle by actuating thls sail to create control

torques. Such a scheme is difficult to implement

and requires special control during eclipse and

some form of momentum storage during periods

when control torques about required axes cannot

be obtained. Figure 27 pre_cn's the [orqu_ from

s_iar r&idiatiou as a fu::ction of area and raoLAion

pr<,ssure lever arm for total absorption.

TORQUE M I ......

M 2 -

-M 2 .

-MI "I

.... My 1:0

M 2-

-M

-M

IV,/ ,

(2) Gravity gradient. The earth's gravitational
potential varies with altitude. For this reason the

center of gravity and the center of mass of a satel-

lite are not exactly coincident. Unless the force

of gravity, applied at the center of gravity, acts
along aiine passing through the center of mass,
a torque tending to rotate the satellite will result.

This torque can be employed to stabilize a satel-

lite with respect to the earth's gravitational field.
The gravitational torque may represent a disturb-

ing input which must be overcome by the satellite
control system.

The force due to gravity on a unit mass can be

expressed in terms of the negative gradient of the

gravitational potential as

where

the magnitude of F, a radius vector

from the earth's center to the unit
mass

= the product of the universal gravita-
tional constant and the mass of the
earth

-_/r = the gravitational potential, a

representation sufficiently accurate
fur the purpuse ilere.

The torque Mg tending to rotate the satellite about

its center of mass is then

Mg = - O x V(2_) dm (164)

where 2is a radius vector from the satellite

center of mass to the differential mass dm and

the into_ration includes all mass of the satellite.

For conditions vher, _ p is very Stlla[t with respt-, t
to r, a condition always satisfied for earth satel-

lites, the preceding integral expression for torque
can be evaluated to yield

= 3_ _ _ -- -k) (Iyy - Izz)Mg x ----3- (Ur " j) (Ur "
% (165)

Mgy = 3r_(u r • i) (u r • _ (Izz - Ixx )

3_

Mg z = r03 (u r " i) (u r • j) (Ixx - Iyy)

where

and

(166)

(167)

= _+ Mg z 2 (168)Mg Mg x i'+ Mgy

i, j, k = unit vectors along satellite
principal axes of inertia

u r, r 0 =.unit vector for and magnitude
of radius vector from the center

of the earth to the satellite

center of mass, respectively

Ixx, Iyy, Izz -- [_om_nts of inertia about
i, j, k respectively

Examination of these torque equations shows that

all three torque components will be zero when

u r is aligned with a principal axis of inertia.

However, a stable torque-free orientation will

exist only when the principal axis with minimum
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momentof inertiais alignedwithur. Complete
stableorientationi@possibleonlyfor theabove
condition when, in addition, the axis of maximum

moment of inertia is aligned perpendicular to the

satellite orbit plane. Gravity gradient torques

provide the vertical orientation of the axis of
minimum moment of inertia and result in a satel-

lite rotation of the orbit rate. Gyroscopic action

tends to orient the axis of maximum moment of

inertia perpendicular to the orbit plane and thus

along the angular rotation vector.

To e_tabiish more clear!y the effects of gravity

gradient on a satellite it is convenient to consider
the satellite in a circular orbit shown in the fol-

Lowing sketct_. If all error angles are small, then

the torque components due to gravity gradient are

, \0

M : -3_02 (lyy - I ) qa (_69)
gx " Z_

=

Mgy -3_002 (Ixx Izz) 0 (170)

M = 0 (171)
gz

where w 0 is the orbit rate. The time rate of

change of angular momentum of the system is

equal to the applied torque and for small error
angles, the angular velocity vector _, is given by

T(;- + T(6 - )+ ($+
(172)

The linearized equations of motion for the system

become

Ixx _" + 4w0 2 (Iyy - Izz) ¢ : 0

Iyy e" + 3¢00 2 (Ixx - Izz) 0 = 0

Izz _" + _0 2 (Iyy - Ixx) _ : 0

(173)

(174)

(175)

where cross-coupling terms have been neglected.

An undamped motion will occur about the

orientation where all three error angles are zero

if Iyy > Ixx > Izz" In order to stabilize a satellite

by use of gravity gradient torque some auxiliary

damping system is required. Such damping can

be provided by reaction wheels driven from
sensors within the satellite.

A more attractive scheme is to provide the

necessary damping by passive means such as

body flexure, liquid dampers, or passive inter-

actions with the earth's magnetic field. Un-

fortunately, such passive techniques are not yet

completely understood, and at present their de-

sign is difficult unless very small damping factors
can be tolerated.

The limitations of the usefulness of gravity

gradient torque for stablizing a sat,:liitL _ with
respect to local vertical and the orbit plane are:

(1) Gravity gradient torques decrease
with altitude while some disturbance

torques (notably solar radiation pres-

sure torques) are invariant with alti-
tude, thus it is difficult to design high

altitude satellites to operate primarily

with gravity gradient stabilization.

(2) Orbit ,_ccentricity intro_u'es disturb-

ances in the gravity graaient control
which preclude the use of _ilis type of

control for highly eccentric orbits.

(3) At low altitudes aerodynamic torques
are encountered which greatly com-

plicate the design of a gravity gradient
controlled satellite.

(4) Satellite requirements such a_ solar

arrays to collect solar energy, com-

munication antenna placement, booms

for experiments, and restrictions on

conI'iguration for compatibility with the
boost vehicle may so constrain the

satellite configuration that gravity

gradient stabilization cannot be achieved.

(5) Highly accurate orientation is difficult

to achieve since attitude errors must

be developed to provide gravity gradient

torques to counter disturbance torques.

Gravity gradient torques become disturbance

torques when other than local vertical orientation
is desired, or when control is accomplished pri-

marily with other techniques such as gas expul-

sion systems operated from a horizon scanner.

In the latter case, gravity gradient torques will

generally constitute system disturbances even
when the desired orientation is apparently the

stable gravity gradient orientation. The active

control system will always attempt to align with

respect to the control axes, which will coincide

with the principal axes of inertia only in the case
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of perfect alignment. Furthermore, if a solar

array that rotates with respect to the satellite

proper is used to generate electrical energy, the

principal axis of inertia will rotate with respect

to the control axes and an additional system dis-
turbance will result.

(3) Earth's magnetic field. The magnetic

field of the earth can be used in conjunction with

magnetic rods or current carrying coils to provide

control torques. The earth's magnetic field has

already been used with magnetic rod arrays to
provide "despin systems" on Transit 1B and 2A

satellites. It is now evident that a complete con-

trol system is feasible based on obtaining control

moments from the energizing of satellite-fixed,

current-carrying coils. For lower altitudes, the
torque obtained from the coils can offset the ef-

fects of disturbance torques without large expendi-

tures of power or extremely weighty coils. For

designs utilizing other torquing schemes it is
imperative that care be taken to reduce the mag-

netic moment of the spacecraft so that magneti-

cally induced disturbance torques are not signifi-
cant.

All the factors contributing to the earth's

magnetic field are not well understood, but it is
clear that for satellites greater than 100 mi above

the surface of the earth, circulating currents in

the atmosphere and surface field irregularities

do not significantly affect the approximation of a

field which will be produced by assuming a simple

magnetic dipole at the center of the earth.

The axis of this dipole, which best represents

the magnetic field, is skewed at an angle of ap-

proximately 18 ° with respect to the earth's spin

axis. The North Magnetic Pole is at approxi-
mately 70 ° N Latitude, 97 ° W Longitude. The

South Magnetic Pole is at approximately 73.5 ° S

Latitude and 155 ° E Longitude. This means that

the axis of the dipole, and hence the field, pre-
cesses around the earth's spin axis. This pre-

cession is significant and means that only in

orbits which are synchronous with respect to the

earth's spin will the effects of the magnetic field
be the same during successive orbits or sets of

orbits (depending on the synchronous period).

Only in a 24-hour orbit which contains the dipole

is it impossible to generate torques for complete

three-axis control. In general, the field will

vary constantly with respect to system axes. In
any one day (due to the field's precession about

the earth's spin axis) it appears possible to gen-

erate control torques about all of the required

control axes. These torques may not be available

at the instant they are required, suggesting the
requirement for momentum storage. Further,

the magnitude of the field is different on each

successive orbit, depending on the altitude, in-

clination, eccentricity, time of launch, point of
injection, control axis orientation (control laws}

etc. Knowledge of the field magnitude and direc-

tion is essential to the proper energizing of coils

and must be supplied either by computation or
measurement. The data essential to the prelim-

inary designer is the magnitude of the field as a

function of altitude and variations typical of those
which will be experienced in the particular orbit.

Figure 28 shows the total magnetic field as a

function of altitude for the dipole representation.

A current carrying coil in the magnetic field tends

to assume a position that will result in the largest
possible fhux through it in a positive sense. That
is, the force F on an element of wire in a flux

field, B, is given by

: i_-lx _ (176)

or a coil whose center is along the spacecraft

z-axis would cause the spacecraft to experience

a torque, i_ m in dyne-centimeters of

2
7r r

= + u Bx) (177)Mm _ n (ux By Y

where

u and u = unit _ectors along x and #

x Y spacecraft axes respectively

r
c

= the radius of the coil in centi-

meters

i

B

= the current in amperes

= the flux density in gauss

n = the number of turns.

It is interesting to note that O. 1 gauss acting

normal to a lO-turn co_i of No. I-_ (standar_l

household wiring) copper .vite I ft in (0.J _I radi-

us (weight less than Iib (4.4 newtons) without sup-

ports) when energized with i w will produce a

torque approximately 5.8 x 10 -5 ft-lb. (7.9 x 10 -5

m-newtons) This is potentially an extremely at-

tractive torque for control. This torque is about

an order of magnitude above that anticipated for

either solar radiation or gravity gradient with

reasonable design practices. The magnitude of the

control torque obtainable for a coil with a l-ft

(0.3 m) radius over the magnetic equator is plotted

in Fig. 28 as a function of altitude.

There are some interesting tradeoff studies

between weight, power, wire size, and the use of

materials that can be considered. For example,

for a circular coil the torque in a constant field

is equivalent to

Torque = k 1 p1/2wl/2 Rp -1/2 (178)

k i = constant of proportionality (i = 1, 2, 3)

P = applied power

W = weight of the coil

R = radius of the coil

p = relative resistivity of the material.

The most significant increase in torque is ob-

tained with larger radius coils. Larger coils
of the same size wire with the same power show

W=k 2 R

T = k 3 R 3/2
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A knowledge of the variations of the earth's

magnetic field along the orbit is important. The

combination of nodal regression, dipole axis pre-

cession, and orbit period means that the flux will

vary each revolution and is different from time to

time, except for those that have a period which is

a multiple of the earth's spin rate. The variations

of the flux density in an inertial coordinate system

are plotted as a function of time for orbit inclina-

tions of 0 °, 30 °, 60 ° and 90 ° for two consecutive

orbits of 400 naut mi(741 kin) in F'ig. 29. The

inertial coordinate system for these plots has the

::-axis along the earth-sun line at the vernal

equinox, the z-axis essentially along the positive

earth spin vector, and the y-axis to form the right-

handed set. To see the effectiveness of control,

the component of flux density alon_ the _,*acth's

local vertical is plotted as a function of time for
the 400-naut mi orbit in Fi_. 30.

For the purposes of calculation, the earth's

fi_'!2 (:an be simply expressed i:_. terms c,f the

axial and normal tempera,hi from thc. e_xr_h's

magnetic dipole. The equations are

H = 0.308 (1 - 3 cos z 5)

axial (r/H) 3
(179)

sin 2 6

Hnormal = 0.46I [_ (180)

',', hq re

llaxia 1 and tlnormal = the compon_.nts of field

intensity in oersteds

6 = the angle between the eartil's magnetic
dipole axis and the radius vector to the
satellite

r = the radius vector to the satelhte from

the center of the earth in centimeters

R = the radius of the earth (6. 371 x 108 cm)

If the dipole is aligned along the earth's spin

axis (a reasonable assumption for preliminary
calculations), then the latitude, L, is equal to

(90 - 6) °. Figure 31 shows the total magnetic
2 2 1/2

field (Haxia I + Hnormal ) as a function of

latitude for this assumption.

Some of the limitations and considerations on

the usefulness of earth's magnetic field for stabil-

izing a satellite are:

(1) Since the torque generated is always

about an axis perpendicular to the

earth's field, only two axes can be
controlled at once. It is necessary to

add devices such as inertia flywheels

or gyros to store the momentum along
the axis which cannot be controlled

until the spacecraft reaches an orbit

position where the momentum may be

magnetically transferred from that axis.

(2) The magnitude of the control torque
must be greater than the sum of the
internal and external disturbance

torques. It is not difficult to achieve

fairly significant control torques at

altitudes up to 10,000 mi. (16,000 kin)

(3) The earth's field in body coordinates

is continually changing. In-flight com-
putation based on this field must be

performed or the direction of the field

must be sensed in order to determine

proper current patterns required by

the coils. This might be done us;ng
magnetometers as magnetic field sen-

sors and primary; orientation signals
obtained from earth local vertical sen-

sors, sun sensors, or star trackers
and others.

(4) The stability of a system using body-

flxod coils in the earth's maanetic
fl<".C ts questionabh- because of the

difficulty imposed by the inherent
cross coupling tor,']tiCS (_L1C t_) t_lC actl,$E

of th_ magnetic fi,:!]_ on tip-" ,coil. Cur-

rent carrying rods or sheets may pro-

vide one solution. Another possible
solution would be to use the maenottc
field to induce momentum in a controlled

,ray by providing eddy current damping

to the momentum wheels. Unfortunately
the amount of momentum imparted to

N_,: bod 5, by this method is, for praetors!

_)urposes, quite low.

(4) Aerodynamic torques. The _.arth satellite
in a [ow'--_-_t__-, ,3_ ,vitk a low altit,,d_ _,:r_-

_,_e, will experience aerodynamic fol'ces dur'in:_

its lifetime. The nature of these forces, depend-

ing on the orientation of the vehicle and its altitude,
ma) be of consequence and may require an expen-

diture of a significant amount of control system

momentum. In fact, foc some extremely low

altitude satellites, c_rtazn proposais have been

made to use tik- aei-ods_amic torques thi'ough a

large rudder or actuating tra_hng drag device to

obtain control torques. Since somewhat higher
altitude satellites are being considered here, the

aerodynamic torque wlli be treatecl as a ciisturb-

ance torque with simplified methods for computing
its effects.

Knowledge of the denslty of the upper atmosphere
is constantly improving. The ARDC 1959 Atmos-

sphere, which is frequently used, represents the

average density when perigee is in twilight near

the time of a sunspot maximum. The density can
vary considerably from the ARDC 1959 model.

"Hyperthermat free molecule" flow theory is

generally used to obtain the shearing and normal

stresses on the various flat surfaces of a space

vehicle. Although this theory has been aUequately
described, two important criteria associated with

it are worthy of note.

(1) The mean free path of the air molecules

must be many times greater than the

raze of the body moving through the air.

In the vicinity of the body, the frequency
of collisions between air molecules is

negligible relative to the frequency of
collisions between the molecules and

the body surface. The above condition
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is realizedfor mostspacecraftsince
atanaltitudeof 150mi (280kin), the
meanfreepathof freestreammolecules
is approximately1000ft (300 m) where-

as the largest body dimension is usually
less than 15 ft. (5 m)

(2) The term "hyperthermal" implies a

vehicle speed much greater than the
mean free stream molecular speed.

The orbital speed of spacecraft at 150

mi (280 km) is roughly an order of mag-

nitude greater than the mean molecular

speed, and hence, the hyperthermal con-

dition is deemed acceptable.

The equations which describe the pressure,

P, and the shearing stress, S, are

P = 2(2 - a') q sin 2 _ (181)

S = 20 q sin _ cos _ (182)

where the pressure, P, acts normal to the surface

and the shearing stress, S, tangent to the surface

in the direction of the normal projection of the

velocity vector on the surface. The angle of at-
tack, _, may be expressed in terms of the yawing

angle, q_, for the body surface. Hence, _ = ,_ and

= 90 ° - ¢ for surfaces whose normals are along
the y- and x-body-axes, respectively (see sketch

Section D.I.). It can be shown for the solar array

that sin _ = sin _ cos @p. The previous angle

relations are valid only when the velocity vector

lies in the Xb, Yb plane. Computation of force on

the body and array surfaces as a function of _ or

and @p is a straightforward process provided

the surface area is known. The question of sur-
face area arises when it is realized that at most

yaw angles the leading paddle partially shades the

body and portions of the body partially shade the
trailing paddle from possible molecular collisions.

As a result, shading factors must be calculated.

Since for this type of flow the center of pressure

is essentially at the center of the exposed surfaces,

it is necessary to calculate the latter in conjunc-

tion with the shading factors.

The two quantities, a and (_', respectively,
defined as the surface reflection coefficients for

tangential and normal momentum exchange, have

a significant influence on the magnitude of the

pressure and shearing stress. The nature of the

molecular re-emission, and hence the value of (_

and _', are functions of the type of surface mate-

rial, the velocity angle of incidence, and the wall

temperature. The value of a and a' can vary be-
tween 0 and I. The few measurements made on

typical engineering surfaces indicate values of (_

between 0.8 and i. 0. For low angles of attack it

appears that the characteristic of re-emission

may be altered sufficiently to cause considerable

deviations of a' from these values. The quantity,

a', had not yet been measured experimentally;
however, the values of a and a' should not differ

greatly. The surface interaction experiments

which have been conducted imply that most mole-

cules do not rebound in billiard-ball fashion, i.e.,

with the angles of incidence and reflection equal,

but that they are diffusely scattered due to

(1) physical roughness of the surface, and (2)

temporary trapping on the surface. The effect

of changes of these coefficients on the maximum
disturbing moments must also be considered in

the design until better data are available.

For preliminary design, an approximate

maximum moment due to aerodynamics for a
spacecraft similar to that shown in the sketcl_

of Section D. i. can be computed quickly. Com-
pute the offset of the center of area from the

center of mass and the exposed area for the

'_or b's v:hich appear critical. The torque

due to drag is simply

M D = C O L D Aq (I'33)

where

C D = the drag coefficient or "2(2 - a')

L D = the. assumed center of area offset
from the center of gravity

A = the total area bombarded by molecules

q = dynamic pressure at the2spacecraft
altitude equal to 1/2 p v .

If aerodynamic torques are a problem, the

length, LD, which is determined by the center

of area normal to the airstream, must be cio._clv
controlled.

If the yaw angle is such that the spacecraft
does not shade impinging molecules from one

paddle, then no net equivalent lift torque is ex-
perienced. However, there will be a torque if

the yaw angle is such that one of the paddies is
shaded. The moment which tends to rotate the

body about the axis is given approximately by

M L = C L (1 - f) L LAp q sin 2 e cos 2 Cp sin Cp

(184)

where

C L = lift coefficient or 2(2 - a' - a)

L L = the distance of center of solar paddle
area from center of vehicle mass

f = the shading factor on one paddle

Ap = the area of one solar paddle

= the angle with respect to the velocity

vector (yaw angle)

_Op = the solar array angle.

This expression is not evaluated since the

shading factor is also a function of _ and possibly

dOp. The equations presented for these torques

are approximate and are presented only to allow

a rough determination. Different equations, of

course, must be derived for other configurations

and, in any event, a more refined analysis of

these torques should be performed if a problem

area is suspected.
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c. Use of momentum storage devices

The use of rotating devices to provide momen-

turn storage in a spacecraft has been described

extensively in the literature. Such devices are

generally used to continuously absorb the effect

of disturbance torques, to store momentum due

to orbital rate, and to perform special control

maneuvers. Constant speed rotating inertial

devices may be used to change the gyroscopic

coupling torques about a particular axis or axes.

In designing a system for momentum storage, it

must be remembered that the momentum storage

requirements are determined by inertial torques

as they appear in body axes. A constant external

torque with respect to inertial space will change

the total momentum of the system, and hence the

storage requirements will increase with time.

However, disturbance torques which are fixed in

the body may require momentum storage that is

cyclic in inertial space, dependent on the orienta-

tion of the body axes with respect to inertial space.

Understanding the relationship of the inertial and

body reference frames is a fundamental point in

determining how stored momentum must be han-

dled. For example, assume a spacecraft is to

rotate uniformly in such a way as to point to the

earth as it progresses in orbit; to do so requires

a rotation of 360 ° per orbit. In the absence of

any applied torques, the stored momentum of the

system will remain constant with respect to iner-

tial space. In general, at any point in orbit, the

momentum can be considered to be stored in

three-body-fixed wheels whose axes may not

coincide with the inertial frame. In such an in-

stance the wheels will change speed continuously

in order to transfer momentum from one body axis

to another (although the momenta are fixed in

inertial space) in order that at every instant the

sum of the individual momenta will equal the total

constant momentum.

The effectiveness of reaction wheels is based

on the law that the time rate of change of wheel

momentum is equal to the torque. The attitude

error signal is used with filtering to control the

wheel speed, meaning that for nonzero constant

momentum storage there must be an angular

pointing error. Integral control can be used to

alleviate this problem in the steady state. Since

most momentum storage devices are limited in

their storage capability, momentum storage may

be used in conjunction with momentum expulsion

devices to allow operation beyond the capability

of the storage device for removing the momentum.

Such systems then combine the most useful function

of the momentum storage (to absorb continuously

without extreme energy expenditure the momen-

tum imparted by disturbance torques and orbital

maneuvers) and that of the mass expulsion system

(to remove momentum from the system only when

it saturates the storage device).

The momentum storage system adds complexity

to the system. If the problem of coupling between

axes is significant, careful design will be required.
Methods proposed for obtaining momentum storage

include rotating inertia (a motor-driven inertial

flywheel, gyro stabilizer gimballed gyroscopes)
and the control of the motion of a fluid moving in

an enclosed circuit. In an attempt to reduce the

cross-coupling terms, a free sphere has been

proposed. The present satellite designs generally

use the single -axis. motor- driven flywheels.

d. Use of mass expulsion devices

The attitude control of a spacecraft with

initial rates in the presence of an external torque

field can be simply achieved through the use of

a variety of mass expulsion devices. The actua-

tion of such devices will be controlled by the out-

put of a sensor and used to change the angular rate

of the spacecraft to keep it within some attitude

error limit or to precess the spin axis of a spin

stabilized spacecraft. The mass expulsion system

may either produce a torque proportional to the

error signal or produce quantized torque levels

for controlled periods of time to maintain the ve-

hicle angular momentum below some prescribed
limit.

The governing problem in design is the trade-
off between weight and reliability. The simplest

system is the single level thrust, on-off system

used to maintain the spacecraft attitude error

and error rate within certain limits. The im-

pulse required for such systems is a direct func-

tion of the limit cycle rate, the lowest value of

which is determined by such parameters as rate

gain, position gain, filtering, sensor noise, valve

actuation hysteresis, valve time delay, thrust

build-up and decay characteristics, design thrust

level, etc.

The use of cold gas such as dry nitrogen _';!th

nozzles and regulators designed to produce thrusts

of the order of 0. I to 0.001 Ib (.4 to .004 newtonsJ

is acceptable for most present spacecraft weights

and lifetimes. Of course, larger thrusts will be

required to provide control moments for large

satellites or during periods when the booster stage

is attached to the spacecraft or when misalign-

ments of the thrust used for midcourse corrections

require a larger control authority to overcome

overturning moments. Hot gas systems will have

a specific impulse considerably greater than

that of the cold gas; however, problems as-

sociated with multiple starts, obtaining the low-

thrust level, and thrust characteristics may not

make such a system attractive except where

larger thrust levels are required.

The on-off system, when used as the only

means of obtaining control torques, requires a

significant amount of impulse for long-term

operation. If thrust is made proportional to the

attitude error (such as is possible with propor-

tional jets) it will react to disturbance torques

continuously except when operation is within the

low signal nonlinearities of the valve. The con-

tinuous operation in response to cyclic disturb-

ante torques will also require a large expenditure

of impulse over a significant lifetime. A more

suitable design for long lifetime missions will

be to expend electrical power (which can be re-

plenished easily using solar cells) to control

body-fixed reaction wheels in response to the

angular momentum changes. The mass expul-

sion system would only be used to remove the

effects of secular torques.

The development of more efficient, higher

impulse systems such as plasma, ion and vapor

propulsion is necessary for propulsive systems
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in satelliteswhichmustachievethelongerlife-
timesof severalyears--probablya requirement
of thenearfuture. Withthesesystems,a signifi-
cantweightadvantagewill beobtainedif their
reliability is acceptable.

Proportional and simple on-off controls have

been mentioned as possible means of obtaining

control torques without any additional torque-
producing requirements. Other schemes have

been proposed. One reduces the gas required by

a simple on-off single level thruster by using the
flexibility of a two-level thrusting system. Such

a system, if properly designed, does not require

rate information for stable operation. Another

method with some aavantages is modulation ot

the pulse duration applied by a single level jet as

a function of the error signal. This system is

also stable without rate information.

e, Combination systems

Momentum expulsion and momentum storage

devices can be designed to complement one an-
other. The storage device will control or store

momentum due to cyclical torques on the space-

craft without gas expulsion and the jets will over-
come long-term constant disturbance torques by

periodically desaturating the storage device by

expelling mass from the spacecraft. The jets

will be needed also to counter initial body attitude
rates, when the vehicle is separated from its

booster, and perhaps torques produced by rocket

thrust misalignment during guidance maneuvers.

The desirability of such combined systems will
be determined on the basis of the factors of weight

(including power consumption) and reliability for

a given lifetime,

3. Methods of Attitude Sensing

The purpose of this section is to examine im-

portant methods which could be used for sensing

the attitude of spacecraft from which attitude error

signals can be generated. Basically, the methods

will include earth, sun and stellar sighting, the

use of inertial instruments, and the use of ambient

fields.

a, Earth horizon sensors

The achievement of many earth orbiting mis-

sions will require the spacecraft to point one axis

along or at some preset fixed angle with respect
to the earth's instantaneous local vertical. There

are a number of earth sensing devices, generally

referred to as horizon scanners, which may be

employed for this purpose. Horizon scanner
operation depends on the detection of the difference

in radiation emitted or reflected by the earth and

the earth's atmosphere, and the radiation emitted

by free space. The radiation emitted by the earth
and the earth's atmosphere approximates black

body radiation at a temperature which varies from
220 ° K to 280 ° K. In addition to the emitted radia-

tion, the earth reflects solar radiation dependent

on the relative earth and sun positions. This dis-
cussion will be confined to devices which utilize

only earth and earth's atmosphere emitted radia-

tion and thus capable of both night and day operation.

o per at ion.

A horizon scanner consists of four basic parts:

an optical system; a scanning system: a radiation

detector; and an information processing system.

The optical system's principal function is to con-

centrate the energy in the optical field of view

onto a suitable detector system. The scanning

system moves the optical field of view in some

precise manner relative to the spacecraft. The

radiation detector may be a single element or

system of elements which are sensitive to the

radiation to be measured. The information

processing system contains the logic circuitry

necessary to provide proper error signals to

the control system.

There are basic limitations to the accuracy
of horizon scanners which are dependent on the

altitude of the spacecraft relative to the earth.
The limitations involve the shape of the earth,

and the variations in the earth-space raoiation

difference. By proper selection of the radiation

spectra used by the detector and canning
mechanism used to locate the earth, these in-

accuracies may be minimized.

The most widely accepted detector for applica-
tion in horizon scanners is the thermistor balom-

eter. This device has substantially a flat spectral

response from ultraviolet to the far infrared and,
for uncooled detectors, exhibits the best detection

in the infrared spectral range. The precise spec-
tral range for detector operation is determined by

tile selection of elements in the optical system.

The method used for scanning depends upon
the orbital parameters of the spacecraft mission,

overall system accuracy, and the requirements

for earth acquisition.

There are three principal types of scanning

techniques: a fixed field of view continuously

scanning in a cone; an edge tracker system which

locates and tracks the horizon in a fixed plane;

and a passive scanner which utilizes a wide field
of view imaged on a detector array. There are

other scanning systems which will not be discussed,
such as a rosette scan pattern or the possible use

of image tube techniques for electronic image

plane scanning.

(1) Conical scanning. Figure 32 depicts a
typical conical scanner system (two scanners) in

normal operation. The optics for each scanner

consists of a prism and lens system which causes

the field of view, focused on the detector, to scan

in a circle in some fixed half-angle cone by con-

tinuous rotation of the prism.

A schematic of the scanner optics is shown in

Fig. 32b, The detector output signal for each

revolution of the prism is shown in Fig. 32c.
Each scanner controls one of the vehicle axes.

The control signal is generated by sensing the

width of the balometer output pulse on either side

of a reference signal, which is aligned with the

vehicle control axis. Referring to Fig. 32d, the

vehicle is aligned in roll when A-C is equal to C-B.

Control relative to two axes may also be obtained

with the same type of scanners in alternate scan

orientation. Referring to Fig. 32e, the vehicle is

aligned in roll when A-C is equal to C-B, and

aligned in pitch when A-B is equal to A'-B'. This
/

J
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type of scan technique is best applied to space-

craft missions which have nearly circular orbits.

Since the scanner is generally best designed for

operation over a limited range of altitudes, the

large variation in the ratio of earth-to-space re-

turn signals obtained in highly eccentric orbits

will create a special design problem if accuracy

is required.

The central scanner can be designed also to

operate with a half-angle cone equal to 90 ° . Two

such scanners would control a spacecraft in two
axes in the same manner as the scanner described

above, where the axes of rotation of the prisms

are normal to each other. The scan pattern wnuld

appear similar to Fig..33 except the scans would

intersect along the vehicle yaw axis, coincident

with the local vertical when no spacecraft pitch
or roll attitude error exists.

(2) Edge Tracking. The sketch shows a

schematic of a single edge tracking horizon scan-

ner. This scanner uses the detector output to

drive a mirror. The fit-ld of view of the mirror

is continuously oscillate,] through some small angle
in a plane independent of the mirror drive. The

mirror drive is nulled when the detector output is

a square wave, which indicates that the mean posi-
tion of the small oscillation of the field of view,

and hence the mirror, coincides with the earth
horizon.
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The field of view of the mirror may be oscil-

lated by many techniques--for example, by oscil-
lating the mirror as shown in the figure, or by

interrupting the incoming radiation with a shaped
reticle. Figure 33 indicates how three-edge track-

ing scanners may be used to generate spacecraft
pitch and roll control signals. The angle of each
mirror is measured relative to a vehicle reference

axis. The field of view of each scanner searches

in a fixed plane relative to the spacecraft. The

pitch and roll attitude error signal may be gener-
ated by processing the difference in the angles

measured by trackers A and D, and the angles

measured by trackers A and B. A fourth tracker,

C, may be used to provide the redundant error
signals.

(3) Passive scanner. A simple example of a

passive scanner is shown in Fig. 34. A wide-

angle lens system images the earth's radiation on
a detector array. The control error signals are

obtained by differencing the detector outputs. This

system is only workable for spacecraft missions

with near circular orbits, since the detector array
must be sized for a near constant size earth image.

Other passive scanners might include electronic

imaging tubes and simple shadow bar techniques

for operation at extreme disturbances.

The scanners also suffer from the problem of

sun interference. The presence of the sun with

its high energy in the balometer field of view for

extended periods will cause erroneous signals to

be generated and may possibly damage the detector.

Means of determining the sun's presence and elim-

inating its effect on the control signal must be pro-

vided. The passive scanner with its large field of

view will contain the sun more during orbital life

than the other scanners. During this time the scan-
ner must not only be made inoperative but, in order

to protect the detector system from damage due to
solar radiation, some positive filtering of the sun's

energy must be accomplished.

b. V/H technique

Ti_e V/H technique, as applied to attitude con-

trol, is described in Rcf. (8). The V/H technique

is also a potentially accurate navigation system for

close orbits of a planet. From correlation of stored

strip pictures of the expected track of the vehicle
and real-time pictures taken from the satellite, de-

viations from the desired orbital position could be

determined. Velocity information could ,e obtained

by correlating two successive pictures taken with

a fixed time delay.

Basically, _he method consists of measurir 4 the

ratio of sate_'Ate velocity (V) to altitu,ie (H_ b'. t.e

use of the folluwh,_ equation:

v a
lq - ----T-- lel tan

COS " d,

where _ is the angle between some object on the

ground and the vertical. This is mechanized by

correlation of video signals from successive frames

of a vidieon. Image velocity V' is directly pro-

portional to V/H.

V

V' = H'" FI

where H' is the focal length of the instrument.

A mechanization diagram of the optical corre-

lator for the V/Horbital guidance system is shown

in the following sketch.

The reference map is formed electronically by

exciting an optically thin CdS (cadmium sulfide)

film by a long persistence blue phosphor light,

thus creating a pattern of absorption. The blue

phosphor light renders transparent object areas

upon illumination. The CdS film must be of suf-

ficient thickness to provide a volume absorption

which would prevent obtaining false results. False

results would be obtained if the film were not

thick enough, and some unmatched part of the

scene would have greater transmitted brightness
than the correlation peak. The optimum film

thickness should be obtained by experimentation.

The green emission is eliminated by the green

filter, and the transmitted light will have the
characteristic of two patterns multiplied together.

When this distribution is integrated, the correla-
tion function is formed except that some back-

ground level will be transmitted. However, the
peak will exist and can be detected.
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e. Sun sensors

The sun _.s an excellent reference for many

satellites in that fairly simple sensors can be

used to attain botll a measure of yaw orientation

and, if a rotatable solar array is used, solar ar-

ray orientation. Spacecraft for solar experiments

will use such devices for orienting along the sun-

line. The principal problem with sun sensors

occurs when the vehicle is in eclipse and such

sensors can no longer be used. As will be indi-
cated later in the discussion of modes of attitude

control, several steps may be taken to minimize

effects of such a problem.

The simpl_st form of sun sensor employs

photovoltaic solar cells. These cells can be

used in a variety of ways to provide angular er-

ror information. For most applications the line-

ar range is limited to ±20 to 40 ° with a sat-

urated output over the rest of the 360 °. The

following sketch illustrates such a characteristic.

I -3O" ]

] _O°
I

i$0o

If relatively high accuracy is required, a de-

vice similar to that indicated as yaw scanner in

Fig. 35 will, by measuring dwell amplitude on

the scanning mirror, give about 0.05 ° for linear

ranges up to I0 °. (A reduction in accuracy will

be imposed if greater linear ranges are required.)
If accuracies no better than about 0.5 ° to 1° are of

interest, then the extremely simple shadowing

array such as the array orientation sensor, one-

half of which is shown in Fig. 35, or the T-bar

arrangement shown in Fig. 36 may be employed.

It should be noted that such devices are subject

to null shifts and gain variation, due to the dif-

ference in thermal properties of the cells.
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A relatively new method of sun sensing is the
use of a spot position transducer. This device is

a solid-state transducer whose output is sensitiv_

to the position of a light spot on its surface. This

transducer converts the light-spot x and y dis-

placement into a pair of voltages V and V pro-
x y

portional to the displacement. The displacements

are referred to the cell center where x, y, V
x

and V are all zero. By using a simple lens, the
Y

sun may be imaged on the transducer. A function

of the angular position of the sun is then obtained

in the two axes normal to the position of optical

axis of the system. The linearity and accuracy
which may be obtained with this device are deter-

mined by the sophistication employed in the op-
tics and the desired field of view.

Many systems are available for measuring

deviations from the sun. The three presented

here represent only a very small sample.

d. Gyro mechanisms

Error signals for control to an inertial refer-

ence can be provided by gyro mechanisms. Both
single-degree-of-freedom and two-degree-of-

freedom gyros could be used for this application.

For long term operation, gyro drift will cause

major attitude reference errors unless means for

resetting the gyro and/or in-flight calibration to

eliminate drift are incorporated. This might be
dotle with information derived in the vehicle with

relationship to stars, sun, etc., or on ground-

command based on ephemeris or telemetry data.

One means of determining spacecraft error
from the orbit plane is to operate a gyro whose

input axis is to be aligned in the orbit plane in a

rate mode. Such a gyro, if not oriented in the

orbit plane, will sense some fraction of the or-

bital rate of the earth-oriented vehicle as it pro-
ceeds in its orbit around the earth. The use of

this rate essentially provides a gyrocompass
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scheme for determining orbit plane reference

above very low altitude orbits where the orbital

rate is high. Such a system has practical diffi-
culties. Compensation will be required for the

spacecraft rates in roll (or pitch} which will also

appear in the output of the gyro. The drift char-

acteristics and basic accuracy of the gyro limit

the ultimate accuracy of the system. For a small

input axis alignment error, e z, the gyro output,

, will be the component of pitch and roll rate,
.g

e h, along the axis plus the component of orbital

rate, _0ez.

eg = eh + _0ez (185)

By properly introducing the component of error

due to input other than orbital rate, e h, (see

sketch) the output of a rate integrating gyro in a

rate mode can be approximately that of the com-

ponent of orbital rate. For convenience, the roll

axis is to be aligned in the orbit plane. Thus e h

becomes e x. Note that the noise introduced from

the sensed motions about the roll axis may be sig-
nificant, and if the orbital rate is too low (reduced

as a function of altitude} the system is impractical.
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The use of the gyrocompass technique as

standard practice requires additional power for

temperature control, and is subject to the long
term reliability problems generally associated

with most gyros.

Other schemes for orienting the body with re-

spect to the orbit plane should be studied. It is
possible to use ephemeris data, from which sun/

orbit plane orientation with respect to one another

can be predicted. This, combined with the con-

trol laws, will provide knowledge of the satellite

yaw attitude with respect to the orbit plane. Sun
sensors can be used to determine when the space-

craft is in the noon, or near-noon, condition (that

is, when the solar array goes through 0°). At

this time the vehicle yaw angle is known and can

be used. A gyro will maintain inertial orientation
about the yaw axis and additional commands are

necessary only to remove the errors due to gyro

drift and to the regression of nodes.

e. Celestial observations

The star field may be used in two ways for the

orientation of the satellite. First, a particular

star might be used as the sun or the earth are
used to maintain a fixed orientation with respect

to that star. (In the case of complete star ori-

entation perhaps two or more stars may be chosen

for such an orientation.) Secondly, the star field
of motion as observed in the vehicle can be used

to measure the rate of change of the vehicle.

(i) Attitude. Sighting on distant stars may be

used wi_rtially established frame of refer-

ence to achieve initial alignment of the references

or to prevent long term drift, if necessary. It is

possible to use optical sightings, such as a t-in-
scope, or even the radio frequency noise sensed

by a radio-teles,,c_po. Tho two _evor_ t3r( bb'm_
encountered in the use of celestial sensing are the

acquisition of the star, and the amount of compu-

tation required to transform the star referenct:
set of axes into the appropriate vehicle control

error signals. One excellent way in which a star

may be used to obtain continuous or intermittent

information without ,:ompli_ated computatio, _s iE_

orbits where a pole star is available. A vecy

good application of this mt_tilod is in an _acth ,:q::a-

tonal orbit. Actually, an) itlclined orbit about a

spherical body with a pole star would be accept-
able, but, because of the regression of the line

of nodes due to the earth's oblatenesS, computa-
tion is required for most earth-orbiting vehicles.

The tracking of stars with high precision tele-

scopes and very accurate telescopic drives is

necessary to obtain exceptional accuracy. Of

particular interest is the Orbitin; Astronomical

Observatory which is under d-velopment by NASA,
in which absolute sensor aeeur:u:i,,s on the ord,<'

of seconds of arc are required.

(2) Attitude rate. Considerable interest has

been expresse_l in what are often called "celestial
driftometers." A telescope or some other optical
means is fixed relative to the axes of the satellite

and drift velocities of the stars across the field

are measured. From this, one can obtain a com-

ponent of the angular velocity of the star field

relative to the vehicle which is then a component

of the angular velocity in inertial space. The

main purpose for this device is to provide rate
measurements for precise control with respect
to the orbital rate vector.

f. Other ambient field sensors

It is possible to obtain certain information
about the vehicle's orientation in space through

the use of ambient fields other than those previ-

ously discussed. Fields which can be used ap-

pear to be the gravity field, the magnetic field,

and, for extremely low altitude orbits, the at-

mosphere. It has been suggested that if cosmic

rays are directional in space, the gradient in its

intensity may be used as a sensor.

(i} Gravity" gradient. A vehicle will tend to

align its axis of minimum inertia along the local

vertical to the earth, and its axis of maximum

inertia normal to the orbit plane, due to the effect

of the gravitational field. This effect acts as a

torque which provides control, and also as a sen-

sor of direction of the gravitational potential. In

other words, the restoring torque appears in the

equations of motion as if it had been introduced

by an independent control system operating on
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external information. It is also impossible to

imagine instruments constructed such that they

would operate independently on the gravity field

to determine the direction of the local vertical.

Such instruments have been mentioned as possi-

bilities, but none have been given serious con-

sideration. The two possible types are the pendu-

lum type, utilizing two pendulums forming a dumb-

bell free to turn about one axis, and the other in-

volving the use of accelerometers operating dif-

ferently to provide a direct measure of the gravity

gradient.

(2) Ma_Tnetic fields. The earth's magnetic

field could conveniently be used as an orientation

reference for satellites in near-earth orbits. This

is reported to have been done in Sputnik IF[. More-

over, it seems that the magnetometers could be

put to good advantage measuring the magnitude of

the earth's magnetic field. The primary difficulty

is not so much one of the inherent measuring ca-

pability of the instrument itself, but of measuring

the precise direction of the magnetic field with

respect to the vehicle in its orbit because of he-

terogeneities in the earth's field, ionospheric

currents, geomagnetic storms, and fields pres-

ent in the spacecraft itself. However, if magne-

tiee torques are to be used to advantage, some

measure of at least the direction of t_he magne-

tic field must be obtained.

(3) Atmosphere. In any low altitude orbit it

may be possible to use such devices as are em-

ployed in alrplanes, missiles, etc., which are

most sensitive to the very nearly negligible at-

mosphere. For example, a weather vane might

provide information about the relative winds for

one set of axes. Using an extremely sensitive

pressure device would allow the nulling of such

presaures to achieve appropriate orientation.

However, the pressure at the altitudes above

100 mi suggests that, at present, this is an im-

practical approach.

(4) Other ambient fields. Natural radiation

such as cosmic rays, micrometeoroids and ion

streams could be exploited for the use of attitude

control system sensors. Most of these devices,

however, appear to present no advantage over

those being used and are not receiving a great

deal of consideration. For example, the direc-

tion of the spacecraft velocity can be determined

by the relative bombardment of charged particles

with respect to the body axis. Ion "traps" flown
on Explorer VIII have indicated that sufficient

current can be obtained to orient the vehicle rela-

tive to the velocity vector. The accuracy of a

system using ion traps will probably be below

that of optical systems, but it may find applica-

tion when other sensors are inoperative due to

occulting of the sensed body.

Another potential method would include the

use of radio techniques wherein the difference

between the received signals of two antennas
would be a measure of the attitude error in a

plane containing the two antennas. This differ-

encing could be obtained electrically in the space-

craft or through the use of interference techniques.

An additional method might be the use of return

signals from a body which is receiving the output

of a satellite-contained radar. Such schemes

have been proposed for the landing of spacecraft

on distant planets, as well as for achieving some

measure of stabilization information at low alti-

tudes.

4. Modes of Attitude Control

This section will discuss some primary modes

of operation that are generally necessary in order

that the spacecraft mission can be performed.

In general, the spacecraft will be separated

from its booster with potentially sizable errors

with respect to the final orientation requirements

in both attitude and attitude rate. An initial mode

of operation will be to control the initial razes and

provide the proper attitude orientation. The proc-

ess which describes the acquisition from separa-

tion to the final orientation is often called "acquisi-

tion" and generally consists of at least three sep-

arate modes--initial rate adjustment, search, and

final acquisition. The actual switching and se-

quencing for achieving acquisition will vary be-

tween spacecraft systems, depending on the ori-

entation requirements, sensor limitations, meth-

ods of obtaining control orientation, etc.

The second major control mode will be the

mode of operation required to maintain the proper

attitude orientation and stabilization. This mode

is often referred to as the "normal" operating

mode. Special operating provisions may be re-

quired when the normal control system operation

is not possible; this occurs, for example, when

the sun or star sensors are occulted .by the earth,

or when the spacecraft axis about which sun sen-

sor information is used lies along the sun lines.

Each orientation requirement defines a set of op-

erating requirements, for example, control laws

associated with solar array orientation, orbit

plane orientation, and the like must be imple-

mented. Other modes of control might include

providing proper orientation of the spacecraft

during velocity corrections required for orbit

control, terminal maneuvering for docking, and

deboost preparatory to re-entry.

a. Acquisition

During the separation of the spacecraft from

its booster, angular impulses will be imparted

to the spacecraft,resulting in initial rates which

cannot be ignored. The first step after the con-

trol system has been electrically activated will be

to control or null these rates with respect to some

reference axes. For a spacecraft which uses a

solar array, it is often desirable to null the rates

in two axes about the earth-sun line by immedi-

ately orienting the solar array (held fixed with

respect to the spacecraft during acquisition) to

the sun. In the case of systems using the manipu-

lation of the forces of space such as gravity gradi-

ent, earth's magnetic field, etc., momentum

storage and/or mass expulsion devices are gener-

ally needed to reduce initial body rates to an ac-

ceptable level. Body-fixed rate measuring instru-

ments providing attitude rate signals to momentum
transfer devices can be used to reduce these rates

before orientation of the body axes is achieved.

Once the body rates are reduced to small mag-

nitudes, a search mode of operation will generally

XII-48



be required. During this mode the sensors are

caused to perform a search for those objects
which they will sense to provide attitude error

signals. There are many alternative approaches

to the search mode. The selection of the approach

is often dependent on a tradeoff between the dy-
namic range of the sensor, orbit conditions for

acquisition, operational launch time requirements,
etc. Depending on the sensor and the control sys-
tem, either the entire spacecraft is rotated or it

may be desirable to perform the search by articu-
lating the sensor (like a radar dish, star tracker,

etc.) with respect to the body.

Acquisition of proper orientation when the con-

trol torques are generated by essentially passive

means is generally simpler than acquisition with

active control systems. In the case of spinning

satellites, lateral impulses at separation of satel-

lite and booster will re'educe a free precession or

nutation of the ven_cie. An mertialiy fixed ori-

entation is established by this satellite as soon as

the nutation of the vehicle about its momentum

vector has been damped. Such damping, as indi-

cated previously, may be provided by a simple

device like an annular ring of mercury located

about the spin axis. A new inertial orientation

of the spinning body is achieved by a controlled

precession of the spin axis in a plane containing
the initial momentum vector and the final desired

orientation of the spin axis.

_vith the us<_ al gravity gradient, ,_{he th_ ini-

tial rates have bet:n stopped and suif_c;,!nt damping

has been added, the system will automadcai!y ac-

quire the earth's local vertical with the prmcipal

axis of minimum inertia and have the principal

axis of maximum inertia normal to orbit plane.

The angular error associated with the acquisition

will depend on the relative magnitude of the dis-

turbance and control torques and the misalignment

of the control axis with the local vertical. The

time required for acquisition depends on the capa-

bility of the damping devices and the initial condi-

tions.

In the design of the acquisition mode, any re-

quirements which severely limit the time to "ac-

quire" must be carefully reviewed. Such limita-

tions are significant in the determination of the

amount of gas use_, size of the pneumatic jets,
torque requirements of the reaction wheel, etc.

For example, the gas jet control moment may

have been determined to provide a certain factor

of desaturation to a set of reaction wheels oper-
ating in dual mode operation. However, the jet
control moment that is determined for desatura-

lion is usually not the best size to meet the rate

hulling requirements. If this is true, a com-

promise solution will be necessary. The sen-

sors used for acquisition may significantly affect
the gas consumption. It may be desirable, for

example, to add an auxiliary rate gyro and/or

provide a sensor with a wider dynamic range.

Neither of these requirements is necessary for

normal operation. Additional electronics are

required to perform the switching and logic func-
tions required in this mode.

Final operational steps of acquisition, con-
sisting of separate and successively more accu-

rate modes of control, each operating over the

dynamic range consistent with the devices which

are used for control sensing and orientation may

be necessary. To obtain extremely precise ac-
curacies, several of these modes of operation,

each successively more accurate than the previ-
ous one, could be used.

b. Normal control

The orientation reqmrements of the spacecraft

are mission-dependent. Those satt:llites oriented

with a particular axis to be aligned along the

earth's local vertical will have smlple control in

piton and roil, generally nuiiing tile output_ of
earth horizon scanners. The control about the

axis aligned along the iocal vertical (va_ axis)

may depend on the orientation requlrern,_nts with

respect to the sun or other Do(ties. The yaw con-
trol :nay involve: orientation of the roll axis in

the o:'btt pialle; orientation of the s,,iar array
about the roll axi_ when the yaw ax_s points to

the oarth; soecial star _rienlation; or he simply

unspeclfied.

The essential modes of control within the nor-

real control for a nonspm earth-oriented satellite

follow.

(1) Pitch/roll control. For purposes of dis-

cussion, the yaw axis is to be pointed along the
earth's lo_-al vertical. An_ular deviations from
the local vertical can be determineci by horizon

NC:MI[]!'['_, !_l'_,l't S_tr : ,iI\LI t_.St'<i (ilf,.:__'.i_' ior attitude

C£)[Itl't)l !:l'l'I)l' ml,_ti_Zi_.

(2) Yaw control. "The yaw control problem is

significant and depends on the spacecraft control

requirements. The three most interesting cases

are yaw orientation with respect to the orbit plane,

yaw orientation to provide maximum solar energy
on rotatable or nonrotatabie solar cells, and no

yaw requirements.

(a) Orbit plane orientation. Orientation with

respect to the orbit plane is often a difficult con-

trol problem. The difficulty is primarily one of

sensing rather than the need for any unique con-

trol laws. Gyrocompassing provided by the orbit

rate coupling either through the use of gravity

gradient or by mulling to the output of an orbital
rate serisor are excellent schemes if there is suf-

ficient orbital rate.

(b) Solar array/yaw orientation. Since the
orbit plane can have any inclination with respect
to the earth-sun line, it is necessary to provide

two degrees of freedom to maintain a flat plate
oriented normal to the sun line. In addition to

solar array rotation, yaw orientation must be

performed for maximum efficiency. If the solar

array is not oriented, then yaw control with re-
spect to the sun will in general improve efficiency

over control with respect to the orbit plane or no

control.

If the coordinate system shown in Fig. 37 is

used, the following control laws indicate the yaw

motion of the spacecraft {zero yaw angle occurs

when the roll axis is in the orbit plane, and zero

array angle when the sun is perpendicular to the

earth satellite line). From the figure it follows
that

XII-49



u-"r = -_(sin _) + _(cos _) (186)

% = _(cos _) + k'(sin _) (187)

- - %/u r x u s = % sin - (188)

sin _ = u • k- (189)
P

sin 0p = u r u s (190)

combining Eqs (186), (187) and (190), the ideal

array angle is given by

sin _p = cos a • cos _ (191)

combining Eqs (186), (187), (188) and (189)

and

sin _ cos _ (192)
sin _ = cos CSp

cos @ = sin__.___ (193)

cos 9p

combining Eqs (192) and (193), the ideal yaw angle

is given by

sin

tan _ = tan--_ (194)

In order to eliminate the need for slip rings,

the array angle and hence the yaw angle may be

restricted to ±90 °. Figure 38 shows variation of

array angle and yaw angle, respectively, with

satellite location in orbit.

(c) Unspecified yaw orientation. For some

missions there may be no specific requirements

for orientation about the yaw axis. However, a

requirement to maintain low yaw rates may exist

due to requirements of on-board equipment or

experiments. Even when such is not the case, it

will generally be necessary to reduce yaw rates
to within limits tolerable to the other axes con-

trols before acquisition is complete.

(3) Eclipse. On systems where tile sun in-

formation is used to determine yaw attitude error,

the mode of operation during eclipse of the sun

must be carefully reviewed. Often, yaw control
is not required during eclipse. In such instances

reacquisition of the sun when the spacecraft

emerges from eclipse is necessary. If yaw con-

trol is required during occulting, then a special

sensor or sensors must be provided in order to

obtain appropriate attitude error signals. Yaw
orientation might be maintained inertially with

a programmed angle with respect to the orbit

plane in order to have proper orientation at the

time of emerging. A simpler scheme would be
to maintain the spacecraft rate about the yaw

axis below a known low value. In this case, re-

acquisition of the sun is still required upon

emergence from eclipse, but may not require

expenditure of as much impulse as the uncon-
trolled method.

It is interesting to note that, unless special
provisions are incorporated, when the eclipse

region is entered, the momentum stored in the

yaw inertia wheel will be dumped into the vehicle,

creating an uncontrolled rotation. This occurs

because the yaw loop is essentially opened, result-

ing in a zero wheel speed command. It may be

desirable in some systems to damp the initial

yaw wheel speed during eclipse to avoid the mo-
mentum transfer. For a sun-oriented, spin-

stabilized spacecraft the problem of eclipse is

not serious since the sun is essentially fixed in

inertial space during the time of eclipse.

(4) Noon control. An additional control prob-
lem arises when the axis for whicla control infor-

mation is being obtained is aligned along the line

of sight of the sensed object providing that infor-

mation. A sun-oriented spacecraft requires

special control system operating provisions to

maintain proper attitude orientation during peri-

ods in some orbits where the angle of the control
axis with respect to the line of sight is not suffi-

cient to obtain useful attitude angle information.

For an earth-oriented satellite with a solar array,
this condition occurs when the sun is in the orbit

plane (_ = 0) and the satellite yaw axis lies along
the earth-sun line. This situation is often re-

ferred to as "high noon." If a sun sensor is used,

the gain in the yaw axis will go to zero at this

point again causing the momentum in the yaw wheel
to be dumped into the body. For the control laws

shown in Fig. 38, a 180 ° yaw rotation of the space-

craft is required at this time (_ - 0). This is

often referred to as the "yaw-turn" and can be

performed in a variety of ways. If there is a gyro

present in the yaw axis, it can be used to provide
stabilization during the maneuver. In many cases,

the turn can be adequately performed by program-

ming yaw reaction wheel speed in a manner which
will cause the vehicle to rotate. In any case, pre-

cautions must be taken to minimize expenditure

of impulse for eclipse and noon control.

c. Orbit control

Frequently velocity changes are required for
orbit control or midcourse correction. The con-

trol system must have sufficient control authority

to offset the disturbing torques caused by thrust

misalignments from the propulsive devices used

to correct the velocity. For system design sim-
plicity it is usually desirable to have only one

thrust nozzle on the vehicle. The control sys-

tem is then required to orient the vehicle to al-

low the nozzle thrust to be applied in the correct

direction. This will require a special orientation

mode and perhaps a special sensor, depending on

the orientation accuracy required. Large propul-
sive devices will be used for coarse orbit correc-

tions. If precise corrections are required, it is

likely that low thrust (probably cold gas) devices

will be used to perform vernier indexing and long
term station keeping. The required design of the

vernier system in terms of the nozzles, gas sup-

ply, etc., should be integrated with the pneumatic

system used for attitude control.

d. Other modes

The flight sequence must be determined early

in the preliminary design. Such a sequence, if

properly conceived, will define the operational

requirements for the control system and, hence, the
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major modes of control. This, coupled with a

failure analysis, will be used to completely de-

termine the primary and various alternate or

backup modes of operation. A major number of

modes of control beyond those described above

are possible. Most of these modes are purely

mission-dependent and must be considered for

each particular mission.

The terminal mode of operation involved in

lhe orbita[ docking maneuver of two satellites in

orbit will be based on tile particular design of the

termmai sensors anti the terminal guidance equip-

m_:nt filat i_ u_cd. A iargw uumb_.-l' of possibl_

modes exist with manned spacecraft wherein the

primary motive is to recover the pilot (or crew)

and allow him to particlpate in the navlgation and

control of the spacecraft. Clearly, modes of

control covering such flight phenomenon as abort,

re-entry, orbit maneuvering, etc., each using

a combination of ground-baaed, on-board and
manual sensing and torquing, may be required to

achieve a well-integrated guidance and control de-

sign. In addition, special modes of unmanned

vehicles such as a picture-taking mode, a mode

for obtaining a star fix, etc., are conceivable.

5. Design of Spacecraft Control Systems

An example is provlded to show specific de-

_i_n procedures for attitude control systems.

From a green wAucie configuration and fur a ',(_0-
n,_ut mi {74ti km) orifit, a reaction wheel.'t_as jet

du_l mode system is to bc d_signed. Consider tile

ft,iln,vi_ problem.

E N.al i_ l_le

a. Problem statement

Given the following control and spacecraft con-

figuration specifications, design a dual mode re-

action wheel/gas jet attitude control system.

Orbit

Lifetime

Orientation

requirements

Specifications

400-aaut mi, (740 km) cir-

cular

One year

Yaw axis pointed to earth

local vertical to ±1% solar

array face perpendicular to
sun line within ±5o

No slip rings

Acquisition Thirty min after separa-

tion from booster, maxi-

mum initial body rate l°/

sec in all axes.

Vehicle Configuration

The vehicle configuration will be the

same as shown in the sketch of Section

D-i, with the following specific prop-

erties. Vehicle inertias for two solar

array angles

For ¢p = 0 °

For 0p = 90 °

Solar array area

b,

Gas jet [ever arms

Vehicle aimensmn

Control laws

i I l
XX __ ZZ

l'00 160 115

I00 150 125

5(I ft2 or (5 x 5 ft each

2
paddle) 4.65 m

2.5 ft all axes (7.63 m)

4 x 4 x 5 ft (1.2 x 1.2

x 1.5m)

The req'airemcnt for ellmination of slip-rin_s
on the solar array means that the la'_ s derived in

Sectmn C-4 are applicable. These laws are simwn

in Fia. 3B.

c. Disturbance torques and momentum storage

reqtli FePd*'nt s

The calculation of disturbance torques for th_s

example is limited to those due to solar radiation

and gravity ,_t'adient. Other torques are consid-

ered negligible in comparison. In practice, all

torques must be estimated.

(1) Solar radiation torque. W' will assume

a (1. 5-it (0. 5 m) offset between the center of gravity,

and a 30'% reflectlvity yielding an effective radia-

LiOn _3FeSsldFe _. ,3 tiIIleS that for total aosor'pt'-or..

The projected areas are 50 sq ft (4.65 m') for solar
o

array. 20 sq ft (I.8G m') as seen along the pitch

or roll axis, and 1_ sq ft (1. 49 m 2) as seen along

the yaw axis.

In the case where the sun lies in the plane of

the orbit the torques will be cyclic except for rec-
tKication ,.vhlch occurs because of echpse and yaw

control law (see Fi_. 39a). In the case where the

sun ts perpendicular to the plane of the orbit where

no eclipses occur, the torque will be periodic in

inertial space. Then, the net momentum change

per cycle wilt be zero. The component of momen-

tum in inertial space is shown for sun inclination

of 0 ° in Fig. 39b.

(2) Gravit_ gradient torques. The torques due
to the gravity potential have been treated in Sec-

tion D-2. By applying the vehicle parameters to

the equations for determining gravity gradient

torques, the total momentum change per orbit can
be determined and is plotted in Fig. 40. Since

the rotation of the solar array" changes the space-
craft inertia, the momentum change is a function

of the inclination of the sun with respect to the

orbit plane. The stored momentum is plotted for
three sun inchnations. As expected, the space-

craft is unstable with respect to gravity torques

since the z-axis is not the axis of principal inertia.

(3) Total momentum requirement. The cycli-

cal value of momentum shown in Figs. 39a and 39b

will be used to provide information for the sizing

of the inertia wheel. A conservative value of

cyclical momentum would be 0.02 ft-lb/sec (0.27

m-newtons) gravity gradient (height in Fig. 40) and
see
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0.006 ft-lb/see (0.008 m-newtons) for solar radia-
sec

tion (height in Fig. 39). These are ,:rude esti-

mates for the preliminary design, but fortunateis,

as will be seen, turn out to be of secnndarv im-

portance to the total st(_rage requirements.

Over each orbit the momentum added to the

system will be that which ks ,_ut cyclical. Gl'avity

gradient for _ - 45 ° will add about 0.052 ft-lb/sec

(0.071 re-his)and solar radiation for _ = O will

add 0.008 ft-lb/(0. 0ll In-n/s) se_: per orbit. The
inclination o Z' _ = 0 is the worst case rot solar

radiation since the maximum e_:lipse time occucs

at this inclination. Tl:c .4rarity _radient dhAatcs

the most stringent requirement. [ntegratin_
0.06 ft-lb/sec (i)._)8 m-n/_)over the 5250 orbits

in one year, an impulse of appr_)ximately 125 lb-

see (557 n-s} is obtained.

(4) Design _)f a torquc-pc_/tu_ina system. T[_,'

impulse to overcome the secular effects of dis-

turbance torques and rue:st bc d_,sigm,_t to prtr_ide

the minimum system weight while n_}t. apprcciab£y
reducing system reliability. Only two of these

several approaches will be compared. These are

the simple on-off (or contractor) mass expulsion

control system using gas jets, and the dual mode

system utilizing thrust devices (gas jets) and mo-
mentum storage (motor driven inertial flywheels).

The Sl/'np_.te on-off or contractor control sys-
tem will be acceplable if th+, rcsultant })(_<!vt'at_,s

al'e: [!()! tel) b.i_h J,.Bii if tile a;i_ C()tlSllnlt_lj_)[l ..)'.,'U

the FeQUlF(td lifetime (lees not appreciably excel! 1
tile equlvalcnl weight required for the momc_ltunl

storage system. A block dic.:/ram of such a sys-
tem is shown in Fig. 4l; lhe system produces a
limit cycle in attitude error with error rates as

silown m tile pimse portrait of Fig. 42.

The design of tilese systems is well-known.

The choice of acceleration (torque-to-inertia ratio)

depends on tile initial acquisition conditions and
the characteristics of the sensor. A total thrust

per axis of 0.02 ib (0.09 n) adequatel 5 satisfies

the acquisition requirement. A .let lever arm of

2.5 ft (0.61 m) an attitude error dead zone of U.5",

hysteresis of 1"',, rate-to-positiou gain of 10, and

negligible time delay were chosen for sample cal-
culation. The resulting limit cycle period was

800 sec with a limit cycle rate of approximately
0.0025 °/sec. For three channels of operation the

total impulse requirements for one year will he
approximately 3000 tb-sec (13,400 n-s), or tbr a

cold gas pneumatic system like nitrogen or ar-

gon, approximately 120 lb (535 n) are required
for the gas and tankage weight. This weight

represents a large fraction of tile total satellite

weight and should be reduced, if possible. For

low bodv rates such as this system produces,
the most significant term is h) steresis. Sim:e

this example uses lq_ h3steresis, considered a

present state-of-the-art limit, and ignores time

delay, which is also significant, a practical de-

sign would probal)ly result in increased gas con-

sumption for the on-off s>stem.

15) Design of dual mode system. The block
diagram shown in Fig. (43) is that of a dual mode

system and represents the addition to the gas jet

system of motor-driven flywheels, which pro-
vides the capability of storing the cyclical mo-

mentum. Since the gas jets are not used to force

the system into a hard limit cycle, the only gas

required is that to remove stored momentum due

to secular torques and that necessary for initial

sun-earth acquisition and special modes requir-

ing the use of gas jets. Figure 44 shows the typi-

cal error angle-angular rate plot for the system

under the effect of a constant disturbance torque.

(a) Momentum storage system. The first
job to be treated in ]_tesi_n of the system will
be to size the inertia wheels and determine tile

tOrqLle uequ[rements on the drive znotnr. The

r'equiremenls for pitch and veil reaction wheels
a,-, , d(.tcrmined scparat,.lv from those for the

yaw wheel.

Pitvh/roll _._hce] sizing. 'Fhc [)_tci_ and roll
wlu'cis will be required to store ti_e mometltum

due to torques which are cyclical in inertial space
and to ._torc the morn(return which must be trans-

ferred frc_m am>thor a:ils to that body axis as the

vehicle rotates in inertial space, in the disturb-
CtIl/Jt ' toFquc cn]culatzons a peak cvcllcal momen-

tum storage requirement of 0.026 ft-lb/sec, (0.035

m-n/s) was determined, including the effects of

both gravity gradient and solar radiation. In gen-

eral, the wheels must also be capable of storing

the b(>dv momentum required for the spacecraft

orbital rate ',vhicn is t.05 x 10 -3 rad/sec of 0.17

ft-lb/see (0.23 m-n/s) if it occurs in the pitch
axis or 0.105 ft-lb/sec (0.143 m-n/s) in the roll

axis. Combining this with the disturbance torque

rec!u/rt'l_ents, In(;.c_ttxu_uFn st,_rage ,_f 0.250 ft-lb,
sL.: (0.3tl m-n,s) will be elf)sen. If we cho,ase

the maximutn allowable speed of the motor to be

500 rad/sec, the flywheel inertia then must be

0.5 x 10 -3 slug-t_ 2 (0.68 x 10 -3 kg-m2). Since

the orbital momentum in any one axis can be

transferred tt) an> other axis, during orbital
maneuvers, a wheel (_f this size wili be used in

both tile pitch an(l roll axes. This represents a

solid steel wheel approximately 4 in. (10.2 cm)

in diameter, 1/2-in. (1.2 cm) thick and weighin_
approximately 2 lb (8.9 n).

It is well to review the pitch and roll momen-

tum storage capability from the standpoint of ac-

quisition. Generally wheels will not have suffi-

cient momentum storage capability to continue

the initial rates. During acquisition the body

rates must be reduced to a sufficiently low mag-
nitude so that the wheel is able to store the re-

sidual momentum in the body. In many cases
this will correspond to the contractor serve limit

cycle rates. For the acquisition system design,
which is discussed later, a torque-to-inertia

ratio of approximately 3.5 x 10 -4 rad/sec 2 will

be determined to meet the acquisition system

requirements. If an equivalent hysteresis of 5%

is used for the design, a limit cycle rate of ap-
proximately 0.05 °/sec will exist. This rate

dictates wheel momentum storage capability of

at least 0.05 ft-tb/sec (0.08 n-m/s), well within our

previously determined wheel storage capability.
Further, it might be required that under normal

operation the momentum storage capability be
such as to maximize the time between gas jet

firings. Note from Fig. 44 that, after gas is
fired, it appears that the most desirable attitude

would be at zero error signal or that represented
by complete wheel desaturation (a). If the wheel

mementum is not completely removed or if too
much is added by the gas system, the final attitude

XII-52



will occur at (b) or (c), respectively. With a

torque-to-inertia ratio of 3.5 x 10 -4 tad/see 2,

a rate-to-position gain of 11.25 and a hysteresis

of 5%, a gas jet firing will remove approximately
30% of the wheel's saturation momentum.

If the jet firing is required to completely de-

saturate the wheel, a spacecraft angular rate at

the time the jet is turned off, approximately
0.0015 rad/sec is necessary. For a system with

the same gain ratio and hysteresis, a torque-to-

inertia ratio of 3.8 x 10-3 rad!sec is required

to completely desaturate the wheel. The pres-

ently chosen 3.5 x 10 -4 rad/sec 2 will remove

only 30% of the stored momentum.

Yaw wheel size and motor torque. The yaw
wheel must not only be able to store the same

momentum as the pitch and roll ,vheel but it

must help to perform the yaw turn required at

high noon. If it is assumed that the yaw turn

is to be performed .vithin 15 ° of high noon (solar

array angle equal to 75 ° ) and if it is assumed

that the turn is to be performed strictly on

wheels (i.e. , no gas is to be fired), it is possible

to determine the yaw wheel and motor torque

requirements. The time for the satellite to move
15 ° in its orbit is 250 sec. Then for a maximum

effort turn (qonstant torque) as shown in the fol-

lowing sketch, the motor torque required is 1.25

in. oz (0.01)89 m-z). At the maximum spacecraft

rate. the momentum whlc}, m_st be stored is ap-

proximately 1.56 ft-lb so< (2.13 n-m/s). Sin, e m

a practical motor it is not possible to attain full
torque as the speed increases, a 2-in. oz (0.014
m-n) motor is chosen. The momentum to be

stored is 1.56 ft-lb/sec (2.13 m-n/s) for the turn,

plus the 0.25 ft-lb/sec (0.34 m-n/s) (storage re-

quirement capability necessary for momentum
transfer from pitch and/or roll wheels). The yaw

wheel inertia will be 3.2 x 10 -3 slug-ft 2 (4.3 x

i0 -3 kg-m 2) for the 500 rad/sec top motor speed.

About a 6-in. diameter by 1-in. (2.5 cm) thick solid
steel wheel weighing approximately 7 lb (31 n) is

necessary.

BEGIN TURN

i
I

.90 °

YAW ANGLE

9O

MAXIMUM POSITIVE YAW
/ ACCELERATION

15 ° m ORBIT ANGLE

I/ MAXIMUM NEGATIVE YAW

__E RA TION

TURN COMPLETE

Yaw Angle During Noon Turn

Pitch and roll motor torque requirements.
The torque requirement for the pitch and roll

motors may be based either on the high noon"

turn requirement or on the cancellation of

spacecraft momentum before the phase plane

trajectory reaches the opposite switching line
(trajectory d in Fig. 44 is such an example)

thus causing unnecessary gas to be fired. Each

time a jet fires, about 0.5 in. -oz (0.0036 m-n) of

torque is required to provide a trajectory to keep

the other gas jet from firing. For this example,

it has been assumed that the yaw turn maneuver

must occur within • 15 ° of the noon condition.

This means that the pitch and roll wheels must

be capable of transferring the maximum momen-

tum stored by each to the other in 250 sec. For

the maximum effort turn as shown in the previous

sketch, the torque required to accomplish the
transfer of the maximum momentum (0. 250 ft-

lb/sec) (0.34 m-n/s) is 0.71 in.-oz (0.0051/m-n)

in pitch and 0.82 in. -oz (0.0058 m-n) in roll.

Commercially available 1 in. -oz (0.0071! m-n)
motors are chosen for the pitch and roll motors.

(b) Mass expulsion s_stem. The mass ex-

pulsion system is desianed on the basis of three

requirements: first, the torque level is deter-
mined in concert with the sun sensor linear

range and to obtain acquisition within the re-

quired time .vith minimum gas consurnutiou;
second, the total impulse requirements are

equal to the sum of separate impulses required

for acquisition, remov21 of secular disturbance

torques, reaequisition, redundancy and con-
tin_ency and;third, the desi%m parameters are

determined on the basis of oractical val_s of

equivalent hysteresis, dead zone, valve dynamics,
era. For a 1 ° limitation in local vertical, if the

maximum orientation pitch occurs at the same

instant that the roll error is maximum, then the

errors in individual axes must be no greater than

the 0.707 ° to meet the 1° requirement. The

maximum dead zone in pitch and roll axes, for

_his example, ,vii! be designed to approximately
0.5 ° to allow for sensor errors, noise and mis-

a!i4nment.

\s .vii! be shu_vn in the acquisition design, the

thrust level per axis (usually two nozzles) will be

about 0.02 [b (0.08 n). An impulse of 210 lb-sec

_938 n-s) for 1 yr of operation will be required
from the following sources.

Disturbance torques for 1 yr

Initial acquisition

Three reacquis itions

20% contingency

Required because of pressure

regulator limitations 10%

(Lb-Sec) (n-s)

120 536

36 161

3* 13.4

32 143

19 85

210 938.4

*Assuming that the maximum momentum
of alt the wheels is dumped into the

body, the reaoquisition requirement
is stilt less than 1 lb-sec (1.4 n-s).

The pneumatic gas system including the

tankage will weigh approximately 9 ib (40 n), as-

suming nitrogen with about 60 lb-sec of impulse

(80 n-s) per pound (4.4 n) of weight, plus a nominal

140% allotment for tankage factor. The compari-
son of the two systems in weight for a year's op-

eration finds the on-off system weighing a mini-

mum of 120 ib (536 n) compared to the dual mode

system weighing approximately 39 Ib (173 n)

including 20 Ib (89 n) for the reaction wheels,

motors, and circuitry plus 9 ib (40 n) for pneumatic

system, plus the additional power supply required

to drive the motors (estimated to be less than

i0 Ib).
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(c) Acquisition sequence. For power supply
requirements and temperature control it is neces-

sary to cause either the yaw or pitch axe_ to lie

along the sun line within 30 min of the time of

separation from the booster vehicle. The space-
craft initial rates and initial attitude orientation

will be assumed the most adverse, namely: 1°/
sec and 180 ° from desired orientation.

When separated from the booster, the space-

craft is misoriented and possesses booster

separation-imparted body rates. The process
of achieving normal control requires that the
rates be nulled and that the sun and earth be

acquired while the vehicle is in the sunlight. Of
the several possible sequences the one chosen
is as follows.

The rate null mode. During this mode the

solar array is fixed at +90 ° and the yaw axis of

the spacecraft is pointed at the sun, and rates

about this axis are nulled. Information is pro-

vided by sun sensors and a yaw rate gyro. The

array sun sensor provides roll signals and the

yaw sun sensor provides pitch signals. By point-

ing the body at the sun initially, the power sup-

ply is immediately oriented for maximum charging

and the orientation is proper for temperature con-

trol. In addition, the need for rate gyros in the

pitch and roll axes is eliminated.

The orientation mode. During this mode the

spacecraft is slowly rotated about the yaw axis

to obtain horizon scanner returns from the

earth. The solar array meanwhLle maintains
itself normal to the sun line. This method re-

quires simple logic, little gas consumption,

and ensures earth acquisition regardless of the

position in orbit provided that the spacecraft is

not in eclipse and that the scan angle coverage

of the horizon scanner is sufficient.

The vehicle is now in its normal operating

mode0 the horizon scanners and sun sensors

provide the information [n pitch/roll and yaw

to stabilize the spacecraft in the presence of

disturbance torques, and the solar array is

oriented so that the solar cells are facing the

sun. If earth reference is lost, the vehicle will

automatically return to the orientation of the rate

null mode and reacquire the earth by repeating

the above sequence. The block diagram of the

acquisition mode is shown in Fig. 45.

(d) Design for acquisition. The following

design is based on single axis computations

which are considered adequate for preliminary

design. All details of switching and choice of

parameters must ultimately be determined by
a three-axis study. The filter in the gas jet

system is to be designed for rapid convergence

from high rates to low limit cycle rates. The
larger the rate gain, for a single axis at least,

the lower the time and the less the gas that will

be required to converge. For passive networks,

practical upper limit for K R is approximately

15. A filter F is) is assumed where

F(s) - 12.5s + 1
1.25 s + 1 (195)

The equivalent rate-to-position gain for the switch-

ing line is assumed to be 11.25.* Clearly one of

the principal design parameters to be chosen will

be angular acceleration (torque-to-inertia ratio).

A decrease in torque will increase the gas con-
sumption and the time required for sun acquisi-

tion. An increase in thrust will suggest an in-
crease in sun sensor linear range in order to

keep the gas consumption down.

Assume that the thrust is essentially the
same for all axes and that yaw rates and error

signal coupling between pitch and roll can be

neglected. A conservative estimate of the total

time for acquisition can be obtained by assuming
consecutive pitch and roll system operation. The

phase plane of Fig. 46 shows the operation in one

axis. assuming the worst initial conditions. Figure

47 shows the maximum angular rate that the

spacecraft will encounter versus torque-to-in-

ertia ratio, assuming the initial condition of
l°/sec and 180 ° attitude error. This curve is

for the switching lines for the filter that is used.

With a dead zone of about 1° about the yaw axes
the rate at switching, if the sun sensor linear

range is ± 30°, will be 2.6°]sec and a torque-to-

inertia ratio of 3.5 x l0 -4 rad/sec 2 will be re-

quired. It is next necessary to compute the time

to acquire and the gas consumption. These can

be determined approximately from the phase

plot or from the rate diagram. An approximate

closed form solution for the convergence in a

single axis has been developed and is given by

tacq = 2K R F2r 2 xx yy(¢p=_90o

(196)

where

'_0 = initial crossover rate kn degrees

per second which is approximately

2.6°/sec

F = thrust per axis

R -- thrust level arm

and since torque-to-inertia, k. is given by

Fr

k = 7"- (197)

= 1.53x I0-4 ( 2.6 ) 2
tacq 11.25 3.5 x 10 .4 x 2

= 1720 sec

(198)

which is slightly less than the specified 30 rain.

Here the torque-to-inertia ratio is assumed the

*In practice, the effect of acceleration and higher
2

terms in the expansion F(s) = 1 +11.25s- 14.2s

+ . . . must be considered. These terms may

alter the limit cycle switching line, and hence
gas consumption, significantly.

-/¸¸
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samein bothaxes. Figure48showsa fewcycles
ofthesettlingtransientfor asimilar system.

Becauseof thedifferencesin inertia, andif
k =3.5x 10-4, thetotalthrustshouldbe0.014
lb (0.062n) in theroll axisand0.22lb (0.98n)in
thepitchaxis. Wewill useathrustof0.02lb
(0.089n)peraxisor nozzlesactinginpairs
witha thrustof 0.01lb (0.044n). (Someof the
foregoingcalculationscouldnowberefinedusing
thecorrect\,s ratherthanthesame\ for both
axes.) A crudeestimateof gasconsumption
for acquisitionwouldbe(assumingthejetsare
on at all times)

Pitch and roll (1720)(0.02) = 35 lb-sec

156 n-s

Yaw =--I _ __115 (I/57.3) _ I ib-sec
r 2 5

• _4.4 n-s

T_tal = 36 lb-sec
= 160 n-s

(199)

If, instead of ±30 °, a linear range of ± 15 ° is

chosen for the sun sensor, the necessary k to

keep the solution in the linear range of the sensor

would decrease by a factor of about 7 and the ac-

quisition time 'would be increased by a factor of

about 10. The resultant gas consumption would

be un• by _,::.'2. 4_)"%. For the >, of 3.8 x I0 -3

which provides :'or perfect wheel desaturation

(see Fig. 44), the s,xnsor Hnear range should
be at least 65 ° .

(6) Sensor design

(a) Sun sensor. The sun sensors located on

the array for array error angles and on the body
(or array) for yaw error angles will have a

linear range of =30. The operation around the

null and the absolute linearity are not critical

since accuracy to no better than ± 2° is all that

is required for the 5 ° pointing requirement, in-

dicating that simple shadowing techniques can
be used. Although the calculations of acquisi-
tion are based on a ± 1 ° dead zone for yaw, they

are crude and will not be seriously altered with
the 2 ° dead zone.

(b) Horizon scanner. The scan angle, X,

(see sketch) for this system must be determined.

Two requirements aid in the selection of this

angle.

In order to ensure acquisition, the edge of
the scan pattern must scan the earth for any

spacecraft position. At 400 naut mi (740 kin) the
earth subtends approximately 135 ° at the satellite,

indicating that a half angle cone of at least 24 °

is required to ensure acquisition. This, however,
since it is at the very edge of the earth, will

provide a very noisy signal.

From the linearity consideration of a change
in pulse width per change in angle, a scan angle

which normally crosses at 45 ° of the portion of

the earth that is seen by tlle sateli[_ is ten,un-

able (see the following sketch).

Sc a:_ chord

Equivalent ea:'tii's rc..dtua seen

at 400 nautLcal miles (740 kin)
fs approximately 1520 nautical

miles (2815 kin)

The scan angle for this configuration then

should be approximately 50 °. The uncertainty
due to ionospheric noise considered to be about

7 mi (13 kin) indicates that a scanner error of

about 0.27 ° in roll and pitch is po_.-fh.le. Oth_._ ,':'-

:'or.s duc typic::il;, to opticul irr_tUJla:'_:ic:;, mou::t::'_g
mtsalignment, thermistor balometer characteristics.

etc. , must also be considered. The proper scan
rat_ _ouid be determined on the basis _)f the

tradeo ff between it]he rent scanner s ignal - to- nots e

ratio and system bandwidth. This is not a signifi-

cant problem for a 400-naut mi (740 kin) orbit.

Typical system bandwidth in excess of 3 cps is
easily attained with a nominal scanner rate of 30 rps.

(7) System description. The system block

diagram is shown in Fig. 49. The reaction wheel
size has been selected and the torque require-

ments of the motor obtained, the gas jet has been

determined and the impulse requirements per year
established. The sun sensor and horizon scanner

requirements have been briefly examined. To
complete the study, a reliability analysis is

necessary but has been excluded for this example.

The acquisition noon-turn logic and solar array
drive must, of course, be included. No special

eclipse requirements are assumed. Reacquisition

of sun must be studied and if only a small amount
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of gas is required, it can probably be performed

upon emergence from each eclipse. A simplified
block diagram of the normal mode is shown in

Fig. 49.
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XIII. MISSION REQUIREMENTS

SYMBOLS

a = orbit sernimajor axis

b = orbit semiminor axis

d = ground range

e = orbit eccentricity

E = eccentric anomaly

h = orbit altitude

i = inclination of the orbit plane to the equa-

torial plane

i E = inclination of the orbit plane to the ecliptic
plane

i@ = obliquity of the ecliptic

J2 = coefficient of the gravitational potential

function, 1.0823 x 10 .3

J_ = Celestial latitude (referenced to ecliptic)

L = geocentric latitude (referenced to equator)

M = mean anomaly

n : mean motion = a_ 3

n 1 = number of orbit planes in a pattern

n 2 = number of satellites in an orbit

p = orbit semilatus rectum

r = radial distance from the center of the
earth

R = radius of a sphere of volume equivalent
to that of the earth

R e = equatorial radius of the earth

s = angular radius of shadow

t = time

t v = visibility time

v = velocity magnitude

y = Cartesian position coordinates
z

a = central angle between the subsatellite

point and the edge of the area visible from
the satellite

= azimuth angle relative to north

y = night path angle with respect to local
ho rlzontal

cos!)COS =

COS

E --

{) =

=

A =

U

P

a

T =

"rnoda 1 =

Tsidereal =

e

e

cp

0

®

®

0

angle between the earth-sun line and

the normal to the orbit plane

direction cosines

elevation angle with respect to the

horizontal plane

true anomaly

central angle in the ecliptic plane

from vernal equinox to /he sun

celestial longitude (referenced to

ecliptic)

geocentric longi_ude (referenced to

equator)

= gravitational constant of the earth

(398, 601.5 lm_3/sec 2)

= line-of-_ight range

viewing angle with respect to the

horizontal plane

Keplerian orbit period

nodal orbit period, the interval be-

tween two successive transits through
the ascending node

sidereal orbit period, the interval

between two successive crossings of
the same hour circle on the celestial

sphere

period of the earth's rotation

central angle in the orbit plane from

the ascending node to the satellite

argument of perigee

right ascension or longitude of the
ascending node

= rate of rotation of the earth

= vernal equinox

S UBS C RI PTS

observer

sun

ea rth

ecliptic

initial value
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A. INTRODUCTION

Oncea satellitemissionhasbeenconceived
to accomplish a given function (e. g. , reconnais-

sance, communications, meteorological deter-

minations, etc. ), the question arises as to what

orbit or orbits would best be suited to accom-

plishing the specified mission. Selection of the

best orbit depends upon a multitude of factors

such as periodicity, area coverage capability,

target coverage capability, satellite and sub-

satellite point illumination and vehicle tracking
considerations These factors will be investi-

gated in order to provide a basis for orbit selec-

tion in a given mission plan. Section B considers

the general nature of the various types of missions
and indicates how the above factors are involved

in orbit design for each mission. Detailed quanti-
tative analyses of the various factors are contained
in Sections C, D and E.

B. MISSION CONSIDERATIONS

Although each mission has its individual re-

quirements, most satellites may be categorized

for general study as follows:

(1) Reconnaissance satellites.

(2) Communications satellites.

(3) Navigation satellites.

(4) Meteorological satellites.

(5) Scientific satellites.

In general, orbit design for each of the missions

will require consideration of ground tracks, cov-
erage and sensor limitations. In addition, when-

ever photographic determinations are made, or

solar power supplies are used, various solar prob-

lems (e. g., heating, time in sunlight, relative

orientation of the vehicle-sun-line, etc. ) must be
considered. Table 1 lists most of the factors in-
volved in selection of each orbit element. The

following subsections qualitatively relate these

factors to the above mission types.

1. Reconnaissance Satellites

One function in which satellite systems are

well suited is that of scientific or military recon-

naissance. Observations made by a satellite sys-
tem can provide valuable information on the nature

of this surface of the earth, and of the number,

locations and state of development of installations.

In making these observations, a satellite system

has the advantage of covering large areas rapidly
and periodically with no risk to the observer.

From a general point of view, selection of an

optimum reconnaissance satellite orbit, involving
specification of six orbit elements, is based upon

the following philosophy:

(i) In most missions, orbits of low eccen-

tricity should be selected to allow uni-

form sensor performance throughout

the orbit. Thus, for the limiting case

of e = 0, two additional elements w

(2)

(3)

and Tp (the argument of perigee and

the time of perigee passage) may be

selected arbitrarily because they have
no real meaning.

In general, choice of orbit altitude de-

pends on a tradeoff between sensor power
and resolution requirements for low alti-

tude on one hand and coverage and orbit

lifetime requirements for high altitude
on the other. Decay of the orbit altitude

due to atmospheric drag is prohibitive

for altitudes less than 150 ks, and or-
bits of altitude less than about 225 km will

require periodic corrections even for use-
ful lifetimes of a few weeks. The added

complexity of orbit correction systems
and the added fuel requirement, as deter-

mined in Chapter V'I, are certainly fac-
tors in the selection of an orbit altitude

for extended missions. The effect of low

altitude in decreasing area coverage is
discussed in some detail in Section E.

This factor is especially significant for
missions requiring continuous photo-

graphic coverage for extended peFiods,

where the film bulk can be quite large.
The sensor requirement for low altitudes
is discussed in Section F.

For fairly low altitude satellites, the in-

clination of the orbit to the equatorial

plane must be at least as large as the

latitude of geographical areas to be ob-

served. Thus, as an example, if there

is a requirement for complete coverage

with low altitudes, polar orbits are re-

quired (Section E).

(4) The right ascension of the ascending node,
as determined by the launch time, could

be selected arbitrarily for missions of
extended duration or missions aimed at

more or less total coverage. However,
for short-term missions requiring photo-

graphic inspection of a specific geographic
area, the node should be selected so that

the satellite passes over the area of in-

terest during the local daytime.

Communications Satellites2,

Satellites can be used as component stations

of a communication system relaying signals from

one point on the earth's surface to another. Their

advantage in this application is primarily one of
coverage. Range limitations of conventional radio
transmission can be overcome and reliable inter-

continental radio telephone links established.

Communications satellites may function actively

or passively. That is, an active satellite con-

tains receiving and transmitting equipment so that

it can receive a signal from earth, amplify it and

retransmit the same signal signal back to earth.
A passive satellite, which may take the form of

a large, metallic skin balloon, merely reflects

incident radiation from the earth so that a portion
of this radition is scattered back in the direction

of the earth. Examples of the two types are the
ECHO balloon satellites and the TELSTAR active

satellites. Passive systems would require ground
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TABLE 1

Factors Involved in Orbit Selection

Altitude

High

High

High

Low

Low

Low

Specific

altitudes

(24-hr,

6 -hr,

etc., see

Section

D.2.)

See

Chapter II

(i)

(2)

(3)

(4)

(5)

(a)

(7)

(8)

Factor

Maximum

coverage

Minimum

drag per-

turbations

Minimum

oblateness

pe rtu rba -
t ions

Sensor
resolution

and power
limitations

Minimum
solar and

lunar per-
turbations

Propellant

expenditure
in launch

Achieving

synchro-
nous per-

formance

(orbit

period a
rational

fraction

of a day)

Avoiding
Van Allen

belts

Eccentricity Factor

Low (1) Uniform

(e =0) coverage
over large
areas

Low (2) Uniform

(e = 0) sensor

resolution

and power

require -
merits

Low (3) Elimina-
(e =.0) tion of

earth

relative

motion in

the case

of the 24-

hr orbit

Low (4) Ease of

(e _ 0) position

predic -
tion and

uniform

ground
track

Low (5) Secular

(e = 0) pertur-
bations

can be

large ly

compen-

sated for

in achiev-

ing syn-
chronous

orbits

High (6) Increased

coverage
ove r
limited

areas for

fixed

launch

propellant
expendi-
ture

Inclination Factor

Low (I) Elimination

of earth

relative mo-

tion in the

case of the

24-hr orbit

High (2) Complete

global cov-

erage

Specific (3) Optimum
values or uniform

coverage

Specific (4) Tracking
values station

utilization

Specific (5) Reconnais-
values sance or

coverage

of a partic-
ular area

Specific (6) Regression
values rate set to

0. 986 °/day

for a given
altitude (al-
lows orbit

plane to fol-
low the sun)

Node

Special
value

Special

value

S pe cial
value

Factor

(1) Selection of

daytime ove r
a reconnais-

sance or cov-

erage area

(2) Selection of an

optimum or uni-

form coverage

pattern

(3) Maximization of

time in sunlight

for solar power
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station transmitters of much higher power than
would active satellites. On the other hand, the

complexity of vehicle-borne equipment leads to
limitations on reliability and mission duration

for active systems.

Mission requirements for a complete communi-
cations system would probably aim for continuous

24-hr coverage between virtually every pair of

points on the earth's surface. One orbit design

which has been frequently mentioned in connection

with this requirement employs the 24-hr satellite

orbit. Because this orbit has a period of one day,

satellite motion is synchronized with the rotation

of the earth. In the ease of the 24-hr equatorial

circular orbit, the satellite would appear to hang

motionless in the sky above an observer on the

earth. Elliptic or nonequatorial 24-hr satellites

perform diurnal excursions relative to the obser-

ver. The 24-hr orbit is described in greater de-

tail in Section D. The advantages of the 24-hr

orbit in communications systems lie in the station-

ary nature of the satellite and the wide coverage

of each satellite (the 24-hr circular orbit altitude

is 35,777 km). At the 24-hr orbit altitude, each

satellite can view very nearly half of the earth's

surface. Thus, three satellites could provide

very adequate coverage which could only be

achieved by hundreds of satellites in low altitude

orbits. Also, ground antennas could be fixed,

and tracking would be extremely simple. A dis-

advantage of the 24-hr orbit system is the rela-

tively high power required to transmit to this high
altitude.

Whatever altitude is chosen, it should be such

that an integral number of periods are contained

in a day. Then the ground track, the trace of the

subsatellite point on the surface of the rotating

earth, will repeat daily. This condition is ob-

viously desirable from the standpoints of ease of

prediction of satellite position and utilization of

the system. That is, the user would know what

satellite service is available at a given time with-

out referring to a complicated ephemeris because

a satellite is at the same place at the same time

each day. Synchronous orbits, which exhibit a

daily repeating ground track, are those of 24, 12,

8, 6, 4, 3 and 2 sidereal hour periods. The alti-

tudes corresponding to these periods are tabulated
in Section D.

For communications systems which aim for

literally world-wide service, circular orbits offer

the advantage of uniformity in coverage. However,

if the system is to provide coverage primarily in

one hemisphere or primarily during the daytime,

high eccentricity orbits could be chosen. These

orbits can be achieved more economically than

could circular orbits of their apogee altitude (apo-

gee altitude is the criteria here in order to provide

a large communication range). The elliptical or-

bits would, of course, be launched so that apogee

conditions occur over the daylight side of the earth

or over the hemisphere of interest.

3. Navigation Satellites

Artificial satellites can be used as references

for all-weather navigation systems determining
position and velocity of a surface vehicle, aircraft

or space vehicle. The conventional navigation

methods, e. g., dead-reckoning, star and sun

sighting during clear weather and storage of
reference information by inertial guidance in-

struments, provide navigation information of
adequate accuracy. However, such information

must be periodically corrected to maintain ac-

curacy, and the replacement of star and sun sight-
ing with satellite sighting would permit this up-

dating to be performed at any time, regardless of
weather conditions.

a. Satellite navigation methods

Various methods of satellite navigation may be

considered, depending on the nature of available

equipment, data available from sources other than

the satellites and the nature of the position or ve-

locity information to be obtained.

(I) Sphereographical navigation

The position of an observer on the earth's sur-

face can be determined from a pair of observations

of the angle between the local vertical and the line

of sight to a celestial body. Of course, in order

to make these observations, the local vertical

must be obtained by means of a pendulum, plumb

hob or some other device. Any celestial body,
e. g., the sun, a star or a satellite, could be ob-

served as long as its angular position is accurately

known. Determinations based on satellite positions

will obviously be complicated by the high relative

velocity of the observer and the sa:ellite. However,

the fundamental technique is the same. The ob-

server, equipped with a vertical reference and an

electronic sextant, measures the direction angles

of a radio signal continuously emitted from the

navigation satellite.

(2) Doppler navigation

The sphereographical technique employs the

classical angular measurements of celestial navi-

gation. SateUite systems employing radio tech-

niques are not limited to these methods. One

radio technique is based on the Doppler effect.

Radio signals received from a moving vehicle ap-

pear higher in frequency as the vehicle approaches

the observer and lower in frequency as the vehicle

recedes from the observer. The difference be-

tween the observed frequency and the known trans-

mitter frequency, the "Doppler shift, " is a meas-

ure of relative motion (or relative position when

these shifts are integrated} of the vehicle and ob-

server and, therefore, can serve as input to a

navigation system. Knowledge of local vertical is

not required. The TRANSIT satellite program em-
ploys a purely Doppler system.

(3) Complete geometric determination

Systems for navigation on the surface of the

earth can implicitly make use of the knowledge
that the observer is a known distance from the

center of the earth, the origin of the coordinate
system in which the satellite positions are known.

A more general problem may be hypothesized as

follows: the position and velocity of a vehicle in

space is to be determined solely from data con-
sisting of range and range rate relative to the navi-

gation satellites. The observer is assumed to have

no knowledge of his orientation, position or velocity
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from other sources such as plumb bobs, altimeters,

etc. If a complete determination is to be made
from a set of observations made at any given time,

the observer must simultaneously note the range

and range rate of three navigation satellites, the
positions and velocities of which are known. Then

his position is determined as the intersection of

three spheres•

_ _ 2
(Xo xi)2 + (Yo - Yi )2 + (Zo zi)2 = Pio (i)

i=l, 2, 3

where

Xo' Yo' Zo = Cartesian position coordinates
of observer

xi' Yi' zi known Cartesian position co-

ordinates of the three naviga-
tion satellites

Pio = ranges from the three naviga-

tion satellites to the observer.

The observer's velocity is determined from

: (2)
P io P io

w he re

vo-v i = (xo-k i)i+(#o-#i )j

+ (zo - _.i)_"

Xo' #o' Zo = Cartesian velocity coordinates
of observer

= Cartesian velocity components

of the three navigation satellites

Pio = the range rate data

and P-_io is given from Eq (1).

Differentiation of Eqs (1) and (2) gives the

following error formulas.

Ii 1 C12 C131

21 C22 C23 I

31 C32 C33J

A 1

1

"w

dx o

dy 0 =

dz o

where

A i = (Xo - xi) dxi + (Yo " Yi ) dYi

(3)

+ (Zo - zi) dzi + Pio dPio i = i. 2, 3

and C.. is
L]

d_{o_

d_o/

the cofactor of the (ij) th

1
21 C22 C231

31 C32 C33J

where

6i =- (X0 - X[) (dx i

(Xs - Xl) (Ys - Yl ) (Zs - Zl)

(Xs - x2) (Ys -_Y2 ) (Zs - z2)

(Xs - x3) (Ys - Y3 ) (Zs -z3)

element of K T.

• \PlO 6_ +61,,61 + PlO

62 + P20 6,2+ 62,.
P20

¢3+p30"3°%,,
(4)

- dXo) + (Yo - "YE) (dy£ - dy o)

+ (Zo - it) (dzi - dZo)

6'i= (x° - x[) (dx ° - dx i) + (Yo - Yi) (dYo - dYi)

+ (zo - zi) (dz o - dzi)

6i_-=(xs -x_) _xi+(ys-yi )_'_'_+(zs -zi)_i

+ Pig "Pts

and K and C.. are those defined in Eq (3).
t]

b. Selection of navigation satellite orbits

The navigation satellite system is similar in

most functional requirement aspects to the com-

munications satellite system, with perhaps more
emphasis on precise orbit determination and

minimum sensor power requirements in the nav-

igation system case. Here again, the require-
ments of wide, uniform coverage with the fewest

satellites, low transmitter power and synchronous

motion are important considerations in specifying

optimum orbits. Since navigation requires satel-

lite tracking by each observer as opposed to

tracking by a few high-powered transmitters in

the communications system, an increased em-

phasis on lower altitudes is required in navigation
system orbit design. Also, since each observer

must locate the satellites by means of an accurate

ephemeris, the ephemeris should be as simple and

easily updated as possible. This requirement
makes selection of one of the synchronous orbits

attractive. From a general standpoint, the re-
quirements taken as a whole seem to indicate
choice of circular 4- or 6-hr orbits for use in

navigation system orbit patterns. For specific
missions, Sections C, D, E and F offer data

upon which a quantitative tradeoff may be based.
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4. Meteorological Satellites

Satellite systems offer several advantages in

meteorological determinations. The area over

which observations can be made is, of course,

much larger for a satellite system than for a

ground station. By means of this greater cov-

erage, a complete storm structure, as evinced

by component cloud formations, may be observed
from the satellite. During daylight conditions the

satellite determinations can be photographic. The

photographs could provide information on the size,
structure and location of a storm, and series of

photographs would reveal the nature and time

history of the storm development and its motion.

When the satellite is above the night side of the

earth, observations can be made by an infrared
scanning system operating at wavelengths which

are emitted from the earth and on a spectral band

which is reflected or absorbed by clouds.

In addition to storm observations, satellite de-

terminations could include atmospheric moisture
content from radar and infrared measurements

of water vapor absorption bands, atmospheric
density, and radio noise, which indicates the lo-

cation of thunderstorms, line squalls and fronts

where the atmosphere is unstable.

The TIROS satellites, a series of experimen-

ta, television-equipped meteorological satellites

launched in a NASA program, have proved very
successful. In addition to known cloud and

weather phenomena, processes which apparently

had not been previously investigated were observed.

From the standpoint of orbit design the require-

ments of the meteorological satellite mission pri-
marily involve achieving proper altitude and cov-

erage. The orbit should be high enough to permit

adequate area coverage (Section E) of high alti-

tude cloud formations and yet be low enough to
provide good resolution with available sensors

(Section F). Eccentricity should generally be low

to provide uniform coverage and resolution. The

TIROS I orbit altitude was approximately 750 kin.

Required orbR inclination is determined from the

latitude range to be covered, as considered in
Section E.

C. SOLAR PROBLEMS

For many satellite missions the following

considerations involving the relative positions of

the sun and the vehicle are important from a

mission design standpoint:

(1) Times of satellite eclipse, i.e., times
when a vehicle enters and leaves the

shadow of the earth.

(2) The duration of an eclipse, or the per-

centage of time spent in shadow.

(3) The time history of the relative positions

of the vehicle, the sun and the earth.

These factors are useful in analysis of the follow-

ing mission requirements:

(I) Compensation for radiant heat absorbed

through the vehicle skin.

(2) Provision for adequate power supply

by solar cells.

(3)

(4)

Provision for tracking the sun.

Assurance of optimum illumination of

the subsatellite point for photographing

certain geographical phenomena.

These various problems related to solar effects

and their effects on mission performance there-
fore merit some consideration.

1. Relative Geometry of the Vehicle, Earth and
Sun Positions

Since analyses of these solar problems de-

pend on knowledge of the positions of the vehicle,

earth and sun relative to each other, it is con-

ven£ent to first derive equat[ons for the instan-

taneous relative positions. These equations will

provide a basis for the tndiv/dual analyses.

a. Position of the satellite in an earth

centered inertial (ECI) coordinate system

X !

iS

The equation of an ellipse in polar coordinates

a (I - e 2)
= (5)rs 1 + e cos B

or in rectangular coordinates

(x' ea) 2 +- y, 2

2 2
a a (I - e 2)

=1

for coordinates in the orbit plane, x' toward

perigee. These coordinates may be transformed

to ECI by the following rotations as outlined in

Chapter XI.

li)[i{IIi°01• in _ cos f_ cos l -sin

0 sin I cos i9

Fcossif<)x
in _j cos _ y,0 z,

(6)
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z

z v yV

X I

plane

The direction cosines of the position of the ve-

hicle in ECI are obtained by substitution of

Eq (5) in Eq (6):

x

=cos (0 +9) cos _ - cos [ sin (O +_) sin
r

8

Ys
-- =COS (O +_) sin_ +cos i sin (O +9) cos
r
s

z

_SS = sin (0 + 9) sin i (7)
r
s

The rectangular coordinates (xs, Ys' Zs) are

obtained [n terms of the parameter @ by substi-

tution of Eq (5) in Eq (7).

b. Position of the sun in an ECI coordinate

system

The definition of solar position in the ECI

system is simplified by choice of vernal equinox,

¢P, the direction of the intersection line of the

ecliptic and equatorial planes, as one of the sys-

tem axes. Many astronomical tables provide

solar position in terms of right ascension, A,

and declination, D, as functions of time.

/

qP
xf) =rQ cos D O cosA®

Yo "% cos % sin%
z(D = r® sin D® (8)

However, a more convenient system for study

purposes is one employing obliquity, i_) , and

ecliptic angle from equinox, 8. The obliquity

if) = 23 ° 27' 08.26" - 0.4684" (t - 1900)

(where t is the calendar year) is practically con-

stant, and the solar position can then be specified

by only two variables, r_ and 9 . The angle _ can

be found by the inverse solution of Kepler's

equation for the eccentric anomaly as a function

of time. Then, the 9 can be found as a function

of E. However, since the orbit of the earth is

nearly circular,

eO = 0.0167272,

rQ is nearly constant (0. 983273 au <__rO <__

1.016727 au) and c_ can be approximated as

@ = 0.98563 d m

where d¢_ is the number of days past vernal

equinox 6= March 21).

In either case, the solar position in terms of i(D
and _9 is given as follows:

xf) = r 0 cos

yf) = rf) cOS tO sin 9 (9)

zf) = r(D sin if) sin -0

c. Position of the sun in a vehicle-centered

inertial coordinate system (VCI)

The position of the sun in the VCI system is

obtained by subtracting corresponding ECl com-

ponents of the vehicle and the sun.

X ffixf) - x s

Y = Yf) -Ys (10)

Z ffiZ(_ -z s

where (x® , YO " zo ) and (xs, Ys ° Zs) are given

by Eqs (7) and (8) or (9). The distance from the

vehicle to the sun is

rs® -- I (xO- Xs )2 +(yO "Ys )2 + (z® - Zs) 2

(11)

and so Eq (10) may be expressed in direction

cosine form as follows:

x - x
. 8______s

COS a X rso

cos By =y(9 -Ys
rs 0

zQ - zs
cos _Z =

s®

(12)

XIII-7



d. Position of the sun in a vehicle-centered

local horizontal coordinate system (VCL)

ECI coordinates may be transformed to VCL

by successive counterclockwise rotations about

z through _, about x through i and about z through

(e+_).

Z

_icle

Ii}Ii !1= sin (e+ _) cos (e+u)

0

• cos i sin sin _2 cos

-sin i cos 0

os _ cos (8+w)

sln o cos i sin (e+_)

cos _ sin (8+w)

sin _ cos t cos (8+w)

in _ sin i

÷cos _ cos I sin (e+w) sf.n I sin (e+_ x

- sin Q sin (e +_)

_+c°m_c°mtc°=(e+_)cos_ sin I cosStntc°s(e+_li

(13)

Substitution of Eq (9) in Eq (13), followed by trans-

lation of the vehicle radius r in the _ direction,
s

gives the direction cosines of the solar position

in VCL coordinates:

°° Iocos crr_=-- = ose osncos (e+w)
rs O s® t,

- sin_cos isin (0 +_)_

+sin 8cos iE) rsinf_cos (8+_)

+cosf_cos isin(O+_)l

"_" sin {9 sin i(_ Isin i sin ( 0 -_- 4/J)_ }

r
s

rs 0

= -- = -- cos {9 cos £2 sin (e +w)
cos _n rsE) rsE)

- sin.q cos i cos (8 +_)_

+ sin _gcos iO [- sin_ sin (e +_)

+cos _cos [cos (e +_I

+ sin _9 sin if) sin i cos (8 +c_)_

"_14)

cos "_ -

_e f-
Icos{9 sin_ sin i

rs0 rso L

- sin @cos i0 cos _ sin i
---t

+sin 8 sin i0 cos il
J

The last equation of Eq (14) is especially interest-

[ng since the true anomaly 8 [s not involved, i.e.,

cos "y[ is a function only of the time of year ({9)

and the orbit orientation (12and i). In fact, for

low altitude orbits rE) ,= rsE) and "_ approaches

the angle between the earth-sun line and the

normal to the orbit plane.

cos _n = cos _ sin _ sin i

- sin {9 cos iE)cos £2 sin i

+sin 9 sin if) cos i (15)

This is a useful parameter in determining time

in sunlight (Section E). The sin "Yn and cos "_n

are plotted in Figs. i and 2 (Ref. I) for a

particular orbit to show the form.

2. Eclipses of Earth Satellites

There are several important areas to be

considered in the study of eclipsing of earth

satellites by the earth's shadow. The areas

discussed in this section include the following.

(I) General geometry of eclipses by the

shadow.

(2) Equations leading to the prediction of
eclipses by the shadow.
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(3) General geometry of eclipses by the and

penumbra.

(4) Equations leading to the prediction of

eclipses by the penumbra.

(5) Eclipse information obtained by

analytical means.

(6) Complications involved in the problem.

(7) Chart and equations for a computer

program.

In the material to be presented, a11 angular or-

bital elements are referred to the plane of the

ecliptic. Since these angles are referred to the

plane of the equator for earth satellites, the
reader should see Chapter XI for the appropriate

coordinate transformation.

a. General geometry of eclipses by the
shadow (Ref. 2)

For simplicity, Figs. 3 through 5 show the

orbit of the satellite through the center of the

shadow. Figure 5 shows a case where the
shadow is not at the node. In'all three figures,

P1 is the point where the satellite enters the

shadow and P2 the point where it leaves the

shado.v. P3 is some point outside the shadow

(that is, in sunlight). Let s be the size (angular

radius) of the shadow and 9 the angular dis-
S

tanee from the center of the shadow to any point

in the orbit. When 8 >s the satellite is in sun-
s

light; when @ < s the satellite is in shadow.
s

b. Equations involved in prediction of
eclipses by the shadow (Ref. 2)

The angular size of the earth's shadow is

computed from

,,o,s IU_ sin- 1

where R is the earth,s radius

and

i = semimajor axis

a (1 - e) 2 eccentricity
r = 1 +e cos _)

= true anomaly

and the factor 102/100 is due to the refraction

of the atmosphere. Now, using the following

sketch

cos 8 --cos _k cos A8
s

+ sin Ak sin ix{)cos iE (17)

where

Ak = f2 - k (shadow)

z_e .e - @ (fD

k (shadow) = longitude of the shadow

= longitude of the sun + 180 @

e (n) = true anomaly at the node

=-LO

i
E

= inclination of orbit plane to

ecliptic plane

/ Orbit

_ plane
Shad°w/s _

_ /_ Ecliptic

1/ _ . plane

The solution of the equations for s : O will
s

give values @I and @2, the true anomaly at the

point of entering the shadow (PI) and at the point

of leaving the shadow (P2) respectively. For

each of those conditions

cos e + e (18)
cos E = 1 + e cos 8

M : E- e sin E (19)

If 0 < 8 < 180 or If 180 < @ < 360

then O < E < 180 then 180 < E < 360

and 0 < M < 180 and 180 < M < 360

M _-U (20)
and t =_-- , n : ---3-f2

a

where

e ffi eccentricity

E ffi eccentric anomaly

M ffi mean anomaly

then

= time from perigee passage (tp)

ffi mean motion

= GM, the product of the universal

gravity constant and the mass of the
earth

= 1.407648 x 1016 ft3/sec 2 (adopted

value)

= 398,601.5 kmS/sec 2

Time in umbra = t2u - tlu (21)
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If Eq (21) is negative, add the orbital period to
the answer.

To determine eclipse duration on any later

revolution, it is necessary to update the past
values of the orbital elements which have been

changed as a result of various perturbations
(see Chapter IV), and the position of the shadow
(approximately 0. 9856 deg/day). The equations

for s and e are again solved for the points where
S

S =0 .
9

c. General geometry of eclipses by the

penumbra (Ref. 2)

To find time in penumbra, an approach is

followed similar to the study for the time in
umbra or shadow. In this case, however, the

penumbra is a ring around the umbra as shown

in Figs. 6 and 7.

ellite orbit is circular (i.e.. r 1

AT10p 1 ., Z_T20p 2

But

From Fig. 6, it can be seen that, if the sat-

= r2),

• /TI OP I =-I T 20P 2

/ T 10T 2 = 180 ° -/"O 10T 1 -./T2OO 2

= 180 ° - (90" - ,_) - (90 ° - ;_)

=a+_

and

= /T 10T 2 +iT 20P 2 -_:T 10P 1

= ,_TIOT 2 = a+_.

Thus the angle d_is very nearly constant regard-

less of the size of the circular orbit and is ap-

proximately equal to 0.54%

d. Equations involved in prediction of

eclipses by the penumbra (Ref. 2)

Whether a satellite enters the penumbra or

not (in a particular revolution about the earth)

is a similar problem to that of finding out whether

it enters the umbra (shadow) or not. We simply

increase s by _b and then compare 0 s with s + _b.

The satellite enters and leaves the penumbra

cone at the points 0 = s + _. For these pointss

use Eqs (18), (19) and (20) obtaining tlp and t2p,

relative time of entering penumbra and time out

of penumbra. If there is not an umbra eclipse in
that revolution, then

Time in penumbra - t2p - tlp (22)

If there is an umbra eclipse in that revolution,

then there will be two times in penumbra (first

going from point P1 to point P2 and then going

from point P3 to point P4 as shown in Fig. 7,

name ly,

Time in penumbra (I) = tlu - tip (23)

Time in penumbra (2) = t2p - t2u (24)

If any of Eqs (22), (23) and (24) is negative, add
the orbital period to the answer.

e. Alternative solution for eclipse times

An alternative solution for eclipse times may
be formulated from consideration of Fig. 9. Let

(2, Y, _) be unit vectors in an ecliptic coordinate

system (x,, YE ° z ).

R O = radius of the sun

R B = radius of the earth

= geocentric radius vector to the sat-

ellite (unLt vector 9)

distance between the centers of

earth and sun

unit vector along the direction of
the earth-sun line

! =

geocentric celestial longitude of

the vehicle (ecliptic)

geocentric celestial latitude of the

vehicle (ecliptic)

heliocentric celestial longitude of

the earth (ecliptic)

angle between _ and

Then

and

= cos L cos %_÷cos I sin k_ +sing _

= -cos xe _ - sin )'e

cos * = _ -

The condition for entering or leaving the penumbra

is that _ = 0 (_ defined in Fig. 8). This condition
can be determined from

Ill}
, = a-p+,r -,_sin-1_

r

where

- 1 RO
a " sin

t 2 r 2
r@ + - 2 r@ r cos

2

"r7  oo,0

r cos2

>> ro- ; 1>> r
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and

-1 r sin_
- sin

I 2 r 2r$ + - 2re rcos¢

I_l sin2 ¢ ro cos
r 2 + r

3 r 2(r-_-_ cos

>_ i 1 ">>

The solutions for penumbra entrance and exit thus

satisfy

% %

+ = - d) - sin
-i R@ _

-- 0

r

>_> RQ ; 1 >'_

The umbra entrance and exit conditions can be

written by taking

= _ - c_ - (a - 2) - sin -I R_
r

where

R o

a+_ r-_-- (I+ r--_-c°s_ + r-_sinc)r$ rQ

(as indicated by Fig. 8) and where a is taken in
the opposite direction to that for the penumbra

solution, i.e., a i8 the angle between the vehicle-

sun line and the lower tangent to the solar sur-
face.

No correction for refraction of the light
waves has been made in this material. However,

it is noted that the apparent effect at the vehicle

#ill be to make the sun appear larger. Thus,

an accurate correction can be made by utilizing

the apparent rather than the true radius of the
sun.

f. Eclipse information obtained by analytical
means (Refs. 1, 2 and 3)

An exact closed-form analysis of general

satellite eclipses is impracticable; however,

some useful information can be obtained by this

type of analysis. Very little can be done with an

eccentric orbit, as may be inferred from the

previous sections, but with unperturbed circular

orbits several important eclipse properties may

be determined.

(I) Eclipse season

If it is desired to find the days on which an

eclipse occurs, or so-called eclipse season, one

may do so with the aid of Fig. 9

sin _u sznSln ts (25)

where s would be the maximum size of the shadow

for an eccentric orbit.

Then

(umbra_ _ 2 _'U
eclipse season \only / _ days (26)

where O. 986 is the mean velocity of the sun tn
degrees per day.

The exact eclipse season is difficult to com-

pute analytically: (1) due to the regression of the

nodes the inclination with respect to the ecltptic

varies and it is difficult to predict the inclination
when the earth js shadow is near the node; (2) if

the orbit is very eccentric the size of the shadow

at perigee would be much larger than that at apo-

gee, and again it would be necessary to predict
the position of perigee at the time the shadow is

approaching the node. For many applications,

however, the simple method presented above is
adequate.

To determine the eclipse season including the

penumbra, the above equations may be used but

s must be increased by _ (</ = 0%54), as _h_)wn

in the following sketch.

{umbra and_ Aup
eclipse season \penumbral _2

sin-iISinstn(S +_)It_

= 2
0. 96563

(27)

Obviously, if the inclination with respect to

the ecliptic is smaller than the angular radius

of the shadow (i, < s), there will be an eclipse

at every revolution.

Also it must be remembered that due to ob-

lateness (and also luni-solar perturbations in

certain cases) the nodes regress, and a more

realistic expression for Eq (26) would be

eclipse season = 2 u (28)dn

0. 98563 +

where dg_/dt = rate of regression of the nodes

with respect to the ecliptic. It shonld be noted

that, with proper selection of orbit inclination

and altitude, the regression rate can be made
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equal to the earth revolution rate, _-
z 0. 986°[

day (i.e., the orbit would follow the sun). In par-
ticular, if the initial orbit were chosen to have
this regression rate and° furthermore, to be
continuously in sunlight with

iE >cos -1 II-(rR--)2 ,

the satellite would be in sunlight for its entire

dl2 = l°[day is
lifetime. The orbit condition for

7/2

cos i_ - 0. I(_ 1

t. e., 90< i< 180%

No straightforward analytical expression exists
to give the rate of regression of the nodes with
respect to the ecliptic similar to the expression
(to first order) which gives the rate of regression
of the nodes with respect to the equator. The
reason for this fact is shown in the following sketch.

Uniformly | | /Ecliptic

regressing _plane

orbital ____i_ I

plane e

,_ d- _'_ c

Thus, the equatorial nodal position and the periodic
perturbutions of the node must both be considered
in the definition of nodal position relative to the
ecliptic. R graphic study shows, however, that

the regression of the nodes with respect to the
ecliptic is negligible in most cases. In cases for

which it is not; iE < s and, therefore, is of no con-

sequence in the computation of the eclipse season,

since for iE < s there is an eclipse in every
revolution.

(2) Maximum time in umbra (eccentric orbits)

To get an idea of the maximum time in the
umbra the following method may be used.

Let the size of the shadow at apogee be s
a

and the angular velocity at apogee° w a

where

Va I
Wa raa a 3 (1 + e) 3 (1 - e)

r - a(l +e)
a

then

maximum duration of eclipse = 2 S_)

where s a is given by Eq (16).

(3) Curves of maximum eclipse duration and
eclipse season (circular orbits)

In the case of unperturbed circular orbits a
simplified approach is possible. A set of general
curves is included for circular orbits_ clearly,
the results obtained from these curves cannot be
extended to eccentric orbits. A simple method
of computing and presenting maximum eclipse
durations and eclipse seasons is given in the
follov_ng material.

Figure 10 shows maximum time in umbra
versus semimajor axis, which is obtained from

maximum time in umbra = 2 s (29)
n

where n is the mean motion

(30)

Maximum time in umbra and penumbra versus
semima3or axis is obtained simply from

maximum time in umbra

and penumbra = 2 s + $ (31)
n

Figure 11 shows the same information as Fig. 10,
but with expanded scale.

Maximum time in penumbra where there is no
umbra eclipse is computed from

cos 6@ _- cos (s + ¢) (32)
COS S

which is obtained from the following sketch.

6@
Then, maximum time in penumbra = 2 -- .

n
Figure 12 shows maximum time in penumbra
versus semimajor axis. Figure 13 shows the
same information as Fig. 12, but with expanded
scale.

Figure 14 shows eclipse season (umbra only)
versus semimajor axis and inclination, which is
obtained as illustrated in Fig. 9. Figure 15 shows
eclipse season (umbra and penumbra) versus
semimajor axis and inclination obtained as illus-
trated in Fig. 9.

Figure I0 showed that, for fairly low altitude
orbits (less than one earth radius), the times
in umbra and penumbra differ by a fraction of a
minute or less than 1% of the orbit period. In
this region the earth shadow can be accurately
approximated by a cylinder. With this assump-
tion the eclipse duration solution for unperturbed
circular orbits can be further simplified. The
simplified problem has been considered in various
references, e.g., Refs. I, 3 and 4.
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If the shadow made by the earth is approximated
by a cylinder, this cylinder will intersect the orbit

plane in an ellipse with semimajor axis of
[I

and semiminor axis of R0 as shown in Fig. 16,
where cos Yn is given in Eq (15) and plotted in

Fig. 2. The per cent time in sunlight is then the
same as the per cent of the orbit arc not contained
in the shadow ellipse, as shown in Fig. 16. The
problem then reduces to the simple determination
of the angle ¢ from the intersection of the orbit
and the projected shadow ellipse:

Ix2 +:: " rs2(°rbit)2

Substitution of y from the first equation in the
second equation gives

or

Then

2 2 r2 x 2 R2
X COS "Y n + - =

= irs 2 - R2
X

sin Yn

Il-
cos¢ = x_._= , 0° <¢ < 90=

rs sin Y n

The per cent time in sunlight is

F.==--.

= 100% for sin Yn < i -J(F_ 2

Substitution for _bin this equation gives

sin_n =:1:
cos (I. 8 ts)

(33)

This equation determines the orbit orientation

Yn required for any desired per cent sunlight time

t . Equation (15) in turn provides the combina-
s

tions of time of year, orbit ascending node and

orbit inclination possible for a given ts.

As examples, circular orbits of various alti-
tudes and inclinations were considered. The
value of cos ¥ for various orbit altitudes as a

n

function of per cent sunlight time is plotted in
Fig. 17. Another presentation of the same rela-
tionship is given in Fig. 18. These values are
obtained from Zq (33). Then horizontal lines

across Fig. 1 or Fig. 2 at each ts level determine

the (e, G) loci for the given per cent time in sun-
light. These loci have been replotted in different
form in Figs. 19 through 23. These figures show

very clearly the required longitude of ascending
node° _, required to provide a given sunlight time

ts a* any given time of the year. For example,

for 125-naut mi (232 kin) orbits, 100% sunlight

may be achieved only in alternate quarters of the
year, the quarters near autumnal and vernal
equinoxes. During quarters centered about the
summer and winter solstices, the maximum time
in sunlight is 80%. For 500-naut mi (930 km)
orbits 0 100T0 sunlight may be obtained at any time
in the year.

Other curves which may prove to be useful
are"

(1) Inclination with respect to the ecliptic

(i) versus longitude of the node with

respect to equator (fl)for different
inclinations with respect to equator
(i)(Fig. 24), computed from

cos ic :cos 23.4 cos i

+ sin 23.4 sin i cos t3 (34)

which is obtained from the following
sketch.

ORBIT
PLANE

_CI._I PTIC

=4' _'LAt_E

i EO(JATOel

' i

(2) Angular radius of shadow versus distance

from center of earth, Fig. 25 [see Fig.
3 and Eq (16)J. Figure 26 shows the
same information as Fig. 25° but with
expanded scale.

g. Chart and equations for a computer program

The following reasons indicate why a closed-
form analytical solution is not easily obtained:

(i) Time of launch--the longitude of the
node at burnout will vary with the time
of launch.

(2) Date of launch--the initial position of
the sun will be different for different
dates of launch.

(3) Eccentricity of orbit--the shadow is not
a circle, but has an egg-shaped contour.

(4) Regression of the nodes--the longitude
of the node will vary constantly due to
oblateness.
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(5) Advance of perigee--the argument of
perigee will vary constantly due to
oblateness_ the size of the shadow at

the nodes will vary from maximum if
perigee is at the node to minimum if

apogee is at the node.

(6) Drag--the size of the semimajor axis
of the orbit will decrease due to atmos-

pheric drag.

(7) Luni-solar perturbations--all of the

orbital elements will vary to some

extent due to luni-solar perturbations.

A method for obtaining a more precise solu-

tion to the general problem of earth' s satellite
eclipses is given in this section.

The most efficient method of calculating eclipses

is by means of a computer program, a simple

example of which is represented in Fig. 27, from
Ref. 2.

It must be noted at this point that this program,
as well as any of the analytical methods described,
will produce only times in umbra and times in

penumbra at a given revolution, but not the time

of day at which these phenomena happen. This can

be roughly determined by knowing the time from

perigee passage at which the phenomena occur,

the period, and the time of perigee passage for

some date. If the time of perigee passage for date

D 1 is T 1 and the period is r, then the approximate

time of perigee passage for some other date D2,

AD days from D1, is

T 2 = T 1 + N_ (35)

where N is the integral number of periods in _D.

If the motion of perigee due to perturbations is

large, the anomalistic period (time from perigee
to perigee) should be used in Eq (35).

The results of machine computations are shown

in Figs. 28 through 30. The luni-solar perturba-

tions were added by first running another program
which computes changes in equatorial elements

due to various perturbations (a complicated pro-

gram in itself), and then using the output as the
input to the eclipse program. Also included in

the above set of curves is one showing the eclipse
pattern when launching the same vehicle at dif-

ferent times of day on the same date and at the

same time of day on different dates.

D. GROUND TRACKS (REF. 3)

The equations for the ground track of a satel-

lite orbit may be written, from an application of
spherical trigonometry to Fig. 31, as follows:

Geocentric latitude:

L = sin -I (sin i sin ¢_) (36)

Geocentric longitude:

A = tan -1 (cos i tan _,) + An0

- _e At-_ KnJ2 At (_) 2

where

cos i

(I - e2) 2

(37)

i

=

An0 =

e

Ano =

_t =

inclination of the orbit plane to [he

ecliptic plane, 0 < i < 180 °, measured

+ from east at as_en_ng node

orbit central angle between the satel-

lite and the ascending node

initial geocentric longitude of the as-

cending node, 0 _ AnO <_ 360 °, meas-

ured + toward the east

rotation rate of the earth, 4.178074

x 10 -3 deg/sec

initial geocentric longitude of the as-

cending node

time measured from the initial con-
dition

K = 57. 2958 de_/rad

n = mean motion =

J2 = 1.0823 x 10 -3

R e = equatorial radius of the earth

a = orbit semimajor axis

e = orbit eccentricity.

Equations (36) and (37), presenting satellite

position with respect to a rotating oblate earth,

neglect second order oblateness perturbations.

These equations may be used to generate the

ground track as a series of points (L, A) as a

function of the parameter 4'. This determination

is simple in the case of circular orbits, but

somewhat complicated for elliptical orbits due

to the nonlinear behavior of the angular rate.

1. Elliptical Orbit Ground Tracks

The difficulties of ground track predictions

for elliptical orbits arise from the fact that the

angle in orbit plane (from ascending node to
satellite) is a nonlinear function of time. For

large eccentricities, Chapter HI expresses this
angle in the form of a Fourier-Bessel infinite

series. For small eccentricities, the angle can
be expressed as a simple sine series where the

constants are determined by the corresponding
eccentricities.
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Satellite latitude and longitude are first es-

tablished with respect to a nonrotating earth, as
a function of time. Rotation of the earth, regres-

sion of the nodes and precession of the perigee

are then used as corrections for longitude and

latitude on a rotating earth. Six input parameters

are needed (e.g., h O, v O, 70' LO' 259 and 80).

From these data all the necessary information is

obtained by the equations of spherical trigonome-

try and planetary motion along the Keplerian

ellipses.

The geometrical representation of the prob-
lem, indicating the most important quantities

used in the calculation procedure, is given in

Fig. 31. It should be noted that the longitude of

the ascending node (9), as well as the angle of
perigee (,.,) and the angle of the satellite (¢) from
the node are all functions of time.

The properties of the Keplerian ellipse are
as follows:

Semimajor axis:

r 0
a - (38)

2

2 - r 0 v 0 /_

Eccentricity:

l 2 2 2
r 0 v 0 cos Y0

e = 1 - a_ (39)

Period:

7 = 2_ _a3/_ (40)

Next the central angle from perigee is derived.

First, the local flight path angle is seen from the

following geometry to be

1 dr
tan y =

r_ rE_

r = P
l+e cos0

Therefore,

e sin 0
dr = pe sin O and tan _ = I + e cos O
cI_ (I + e cos 0) 2

This is expressed as

e _ 1 - cos 2 O

tan7 = l+ecos O

and the following is derived.

e cos 0 = sin 2 I 2 2
7 + cos7 e - sin ),

From this, the initial central angle from perigee
is obtained.

Isin2 Y0 :_ cos )'0 I e2 sin2 ]O0 = + c°s-I " e - _0

(41)

Equation (41) gives four possible answers and the

correct one should be selected as follows:

Flight Path O0 (from perigee)
Angle Radius

70> 0 r 0 < a 0 ° < 90 < 9 _

?0 > 0 r 0 > a 0"< O0 < 180 °

Y0 < 0 r 0> a 180 ° < 00< 360 ° - O*

Y0 < 0 r 0 < a 360 ° - 0* < 00 < 360 °

-I
where 0.- 180 ° - cos e (see Fig. 31) (42)

Now the inclination of the orbit is obtained by

spherical trigonometry.

i = cos -I (cos L 0 sin _0I ), (43)

where /30I is obtained as follows.

R

= e e cos L 0 cos ° 0
_01 flO + v 0 cos YO

The component of velocity parallel to the

earth's surface is found by v' = v 0 cos F0. The

component due to the earth's rotation is simply

v e = R _e cos L 0.

From trigonometry,

V
e v_

sm--[H-_-_ = sin (90 ° + _0

V'

=_-

| Ve

Because A_is a small angle, sin A B-- A_is a

good approximation. Finally, since

v Rf_

- v 0 co-se cos L 0 cos _]0" (44)a_ = _ cos _0
FO

(45)

The initial angle from the ascending node is

¢0 = sin-I L sin i _J (46)

and the initial perigee angle from the node (Eqs
(41) and (46)) is

w0 = ¢0 - O0" (47)
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Denotingthetime from the initial point (Lo, AO,

h O) by At. Then,

t = t 0+ At. (48)

where t o is the time from perigee found from

Kepler's equation

-e I 1 - e 2 sin @0
• + 2 tan- 1

to = _ 1'+ e cos 80

[ -7- -_ - . (49)

For a nonrotating earth, the following equa-

tions are derived from spherical trigonometry.

Latitude: L I = sin "1 (sin i sin ¢) (50)

Longitude: A I = tan -I (cos i tan _) + A h (51)

Next, consider a rotating earth with oblateness ef-

fects. Due to the precession of the apsides, the

perigee of the orbit is a function of time, and the

angle of perigee from the ascending node is given

by

• At

w=w0+Ku T

_ 5 2i)2 (2 _ sin

(i - e2) 2

where

n _- -- =
T

(52)

(53)

For an easterly launch, the node is given for a ro-

tating oblate earth as

= _0 " _e At - K_ A___t
T

2
/W X

= _0 - _e At - KnJ At _'___e)
COS i

(i - e2) 2

(54)

where f_0 -- An0 + Greenwich Sidereal Time

('cos ¢0_

= A 0 - cos-i \_)+ GST
(55)

(Longitudinal shift of the ground track is plotted

in Fig. 30.) Now, the angle from node can be

found from a Fourier-Bessel series expansion
as a function of time.

5 e 2
_, = w+ nt+ 2e sinnt+_ sin 2 nt+ ....

(56)

Expressing Eq (56) in terms of t o and using Eq
(52),

5 e 2 (sin 2 nt
+ 2e (sinnt - sinnt 0)+_-

sin 2 nt0) + .... (57)

For a few revolutions, Eq (57) can be approxima-
ted by

= _0 + nat + 2e (sin nt - sin nt0). (58)

Finally, the desired relations for satellite posi-

tion with respect to a rotating oblate earth are

given by Eqs (36) and (37). Also, the orbit radius

can be expressed in series form as

r = a E 3i - e cos nt - (cos 2 nt - i) - . . .

(59)

If extreme accuracies are needed, it should be

remembered that _ and _ in Eqs (52) and (54)

can be considered as simple constants only for

integral numbers of revolutions. For some frac-

tion of a revolution, the rates of regression of

the nodes and precession of the apsides are ac-

tually periodic functions, which contain sines or

cosines of the geocentric latitude. These func-

tions result in an oscillation about the mean

values given by {_ and _ utilized here. The more

accurate perturbation models are described in

greater detail in Chapter IV.

2. Synchronous Orbits

As noted previously, because synchronous or-

bits yield ground tracks which repeat daily, they

have special advantages for certain missions,

e• g., navigation and communication, and, there-

fore, merit special consideration• The periods

and altitudes of the synchronous orbits are given
in Table 2• This table is based on the following
equation•

Vsidereal = 2_ a ff - 3J 2

Of particular interest, because of limited
ground track excursion, is the 24-hr satellite,

The circular equatorial 24-hr satellite does not

move relative to the rotating earth, and so its

ground track is simply a point on the equator.
Circular 24-hr orbits of nonzero inclination ex-

hibit limited excursions. The ground tracks for
these orbits, shown for i = 40 °, 50 ° and 60 ° in

Fig. 32, have the shape of a figure eight. El-

liptical inclined 24-hr orbits have ground tracks

resembling skewed figure eights. Examples of

these are shown in Figs. 33 and 34.

XIII-16



TABLE 2

Synchronous Orbits

24 _6.164.09

12 43.082.05

8 28,721.36

6 21.541.02

4 7.I80.34

4,360.68

3 _0,770.51

2

[ Circular Orbit
Altitude

Semimajor AxtJ _mimajor Axis (R e • 9378.15 kin)

a (rt x ;08) a (km) h (km)

1.383406

0.871558

0.G65162

0.549151

0.419175

0.346109

0.264281

42.1_6.28

26,565.08

20.274.76

16,738.13
t

12.776.45

10,549.40

9,055.26

35,788.13

20,!66.93

13,896.61

10,359.98

6,396.3;

4,171.25

1,677.13

E. SATELLITE COVERAGE

Coverage concerns the ability of a satellite-

borne observer or sensor to view a point or area

on the surface of the earth or, from the opposite

standpoint, the ability of a satellite to be viewed

from a point or area on the earth. As noted in

Section B, most types of satellite missions, in-

cluding reconnaissance, communications and

navigation missions, impose certain coverage

requirements. This section considers the de-

gree of coverage available with a given orbit or

pattern of orbits. BecaL1se of the basic differ-

ences in area co':erage and point coverage, these

topics will be considered separately.

I. Area Coverage

Area coverage, as distinguished from point

coverage, will be taken to imply interest in a

wide area, e.g., the entire globe, a certain range

of latitudes, a continent, etc, Point coverage in-

volves coverage of specific areas of limited ex-

tent, such as specified landing sites, tracking

stations, small reconnaissance targets, etc.

a. Coverage by a single satellite

The total area on the earth's surface theore-

tically visible from a satellite at a given instant is

given by the following expression:

d= Ra = R c°s-1 (_

where

R = earths's radius (6371.02 lun)

!

a = central angle between the subsatellite

point and the outer edge of area visible
from the satellite

h : altitude of the satellite (in lun)

If the angle of incidence is restricted to be

larger than a given minimum viewing angle a,

then the coverage arc length can be expressed by

the following equation (see sketch).

This equation is plotted in Figs. 35 and 36. The

coverage angle, a, in degrees can be found from
the corresponding arc len_th by the conversion

= 0.0089929d (deg)

where d is in kilometers. This conversion is

based on the radius of a sphere of volume equiva-

lent to that of the earth. The percent of earth's
surface area visible from the satellite can be

found immediately from the coverage angle, a, by

comparing the area of the visible segment with the

total area of the globe.

Area of segment

A : 2:rR 2 (l - cos _,)
S

Total area

A t = 4_ R 2

Percent area visible

As [I - cosa]
A% = _ x 100% = 2 x 100%

If range, in addition to viewing angle, is a sen-

sor limitation, the dashed lines on Fig. 35 (the

loci of maximum range) together with the maxi-

mum viewing angle loci determine permissible

regions of coverage half-angle and altitude.

R sin a
(60) P = cos (a+ a) (62)

It is frequently necessary to relate the cover-

age information of Eq (61) and Figs. 35 and 36
to geocentric longitude and latitude on the earth's
surface. If at a certain time the subsatellite

point is located at geocentric longitude A 0 and

geocentric latitude L 0, the circular perimeter

of the spherical segment of haLf-angle a (the area
in view of the satellite) may be determined as

follows. In the following sketch, let (L, A) de-

note a point of the perimeter to be determined.
If

AA-A-A 0
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and A A* is measured on a great circle, the law

of sines of spherical trigonometry gives

sin_A* : sin _Asin(90 ° - L)

or

sin _ A*
(63)sin AA= Cos L

\

From the following sketch, also by the law of

sines,

sin AA_ = sin _3 sin _ (64)

where _ is an arbitrary azimuth angle (the param-

eter of the perimeter solution) and c_ is the cover-

age half-angle defined in Eq (60). Equations (63)

and (64) give

sin _ sin _ (65)
sin _tA = cos L

Also from spherical trigonometry

COS
C08

_" cos A A*

Since

y_: 90 ° - L 0 - L*.

90 °-L* : L 0 + cos "I

But. from the preceding sketch

cos L* : cos (90 ° - L)
cos _&A*

or

sin (90 ° - L*) = sin L
cos _tA*

I cos G

cos _A*/ "
(66)

(67)

Equator

A o

A A*

L, A)

L 0

l
!
I
I

I

Eqs (66) and (67) give
t-

sin L = cos AA* sin LL0+ cos -1 ( cos a _1_co's_,A,l]

which, after substitution into Eq (64) and simpli-

fication, yields

sin L = sin L 0 cos a+ cos L 0 sin a cos _ (68)

Equations (65) and (68) then comprise a solution

for the perimeter of the instantaneous coverage

area in terms of the parameter _, the coverage

half-angle a, and the geocentric longitude and

latitude of the subsatellite point (k 0, L0).

Equations (65) and (68) may also be used to
define the areas on earth which are not visible

from a given ring by making the following sub-
stitutions:

L 0 : ±(_/2 - i)

a : ±(_/2 - _),

Now, differentiating Eq (65) with respect to
]3 and equating the result to zero yields the maxi-

mum longitudinal increment of an area which is

uncovered by a particular ground swath. This
derivative is

c°s AA _ -_= 1 Icos /3sin a cos L

d ,]- sin _ sin a _-_ (COS L
(69)

Using Eq (68) and the trigonometric identity

2
cos L = 1 - sin 2 L

it follows that

2 cos L _ (cos L)

or

= 2 sin L (cos L 0 sin a sin ]3)

d
(cos L) : tanL cos L 0 sina sin/3 (70)
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From Eqs (69) and (70),

d(_A) _ cos _ sina cos L - sin 2 _ sin 2 a cos L 0

cos AA cos 2 L

tan L

(71)

If
d(_

--4-_ - =o,

it is implied that

cos _ sin _ cos L - sin 2 _ sin 2 _ cos L 0 tan L = 0

(72)

Squaring Eq (68) and substituting into Eq (72) yields

(sin L 0 cos L 0 sin a cos a) cos 2 _3 - (i

- sin 2 L 0 cos 2 _ - sin 2 _ cos 2 h 0) cos

+ sin L 0 cos L 0 sin a cos a = 0 (73)

Equation (73) can be simplified, yielding

2 [" cot _ tantanL_-T_-_)_cos ;3-2 /_ _ cosl3+l =0

(74)

Defining

cot a tan L 0
(75)

K= sin-V6-T-_0 tanT_

the azimuth for maximum longitude deviation,

_%A is given bymax

: /-£7_
cos 13a" ax_n K - 1 (76)

Taking the limit in Eq (75) as L 0 -_0, K --®

and lim (cos BA A ) ,, 0. Thus, the

L0--0 max

time that the azimuth angle _AA (which
m_lx

locates the maximum value of AA) equals 90 °

corresponds to the center of the area uncovered

by the ground swath on the equator. The angle

fl_A is less than 90 ° for northern latitudes
max

and greater than 90 ° for southern latitudes.

The previous analyses concern the instantane-

ous coverage available from a satellite. Since
the satellite is moving relative to the earth's sur-

face, the spherical segment of covered area also

moves along the surface, thus generating a track

(the "ground swath") of area covered at some
time during the lifetime of the satellite.

The edges of the ground swath of a single satel-

lite may be determined from the area coverage

perimeter solutions previously obtained and the

ground track equations developed in Section D.
The problem is illustrated in the followlng sketch.

Ground

swath

Ground

track

N

/��IS.

I

/

/ 3o
/

U 2

L 0

L 1

Again, let the position of the subsatellite point

in geocentric coordinates at a certain time be

(L0, 22)). The locus of points on the perimeter

of the area covered when the satellite is located

at this position is given by Eqs (65) and (68). Two
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of these points will also be points on the ground

swath edges to be determined. Namely, the two

points are those at the intersections of the circu-

lar perimeter and the major circle through (L 0.

A0) and perpendicular to the ground track. Thus,

the two intersection points may be determined by

solving Eqs (65) and (68) for two particular values
of _o

= /30 + 90 °

where _0 is the orbit azimuth angle relative to

the rotating earth defined in the previous ground

track analysis, Section D, Eqs (44) and (45).
That is, the solution of

sin L : sin L 0 cos a _ cos L 0 sin er sin 80

(77)

sin a cos '80

sin AA = + cos L (78)

provides two points on the ground swath edges.

Then the complete ground swath outline may be

generated by solution of Eqs (77) and (78) for sets

of values (L 0, A0, 80) generated from the ground

track solutions, Eqs (36), (37), (44) and (45).
For low altitude orbits, ground swath outlines can

usually be calculated to adequate accuracies with-

out correcting the orbit azimuth angle in inertial

space, ]301, for rotation of the earth. Of course,

rotation must be included in the ground track
equations used to generate the set of base points

(A 0, L0).

In determination of the long term coverage

available from a given satellite, the longitudinal

shift of the ground swath, as computed from Eqs

(77) and (78), is of interest. At each latitude, the

longitude of the ground track (and hence the longi-

tudes of the ground swath outlines) shifts an amount

A A w = i2e 7nodal

where

(79)

% = rotation rate of the earth

= 4. 178074 x 10 -3 deg/sec

_'nodal = nodal period of the satellite orbit.

For circular orbits,

7 cos i - 1
Tnodal = w I - J2 $

1 >> J3 (80)

where
_f-=--

w = Keplerian orbit period = 2Tr 0 I_-_0

r 0 = circular orbit radius

Equation (79) is plotted for the case of circular

orbits in Fig. 37. The longitudinal shift may be

obtained to five place accuracy by multiplying

w nodal
from Fig. 38 by T from Table 1 of Chapter

Ill and multiplying this result by _/e"

The previous analyses, and those of Section D,

are concerned with the determination of the ground

track and ground swath for a given set of orbit
elements and sensor limitations. From the op-

posite point of view, the equations of these sectipns
can be used to select orbit elements and sensor

requirements to achieve total or optimum coverage
in a certain area. The typical pattern of area

covered by two consecutive ground swaths is silown

in the following sketch. During any given day every

point in the latitude region of total coverage is in

view of the satellite at some time. This region can
be determined from the previously derived ground

track and ground swath equations by solving for
the intersection points of two consecutive swath

outlines. However, if mission requirements per-

mit coverage of each point in a latitude band once

in several days, the total coverage area may be

increased. That is, if the orbit altitude and in-

clination are selected so that the longitudinal shift

AA = m AAr (h, i) (81)

(where m = number of orbit periods in one day, ZxA
T

is given by Eq (79)_ experienced in one day is of

such a magnitude that the orbits of the second day

are out of phase with those of the first day, then

the lune-shaped uncovered areas below the total

coverage region will be partially or totally covered

by the swaths of the second day. The diurnal

longitudinal shift of the ground track is

AA d = nAAr - 360 ° (82)

where

n = the integral number closest to
Vnoda 1 '

or that for which AA d is minimum

d = one sidereal day, 86, 164 mean solar
seconds.

Equation 82, plotted in Fig. 39, is then a quantity

of interest in determining coverage available over

several days. Of course, for missions of long
duration, total coverage is available in the latitude

range L = _¢i + a_ provided that the ground track

does not repeat diurnally. When mission length

is limited to a few days or weeks, and total cover-

age of a specified latitude range is required,
optimum coverage is achieved by selection of
orbit altitude and inclination such that

k

AA d = ±_-AA w (h, i) (83)

where

k = an integer

m --mission length in days.

An orbit chosen on this basis would obviously pro-

vide the most uniform coverage with minimum

overlapping of ground swaths.
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Latituderegio n of total coverage /_

track y _'- "_

Equator

b. Pattern coverage (Ref. 3)

If mission requirements specify continuous
total coverage of a large area by at least one

satellite or frequent coverage from low altitudes,

more than one satellite will be required. Optimiza-
tion of coverage available from a pattern of several

satellite orbits requires a somewhat different ap-
proach th_n that for the single satellite case.

(i) General approach

it is obvious that infinitely many possible
arrangements of orbital planes and satellites in

orbit could be considered for a satellite pattern

covering either some well-defined region or the

total surface area of the earth. To simplify the
problem and provide for constant angular separa-

tions between the orbital planes, consider that the

orbit planes are equally inclined to the equator.

Second, the uniform coverage requirements can

be best met by arranging the nodes of orbital

planes at equal distances along the equator, by

distributing satellites in equal numbers among

all the orbital planes and by placing satellites in
circular orbits of common altitude (so that the

distances between all the satellites in one ring
will be as uniform as possible).

In Ref. 5 the following set of equations is pre-

sented for optimization of satellite networks for
zonal coverage of a latitude belt in both hemi-

spheres (see the accompanying sketch), consider-

ing N the total number of satellites, n 1 the number

of orbit planes and n 2 the number of satellites in

each orbit plane:

L

max _Latitude region

///__:_/ for total

Lmin I" j[::::.'-_" coverage

k .J

=R (cos a/cos cos -I os cos r

a t - 1) (84)

%

+
}

,_ , t
sin _ s_.n2L\-_---1] _]!

(85)

where r is the ground swath angular half-width,

given by

p = sin -1 [sin Lma x cos i

w sin iJ (o6)- cos nl cos Lma.x

Note: 0 < l" < 90 ° is required, also

r _<c°s'l_l - sin2 isln 2 nlTr (87)

k - the least integer such that

nl roos i/. cos2 F

_ 2 _ _ tan -.I Lsn-l-6-_ 1- sin2 i sin 2

n I

(88)

a - minimum incidence angle for the sensor.

The relationship between the ground swath angular
half-width, p, and the ground coverage angle, _,

is given by

"IT

cos a'cos r cos =-- , (89)

"2

as shown in the accompanying sketch, in which
consecutive satellites in the same orbit are
located at A and B.

-I ]
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In Ref. 5 the above equations are solved for

various polar and inclined orbit planes, as shown

in Figs. 40 through 43.

Figure 40 gives the total number of satellites,

N, required for polar orbits consisting of from

2 to 8 orbit planes. As a numerical example, a

reconnaissance system of 36 satellites providing

complete global coverage is considered. The

results are shown in the following table:

Orbit Satellites /
Planes Plane Required Altitude

h
nl n2 (kin)

2 18 2780

3 12 1245

4 9 968
6 6 1245

9 4 2780

Considering sensor limitations, the 4-orbit

plane system is obviously optimum for the case
considered.

Figure 41 gives the comparison between the

theoretical optimum curve and the practical

optimum curve for polar orbits with minimum

incidence angle a = 0". The effects of increasing

minimum incidence angles are also shown.

Figure 42 gives the comparison of polar

satellite networks providing coverage from the

poles to a fixed minimum latitude Lml n, con=

sidering _ = O" and Lml n = 80", 30" and O" (note

that Lmi n = 0" gives the complete global coverage

given by the step-function on Fig. 41 ).

Flng_y, Fig. 43 shows the comparison of

inclined satellite patterns to the polar pattern

for complete coverage. It can be seen that polar
orbits are preferable, at least under 3500-kin
altitudes.

As a more particular example, following

slightly different lines of approach, the optimiza-
tion of a specific orbit pattern is analyzed more

fully in the next subsection.

(2) Specific example: 6-hour orbit pattern

Although the equations and data presented in

the preceding subsection provide a general basis

for orbit pattern selection, a specific mission

may present special problems. As an interesting

example, consider the selection of a navigation

satellite orbit pattern which must fulfill the re-

quirement that at least three satellites be visible

from any point on the earth's surface (and, there-

fore, from any point in space near the earth) at

any given time. Definition of the required pattern

entails specification of each of the following param-
eters:

(l)

(2)

(3)

Orbital period (i. e., altitude).

Number of satellites in each ring.

Orbital nodal positions (number of

rings).

(4) Orbital inclination.

(5) Orbital eccentricity.

The synchronized pattern obtained from these

considerations must also be subjected to a pattern

proof, including the effects of small changes in
inclination. The earth's oblateness effects are

included in the determination of the exact orbital
altitude.

The altitude of the navigation satellites depends

on a large number of factors as noted in Section A.

Some of the most important are:

(I) Resolution limitations.

(2) Perturbations.

(3) Repeatable daily ground track.

(4) Number of satellites employed.

(5) Van Allen radiation belts.

For the best resolution at sea level, the

satellite orbits should be as low as possible. On

the other hand, oblateness perturbations are

largest for low altitude orbits; for higher orbits

the perturbations caused by the sun and the moon
increase in relative importance. A repeatable

daily ground track will simplify the preparation

of the required ephemeris which makes navigation
possible; therefore, it is desirable to have an

integral number of revolutions per day. The

number of satellites in a given ring will further

define the necessary altitude and period for the

desired ground coverage. To keep the molecular
breakdown of the solar cells and similar electronic

apparatus to a minimum, the Van Allen radiation

belts should be avoided as much as possible.

From all the above considerations, the 6-hr

orbit was considered as the most promising for

the present application.
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The 6-hr orbit retraces its ground track on a

daily basis and that ground track results from
four orbital revolutions. For an ideal spherical

earth, the period of this orbit would be exactly

one-fourth of a sidereal day. Since the earth is
actually oblate, the orbit plane regresses slowly;

and in order to repeat the desired ground track
(i. e., to achieve a sidereal period of 21,541.02

mean solar seconds), the semimajor axis required

is 16738.13 km. (A complete set of synchronous

orbit semimajor axes is included in Section D. 2. )

The circular orbit altitude corresponding to this

value of semimajor axis is about I0,360 km.

At this altitude, the ground coverage is 135.26",

as can be seen in the following sketch:

Satellite

2_ = 2 cOs-I !-_) =135.26°

Thus, three or more satellites will be required

to provide continuous coverage of a band on the
earth (the width of this band being a function of

the number of satellites). Because the overlap

of the covered areas is small with only three

satellites per ring, four satellites will be placed

in each ring at 90 ° intervals. In general, only
one satellite is seen on the earth' s surface from

a given satellite ring. Furthermore, there are

two areas around the axis perpendicular to the

orbRal place of a given satellRe ring where no

satellites from this ring are visible. To ensure

that in these regions at least three satellites are
visible, three more satellite rings are required,

placed so as to make at least one satellite visible
from each additional ring at all times. Since

uniform ground coverage is desirable, the nodes

for the four satellite rings must be displaced

from each other by 90 ° on _he equator. This

brings the total number of satellites employed in

the navigation pattern to 16.

To equalize oblateness perturbations for the

four orbital planes, the inclinations must be

equal. From this condition, it can be seen that

the most symmetrical distribution of orbital

planes in inertial space results if each set of

two planes intersects at a latitude of 45" (that is,
halfway between the poles and the equator). The
orbital inclination which satisfies these conditions

was found from spherical trigonometry as:

i [ tan L x I
i I tan-

Sin (A_ - i_)J = 54. 736 °[

Orbital eccentricity produces periodic relative

motion of the satellfles in each ring (Fig. 44)

which, in turn, produces irregular ground coverage.

While this in itself does not eliminate eccentric

orbits from consideration, it does make the re-

sulting analysis and pattern utilization more diffi-

cult, because the solution for position as a func-
tion of time becomes transcendental. For these

reasons, the orbits considered are circular (i.e.,

zero eccentricity).

To avoid crowding a considerable number of

satellites over the same region of the globe, one

satellite was placed at the node for Planes I and
TT (which are consecutive), while the positions

in Planes Ill and IV were displaced by 45 ° . The

initial latitudes, longitudes and central angles of

all 16 satellites are given in Table 3.

TABLE 3

Initial Positions of 16 Satellites

Orbit Plane

and Satellite

Numbers

I-1

1-2

1-3

1-4

H-I

H-2

H-3

H-4

HI-1

IH-2

II'I-3

III-4

IV-1

IV-2

IV-3

IV-4

Latitude

(L 0)

(deg)

0

54.7N

0

54.7 S

0

54.7N

0

54.7 S

35.3 N

35.3N

35.3S

35.3S

35.3 N

35.3N

35.3S

35.3 S

Longitude

(%)
(deg)

180 W

9O W

0

9O E

9O W

0

9O E

180 E

30E

150 E

150 W

30 W

120 E

120 W

6O W

60E

Initial

Central

Angle (80)

(deg)

0

9O

180

27O

0

9O

180

270

45

135

225

315

45

135

225

315
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The ground track of a satellite, as noted in

Section C, is given by the equations:

L - sin -I [sin isin (80 + 8)] (90)

A-tan -I [cos ltan (80 +8) ]

_9t)

where flight time is given for a circular orbit

by the equation

'r

t - (_/-_) O. (92)

A complete ground track during one day was

computed for the first satellite in the first orbit

plane by Eqs (90) and (91). The result was plotted

in Fig. 45. It should be noted that the same pat-

tern of four revolutions is identically repeated

during each day. This is due to the fact that the

sidereal period is exactly one-fourth of a sidereal

day.

Initial positions and ground tracks for one-

half of a revolution are given in Fig. 46. It is

obvious from this figure that the distribution of

satellites is not completely uniform over the

earth's surface at all times. However, there

are no serious crowding problems and thus, this

pattern is satisfactory.

The placement of the four orbit planes in

three-dimensional space is indicated in Fig. 47.

The first of the two drawings shows the inter-

sections of the orbital planes in inertial space

(the earth should be visualized as rotating within

this fixed framework). The second drawing shows

the initial positions of the 16 satellites as given

in Table 3 and Fig. 46 (except the ones hidden by

the earth).

The proof of satellite pattern. It must now
be shown that the pattern specified actually

satisfies the requirement that at least three of the

vehicles are always visible at any point on earth's
surface. Secondly, small changes in the orbit

inclination must be investigated in order to justify

the optimum inclination selected (i = 54.736 ° ).

In order to rigorously prove the satellite pat-

tern, the concept of ground swath was used.
Swath in the case of this problem is defined as

the region on a nonrotating earth where at least
one of the four satellites in the ring is always

visible.

From Eq (89), it can be seen that the width of

the ground swath (to either side of the ground

track) is given by:

F= cos -1 (--£-9--_o7 = 57. 421 °

\cos

180 ° 180 °

n 2 _ 45 °

Outlines of ground swaths were obtained as in-
dicated in Section E. 1. a. Areas not included by

the swath generated by the satellites in four orbit
planes are shown in Fig. 48. No satellite from

the ring indicated by the Roman numeral is visible
inside either cross-hatched area of the same num-

ber. Because no cross-hatched areas intersect,

the figure proves that at least three satellites

are visible at all times at every point on the earth's

surface. On a rotating earth the eight cross-
hatched areas must be visualized as moving with

a 24-hour period but maintaining the given topo-

logical pattern. The horizontal and vertical

distances between any two adjacent cross-hatched
areas are essentially equal (5.4 ° on a great circle).

The effects of small changes in orbit inclina-

tion on the pattern of circular areas shown in

Fig. 48 may be investigated by means of the

equations of Section E. 1. a, with swath width
denoted byF instead of a.

The results of the foregoing analysis are pre-

sented in Fig. 49 which shows that the require-

ments placed upon the pattern can only be met in

the range of orbital inclinations between 49.6 °
and 57.4 ° . The selection of the optimum inclina-

tion with this range must be based on visibility

criteria because there are definite limits which

must be imposed on the minimum elevation angle

between the satellites of the pattern and the hori-

zon to make navigation practical. This optimum

inclination angle is 54.736 ° because only this in-

clination ensures that all of the visible satellites

will be at least 5° above the horizon. This analy-

sis also proves that the minimum altitude for a

pattern of 16 satellites, which will ensure a mini-

mum elevation angle above the horizon of 5° for at
least three of the satellites at all times, is that of

the 6-hr orbit.

2. Point Coverage

In many satellite missions, area coverage as

discussed in the previous section is not a firm

requirement; rather, it is desired to maximize

the time spent over a specific set of points on the

earth. These locations may be tracking stations,

ground data links, landing sites, or points under

surveillance. Various problems connected with

point coverage are considered in this section.

a. Determination of the zenith angle of a
satellite

A problem of interest to satellite tracking and
communication is that of determining the conditions

under which the satellite is visible, or above the

horizon, when viewed from a point on the earth.

To solve this problem assume that a satellite S
is in an orbit inclined at angle i to the earth's

equator, and assume a point of observation P on
the earth at a latitude L. Consider a coordinate

system, its origin at the point of observation,

with the Z-axis vertical, the X-axis due east (i. e.,

in the direction of motion of the point of observa-
tion) and the Y-axis due north. Let the distance

from the center of earth to the point of observation
be R and the distance from the center of the earth

e

to the satellite be r.

The satellite' s position is determined by a central

angle @s measured in the orbital plane from the

ascendina nod% and the position of the point of
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observation is determined by an angle @e measured

from the longitude of the ascending node (Fig. 50).

In terms of the usual variables, the angles _bs

and _be are given as

d_s • _+8 whereA =longitude of
P observation point

Ce TM Ap - A A = longitude of nodal
n n point

The coordinates of the satellite in the X, Y,

• Z system are as follows:

x = r (cos i sin _bS cos _e - cos $S sin _be)

y = r [cos L sin I sin_S - sin L (cos _bS cos _be

+ cos i sin _S sin _e )]
.2

= r [sin L sin i sin @S + cos L (cos $S cos CeZ

+cos Isln¢ssln_e )] - R

The distance between the point of observation and

the satellite is

2
p ," r +R -2rR cos_

where

cos _ - sin Lp sin I sin _S + cos Lp (cos _e

+ cos i sin _e sin _S )

and d_is the angle between the radius vectors from

the earth's center to the point of observation and

to the satellite (see Fig. 50).

The direction cosine, L z, (i. e., the cosine

of the angle 6 between the Z-axls and the radius

vector from P to S) is

cos #S

m _Z m

z P

r cos $ - R

r 2 + R - 2r R cos

r
St cos _ - 1

I

_I I_--> 2 2r+ - 11- cos

The satellite is above the horizon as viewed

from the point of observation if Iz >0 and, since

I is the cosine of the satelllte's zenith angle,
z

any value of the satellite elevation angle can be

specified and the corresponding Iz determined.

Any _[z above this value corresponds to a satellite

passage at an elevation angle equal to, or hi_her

than, the specified value.

For the point of observation _be = (r/e + _) t + _%1"

where

• the rate of regression of the nodes of
the satellite (rad/sec)

*l "%0

For the satellite #S " $S (t) + _0" where @S (t) is

the equation relating the central angle to time in

the general elliptical case, and _0 is the InRial

angle of the satellRe with respect to the ascending

node. For a circular orbit _bs (t) = a_S t, where

_S is the angular velocity of the sate_ite. The use

of these equations ts illustrated by the following

example.

Assume an orbital inclination angle of 30 °

and a point of observation at a latitude of 30%

Assume further that the satellite is in a circular

orbit at an altitude such that it makes 15 revolu-

tions relative to the ascending node in the time it
takes the earth to make one revolution relative to

this node. The regression period is then about

50 days and the period of the sate11Re about 1.59

hr, rather than the 1.6-hr period if the regression

were neglected. For this example this small

difference is neglected and a satellite altitude of

357 stat mt and r/R e - 1. 0902 is assumed. To

find when the satellite is above the horizon for a

point originally along the meridian through the
node at the time the satellite was at the node (i. e.,

_1 =_0 = 0, Ce = Get and@s = 15 _e t), the pro-

cedure is first to plot

I. 0902 cos d_ - 1
1 = COS 6 =

z _i + (1.0902) 2 - 2 (1.0902 cos %b)

as a function of cos %b (Fig. 51). Note that I > 0
Z

for 0.9173 cos %_ < I. Next plot cos %b as a func-

tion of #_e " _]e t (Figs. 52 and 53). The values of

_e for which O. 9173 < cos _ (indicated on the fig-

ure by a solid line) then represent the values of

t = _e/f_e, for which the satellite is above the

horizon. If it is required that the satellite be 30"

above the horizon, then 0.5 < I z and 0. 9916 < cos

_. This line is indicated on the figure by a dotted

line. The angle 6, defined by cos 6 ,, I z, is

actually the zenith distance of the satellite and the

angle Ce can be considered the "hour angle" of P

with respect to satellite node.

Finally, Fig. 54 presents in English units a

solution for the line-of-sight range to the satellite
and the distance of the subsatellite point from the

observation point on the earth's surface. This

information is presented in different form in

Figs. 55 and 56, also in English units. It should

be noted that Figs. 35 and 36 present the same
information in metric units when the coverage
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half-angle, a, is interpreted as ground range, d,

and the minimum viewing angle, _, is interpreted

as elevation, • .

S

b. Visibility time durations

Visibility times for satellites in elliptical

orbits must be computed from Kepler's equation,

tabulated in Chapter 3. However, in the case of

circular orbits, the equations for visibility time

are sufficiently simple to warrant presenting

parametric results. Visibility time from a point

on a nonrotating earth is then

( )
-1 R

tv = 180" • r (93)

where r = circular orbit radius. The visibility

time of a satellite moving in a circular orbit

exactly in the direction of the earth's rotation is

T e
(94)tv_- = tv 7 - 7

e

where

"re : period of earth rotation, 86,164 sec

I" = orbit period = 2_r r J_

For satellites moving directly opposite to the

direction of the earth's rotation, the visibility
time is

T

t v - t v
Te+ 1."

(95)

Equations (93), (94) and (95) are plotted in Figs.

57 and 58.

c. Visibility and call-down time computation

The computation of call-down time (the time

interval during which a vehicle may initiate a

landing sequence terminating at a specified land-

ing site) or visibility time proceeds by solution

for the intersections of the grounc_ track, as given

by the equations of Section D, and the perimeter

of a test region. In the case of visibility time,

the test region is

simply the spherical

segment determined

by the maximum

ground range of the

tracking station. The
perimeter of the test

region is then given

by Eqs (65) and (68)

where (L 0, A 0) is in-

terpreted as the loca-

tion of the tracking

station and a is the

maximum ground range. In the case of call-down

time the shape of the test region is a function of

the maneuverability of the landing vehicle. This

particular subject is treated in some length in

Chapter VIII.

F. SENSOR LI_IITATIONS ON ORBIT SELECTION

The selection of orbit elements to best fulfill

given mission requirements must obviously be

subject to any sensor limitations. Although sen-

sors may take a wide variety of forms, considera-

tion will be limited to the two largest classes,

optical and radio systems. The primary limita-

tions of these systems are power and resolution

requirements.

I. Radio Systems

An important limitation of radio systems and

the primary limitation for communication applica-

tions is the restriction on range imposed by

transmission power limits. The range equation

may be written in several forms:

Pr_ Gt Ar

G r A t

- _-
4,v p

_ Gt Gr }2 (96)

(4_ p)2

A t A r

(x0)g

for simple one-way transmission.

Where

Pr = received signal power
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Pt =

A =
r

A t =

transmitted power

effective area of the receiving antenna

effective area of the transmitting
antenna

G r =

G t =

=

p =

receiving antenna gain

transmitting antenna gain

wavelength

range from the transmitter to the receiver.

In skin tracking, the transmitted radio beam is

reflected by the object tracked, and a portion of

the reflected energy is then received at the trans-
mitter station. For skin tracking, then,

Pr Ao Ar Gt Gt Gr _2 Ao
- =

]_t (4_r p2)2 4_ (4_ p2)2

where

=
A ° scattering cross-section area.

Typical gains and effective areas for use in the

above equations are contained in Table 4 from
Ref. 6.

(97)

TABLE 4

Effective

Antenna Gain Area

[sotropic

Infinitesimal dipole

Ha]f-wave dipole

Optimum horn

Parabole, or lens

Broadside array

1.5

1.64

10.0A

7-

(6.3 to 7.5) A

X2

41r A. . ,

_maxlmuml

_2

1.5 k 2

T

0.82A

(0.5 to 0.6)

A (maximum

The minimum detectable signal is not deter-

mined by the ability to amplify the signal, but by
the noise which obscures the signal. That is, if

no interference were present, any signal trans-

mitted over any distance could be detected by

providing sufficient amplification in the receiver.

Noise limiting the usable range may enter the

radio system at the transmitter, at the receiver or

in the space link. The noise power produced in
a bandwidth Af is given by

P = kT At (98)
n

where

k = Boltzmann's constant = 1.38 x 10 "23,

w-sec/° K

T = absolute temperature of the circuitry,
°K

At = bandwidth, cps

The temperature T is the weighted sum of the

various component source temperatures, the

weights being high (unity) for noise sources in-

ternal to or surrounding the receiver or low if
the noise enters through a fraction of the receiver

surroundings, Typical equivalent temperatures
of internal receiver noise are 2000 ° K for con-

ventional receivers, 100" K for parametric

amplifier receivers and 10 ° K for masers. Equiv-
alent temperatures of external noise are dependent

on frequency and, in the case of atmospheric

noise, on elevation angle. External noise is

shown in the following sketches from Her. 6.

The blackbody radiation of the earth also com-
prises a noise source which increases for low

elevation angles. Thus, low altitude satellites,

which spend relatively long times near the horizon
of an observer on earth, entail greater noise

problems. Other sources of noise are the sun,

the moon and the planets.

o

iGO0

i os_m i Elevation angle
C c from horizon

_ noise k _o

_--Minimum

 00y\_; \//\ At s eri 
- _/ k n°ise_

_ \ _ MaxLmum 10

i0- °

100 1000 10,000
Frequency (Mc)

The ratio of received power, Pr' to inter-

ference power in the bandwidth At determines
the range at which communication is feasible.

A ratio of unity is defined as threshold reception.

The threshold reception range for space-to-earth
communication is

At G r
P' = !4_kTAf (99)

Usable ranges may be abo_t one-third of this
value.
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In addition to range limitations, missions em-

ploying radar systems may encounter resolution
problems. The angular resolution of a radar is

determined by the narrowness of the antenna
beam. The apparent angular extent of an object

detected is increased by the width of the antenna

beam, and objects separated by less than the

beamwidth are interpreted as a single object.

Consequently, for a given system bandwidth,

the minimum resolution distance increases with

increased altitude. Range resolution depends

mainly on the pulse duration of the transmitted

signal.

Just as noise determines the minimum detect-

able signal for range limitations, the obscuring

of echoes by ground clutter and sea return is

closely related to resolution capability. For

example, in detection of a ship by means of an

overhead airborne radar, difficulty is experienced

in distinguishing the ship from the sea because

the ranges differ by less than the pulse duration.

The problem of relating radar resolution in the

presence of clutter to orbit altitude is too complex

to consider here except by generally noting the

importance of low altitudes in achieving high

resolution and rain/miming power consumption.

2. Satellite Photograph_ S)'stems

Resolution attainable in satellite photography

is related to orbit altitude, and so the photographic

system limitations are factors in choice of orbit

elements. Investigation of this relationship, in
order to be meaningful, must consider the entire

photographic system performance in some detail.

Among the factors which determine the degree
of detail that can be detected or identified by

visual or photographic system are the object

distance and the focal length of the viewing lens.
The ratio of object distance, d, to focal length, f,

is referred to as the scale number, S.

d
S = i" (100)

Then one cm on a photograph corresponds to S

cms on the ground.. Thus larger scale numbers
mean greater difficulty in discerning fine detail.

A second parameter useful in defining optical

system capability is resolution, the ability to

distinguish parts of an image. In photography,
resolution is the ability of a film-lens system

to distinguish a standard pattern of black and

white lines. Thus a film-lens system may be

described as providing resolution of rf lines per

millimeter. Ground resolution is the distance on

the ground equivalent to one barely resolvable

line. Thus, ff a film-lens system provides a

system resolution of rf lines per ram, and the

scale number is S, the ground resolution, rg, is

S
r = -- (lO2)

g rf

In terms of commonly used units,

S

rg (meters) = i000 rf (lines per millimeter) "

Although ground resolution is a ratio, the effects
of graininess influence a selection of lower values

of S and rf to attain a given rg. From Eqs (101)

and (102), the maximum orbit altitude can be

determined as a function of system resolution,

focal length and ground resolution.

h : I000 frfrg (103)

where

h = orbit altitude in meters

f : focal length in meters

r = ground resolution in meters
g

rf = system resolution in lines per mm.

Equation (103) is plotted in Fig. 59. However,

in order to use this data or Eq (103) it is neces-

sary to describe the quantity rf (or system

resolution). This resolution is a function of

many separate factors and will be discussed
in the following paragraphs.

The overall performance of a photogral_hic

system depends on the contribution of each

element of the system. The elements of a photo-
graphic system are:

(i) The scene, with its contrasts.

(2) The atmosphere, which modifies the

light from the scene before it enters
the optical system.

(3) The optical system, which images
the scene on the film.

(4) The camera system, through which

uncompensated motion and vibration

enter the system.
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(5) The film, which records the final

image.

Each of the elements which follows the scene

alters the contrast in a different manner. It is

desirable to have a method of analysis which

permits the examination of each of these elements
in the same terms so that the individual elements

can be compared on a common basis, and which

presents the result in the same terms.

Such a method is the sine wave response

analysis which describes the effects of each
element in terms of its modulation transfer

function, T (K). The method is analogous to

the transfer function analysis of servomechanisms

in which the modulation transfer function describes

the response of the element as a function of the

spatial frequency. The overall system performance

_=_-then the product of the modulation transfer func-

tions of the individual elements.

a. Modulation transfer function

Consider a scene in which the intensity varies

according to the following relation

f2_ K_

I : [A. + IV sin k-_-0 ).

This is a series of lines spaced K 0 units apart

(see following sketch). The m_ximum intensity

is 1A + 1V and the minimum intensity is 1A - IV,

with the intensity varying sinusoidally between
these limits. Since all of the lines are the same

distance apart, they represent a constant spatial

frequency, K 0. The modulation transfer function

can be defined as the ratio of IV to IA. Therefore

for this scene the modulation transfer function T (K 0)

is given by IV/I A.

Now consider the image which is produced when

light from a scene (see following sketch) which
has a modulation transfer function of unity but

llllllllllllll[l  !ll!l
increasing spatial frequency is passed through a

(/i/'fraction limited lens. At some spatial frequency

the diffraction patterns of the individual lines begin

to overlap and the contrast in the image is reduced.

As the lines become closer together the contrast

becomes further reduced until at some frequency

the lens gives essentially no response to the

modulation in the scene. The modulation of the

scene-lens combination might appear as shown

in the following sketch. The corresponding

transfer function is given in Fig. 60. Since

the scene has a modulation transfer function

of unity, Fig. 60 is the transfer function of

the lens alone.

By determ[ntng the modulation transfer function
of each element of the system, the modulation

transfer function of the final image as recorded on

film can be determined, thereby determining the

1
A

b
.,-4

=
@

I v

p

"X f'X f
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performance of the system. The modulation trans-

fer function of each of the elements of the system

is discussed in the following paragraphs.

b. The scene

The scene to be photographed is usually a

complex mixture of contrasts and spacings,

and its transfer function, although theoretically

obtainable, is too complex to be of practical

value. Fortunately, we are rarely interested

in the performance of the system against a

particular scene; we are usually interested in

the ability of the system to resolve detail.

This can be done by evaluating the system per-

formance against an artificial scene which

lends itself to analysis, such as the scene

represented in the foregoing sketch.

Such artifictal"target" scenes are character-

ized by a constant contrast, and therefore a con-

stant transfer function, for all spatial frequencies.
The transfer function varies with the contrast in

the following manner:

C-1
T C = _ (104)

where C is the brightness ratio of the peaks to

the valleys of the sine wave.

Equation (104) is plotted in Fig. 61. The scene

contrast is seen to act as a "gain" factor which

multiplies the system sine wave response, and,

therefore, to compare systems on a common
basis, it is necessary to use a common value of

scene contrast. For satellite photography a

brightness ratio of 8.1 is usually assumed.

c. The atmosphere

In addition to the obvious effect of clouds, the

atmosphere affects the system in two ways. The

first of these, scattering, causes some light from
the sun to be scattered directly into the system

and some image forming light from the scene is

scattered out of the system. From a satellite,
looking through the entire thickness of the atmos-

phere, the scattering causes the target contrast

to be reduced by a factor of four, so that the ef-

fective contrast seen by the system is 2:1, giving

a transfer function of 0.33 from Eq (104).

The second effect is due to turbulence, and it

affects only very high acquity systems. The tur-

bulence causes a random angular displacement of

the rays making up the image, and its value for

satellite photography has not yet been adequately

determined. It is felt that it will limit the ulti-

mate system performance to the order of one foot.

d. The lens

The transfer function of the lens depends on

its diffraction pattern and aberations, and for a

particular lens this can be measured after the

lens is manufactured. For system design, which

must be performed before the lens is manufactured,
it can be assumed that the lens has no aberations

and is diffraction limited. For a well designed

lens, this will be very nearly true on axis, but at
the edges of the field the performance will be con-

siderably reduced.

The modulation transfer function for a diffrac-

tion limited circular aperture, when viewing a

line image, is given by Ref. 7

T(K) =2- [cos'l (AK) -AK II -(AK)2"I

(to5)
where

A=N_

= wavelength of light

N = focal ratio (f-number) of the lens

K = spatial frequency

The transfer function of an f/4 lens for light of
6000 A was given in Fig. 60. Equation (I02) is

plotted in Fig. 62 and the transfer func:ion for

f/ 1 to f/ 12 lenses is given in Figs. 63 and 64.

e. Image motion

The camera introduces two types of image too-

:ion into the system, vibration and linear motion.

Although it is generally impossible to determine

the expected vibration environment at the time of

system design, the transfer function for vibration

is useful in that it can be used to determine an al-

lowable vibration level which will not seriously

degrade the system. By finding that transfer

function which degrades the s.='stern performance

by the allowable amount, the vibration level which

produces the transfer function is determined.

The transfer function for vibration is given by

T(K) = J0 (v AK) (Ret. 7) (106)

where

J0 = zero order Bessel function

A = amplitude of the vibration

K = spatial frequency

Linear motion between the film and the image
during the exposure time can arise from several
sources. These include:

(1) Uncompensated vehicle rotation rates.

(2) V/H measurement errors.

(3) Camera pointing errors.

(4) Film drive speed errors.

The magnitude of the motion from these sources

can usually be predicted at the system design
stage and the effects of the motion can be calcu-
lated.

The transfer function for linear motion is given

by Ref. 7.

T(K) - sin v AK
v AK (107)
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where

A ffi distance of the motion (in the

focal plane)

K = spatial frequency

Equation (107) is plotted in Fig. 65.

f. The film

The modulation transfer function of the photo-

graphic film is determined experimentally and
can be obtained from the film manufacturer. An

example of tile transfer function that might be ob-

tained from satellite photography films is shown

in Fig. 66.

g. Interpretation

The overall system transfer function represents

the response of the system to lines of width which

vary from very broad, to lines which are finer

than the system can resolve, and therefore is a

godd description of the system performance. How-

ever, it is often desirable to describe the system

performance in terms of a single number, the

resolution. It has been found that the minimum

detectable resolution occurs at a response of 0, 04,

and the spatial frequency at which 4% response

occurs is becoming accepted as the system resolu-
tion.

h. Illustrative example

To illustrate the use of modulation transfer

functions in analyzing systems, the following ex-

ample is presented. Assume the following system

characteristics:

Aperture--18 in. or 0.492 m

Focal ratio--f/4

Orbital altitude--125 naut mi or 232 km

-6
Image motion--equivalent to 2.5 x 10 rad

Target contrast 8:1, reduced to 2:1 by the

atmosphe re.

These values lead to the following transfer func-

tions:

The lens, being f/4, is described in Fig. 60.

The image motion is determined as follows:

A ffi 2.5 x 10"6 radx 72 in. (focal length)

x 25.4 millimeters/in. = 4. 57 x 10 -3 mmo

This yields the transfer function shown in Fig. 67
for image motion. The film will be represented

by the transfer function of Fig. 66. Table 5 gives
the values of the transfer function for the example,

and they are plotted in Fig. 67.

The 4% response point is seen to occur at 140

lines per millimeter. The corresponding resolu-

tion in the scene is determined by multiplying the

distance in the image (1/140 ram)0 by the scsle

number, as in Eq (103)* or utilizing Fig. 59.

TABLE 5

Transfer Functions for Illustrative Example

Spatial The Scene

Frequency + Atmos-
(lines/ram) phere

0.33I0

20

30

40

50

60

70

80

90

I00

110

120

130

140

150

160

170

180

190

2OO

Image
Lens Motion Film

0.96 0.99 0.96

0.93 0.98 0.90

0.90 0.96 0.85

0.37 0.94 0.30

0.84 0.91 0.74

0.81 0.88 0.70

0.78 0.84 0.66

0.75 0.79 0.63

0.72 0.74 0.60

0.69 0.68 0.58

0.66 0.63 0.55

0.63 0.57 0.53

0.60 0.51 0.51

0.57 0.45 0.50

0.54 0.39 0.48

0.51 0.33 0.47

0.48 0.27 0.45

0.45 0.21 0.44

0.43 0.16 0.43

0.40 0. i0 0.41

Overal}

System

0.30

0.27

0.24

0.22

0.19

0.16

0.14

0.12

0.11

0.09

0.08

0.06

0.05

0.04

0.03

0.026

0.010

0.013

0.010

0.005

1 125 miles 1 in.

rf = I-4-ffmmx 72 in. x _ mm

x 6076 _ = 2.97 ft
mt

= 0. 974 m

i. Tabulation of transfer function values

Reference 7 also presents the following table
of values for the transfer functions.

TABLE 6

Values of T(K)

AK

0.05

0. I0

0.15

0.20

0.25

0.30

0.40

0.45

J0 (=AK)

0. 994

0.975

0. 945

0. 904

0.854
0.790

0. 646

0.560

sin =AK/ItAK

0. 996

0. 983

0. 963

O. 935

0. 900

0. 858

0. 756

0. 699

2 [cos-1 (AK)

-AK _I - (AK2Z

0. 963

0. 873

0.810

0. 747

0. 685

0.623

0. 506
0. 442

(continued)
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TABLE 6 (continued)

AK J0 (,rAK)

O. 50 O. 473

O. 60 O. 293

0.70 0. Ii0

0.75 0. 025

!0.80

O. 90

0.95

1.00

2 [cos -I (AK)

sin _'AK/ wAK - AK _I - (AK_)3

0. 636 0,389
0. 525 0. 285

O. 368
O. 300

O. 234

O. 109

0.052

0

O. 188

O. 138

O. 104
0.038

0.015

0
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APPENDIX A

GLOSSARY (REF. 1)

A
Aberration: apparent displacement of a body from

its actual position due to the observer's motion,

the object's motion and the finite speed of light.

Aberration, planetary: aberration including ef-

fects of the object's motion as well as the ob-

server's motion during the time light travels

from the object to the observer.

Aberration, stellar: aberration including only the
effect of the earth's motion around the sun,

mean value 29.9 km/sec.

Ablation: the gradual removal or erosion of an

exposed surface of an object resulting from

its high speed passage through a resistive
medium.

Abort: the termination of a space mission after

an emergency forces return to earth.

Albedo: fraction of total incident light reflected

by a body.

Albedo, average geometric: ratio between the

average brightness of the object to tile bright-
ness of a white screen of the same size nor-

mal to the incident light (lunar a!bedo 0. 105).

Albedo, spherical: ratio of the light scattered in
all directions by the object to the total incident

light (lunar albedo = 0. 073}.

Almucantar: a parallel to the horizon.

Altitude (also elevation): a topocentric coordinate

in the horizon system; the angular distance

of an object above the horizon, measured on
a vertical circle. Also synonymous with the

height of an object above some surface.

Analytical integration: the specification of an ex-
plicit closed algebraic or series relation to

represent the integral of a given function.

Angular momentum: the quantity mrx r{- r 2

in polar coordinates) constant for conic mo-
tion.

Anomaly: or angle; see true anomaly, mean

anomaly, and eccentric anomaly.

Aphelion: the point on a heliocentric ellipse
farthest from the sun.

Apocynthion {also aposelene or apolune): the

point on a selenocentric elliptic orbit farthest
from the moon's center.

Apofocus: the apsis on an elliptic orbit farthest

from the principal focus or center of force.

Apogee: the point on a geocentric elliptical or-
bit farthest from the earth's center.

Apsis (plural, apsides): the point on a conic where
the radius vector is a maximum or minimum.

The line of apsides is the major axis extended

indefinitely.

Argument of latitude: the angle in the orbit from

the ascending node to the object in the direction
of motion; the sum of the argument of perifocus

and the true anomaly.

Argument of perifocus: the angular distance
measured in the orbit plane in the direction of

motion from the lines of nodes to line of

apsides.

Aries: an astronomical constellation; a portion of

the celestial sphere which contained the vernal

equinox.

Aries, first line of: the direction of the vernal

equinox (the name is a carryover from a time

that the vernal equinox was in the constella-

tion Aries).

Aspect: angular position of a body relative to ils

line of advance in orbit.

Astrodynamics: the engineering or practical ap-

plication of celestial mechanics and other allied

fields such as high altitude aerodynamics;

geophysics; at+.ilude dynamics; and electro-

magnetic, optimization, observa*.ion, naviga-

tion, and propulsion theory, to the contemporary

problems of space vehicles. Astrodynamics

is sometimes also meant to include the study

of natural objects such as comets, meteorites

and planets.

Astronomical unit (AU): the mean distance or

semimajor axis of the orbit of a fictitious un-

perturbed planet having the mass (0. 000,002,819

solar masses) and sidereal period (365. 256,383, 5

mean solar days) that Gauss adopted for the

earth in his original determination of the grav-
itational constant K (= 0.017,202,089,95).

S

Approximately equal to 92,914,000 statute
miles or 149,530, 000 kin.

Azimuth: a topocentric coordinate measured in

the plane of the horizon from the north (or

south) point on the horizon clockwise to the

object.

B

Ballistic trajectory (also coast trajectory or free-
flight trajectory): motion of the space vehicle

without rocket burning or thrust forces.

Barker's equation: an equation thaz relates po-
sition to time for an object traveling in a

parabolic orbit.

Barycenter: center of mass of a system of

masses.
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Base altitudes: reference altitudes or levels of the

atmosphere between which the atmospheric

temperature gradient is assumed to be a con-
stant.

Boltzmann's constant: the ratio of the mean total

energy of a molecule to its absolute tempera-

ture. Its value is 1. 380 x 10 -23 joule/°K.

Braking: the deceleration of a space vehicle by

rocket thrust or by atmospheric drag.

Braking ellipses: a series of ellipses whose semi-

major axes decrease due to the atmosphere of

a planet when a vehicle attempts a landing on

that planet.

Burnout: end of rocket burning for a particular

rocket engine in a given stage of the rocket.

C
Call-down frequency: the frequency with which a

vehicle can be recalled from orbit and landed

at a specific site.

Cartesian coordinate system: a set of (usually

three) mutually orthogonal straight coordi-

nate axes which form a right-handed coordi-

nate system.

Celestial equator: the great circle in which the

plane of the terrestrial equator intersects

the celestial sphere. The north celestial

pole is the point of intersection of the earth, s

spin vector with the celestial sphere.

Celestial sphere: a hypothetical sphere of infinite
dimensions, centered at the observer (or center

of the earth or sun, etc. ), on the inner surface

of which the celestial bodies are projected and

appear to move. This sphere is fixed in space,
and thus, because of the earth's rotation, ap-

pears to rotate from east to west.

Centrifugal force: a fictitious position-dependent

force that apparently arises when the motion of

an object is observed with respect to a rotating
coordinate sy,4tem. The relationship yielding

this "force" is -moo x(_xr-_, where m is the

mass of the object and _is the angular velocity

vector of the rotating coordinate system.

Characteristic velocity: the sum of all absolute
velocity changes required .of a vehicle for a

particular space flight (a measure of the total

energy requirement for a flight).

Circle, galactic: fundamental plane of the galactic

reference system (north pole at 12 h 44 m right

ascension and +27" declination), inclined 62 °

to the celestial equator.

Circle, hour: secondary circles of the equatorial

coordinate system, i.e., planes normal to the
celestial equator.

Circle, secondary: great circles (or planes

through the origin) which pass through the

poles of a given coordinate system.

Circle, vertical: intersections of the celestial

sphere by vertical planes in a horizontal co-

ordinate system.

Circumlunar trajectory: a trajectory from the

vicinity of the earth which passes behind the

moon and returns ballistically to the vicinity

of the earth.

Cislunar space: the region of space around the

earth and moon, usually taken as being syn-

onymous with the sphere of influence of the

earth-moon system.

Collision parameter: the offset distance between

the extension of a velocity vector of an object

at a great distance from a center of attraction

or repulsion and this center.

Colure, equinoctial: the plane, secondary to the

equator, which passes through both the celes-

tial poles and the equinoxes.

Colure, solstitial: the plane, secondary to the

equator, which passes through both the celes-
tial poles and the solstices.

Conjunction: a point in the orbit of a planet (or

moon) where its celestial longitude equals that

of the sun. If the alignment is sun-planet-

earth, the planet is said to be in "inferior con-

junction. " This configuration is possible only

with inferior planets; if it is planet-sun-earth.

the planet is in "superior conjunction. " Sim-

ilarly, when the moon (or a superior planet)

is between the earth and the sun, i.e, "new, "

it is said to be at conjunction.

Coordinate systems: one of a number of sets of

celestial coordinate systems used in astro-

nautics (Chapter XI).

(i)

(2)

Ecliptic S_,stem uses the plane of the earth's

orbit (ecliptic) as the reference. The axis

of the poles of the ecliptic is at right angles
to this plane. This system is most useful for

intrasolar system work since all the planets

move in or near the plane of the ecliptic.

Equatorial System uses the celestial equator

as the reference plane. The celestial equa-
tor and celestial poles coincide with exten-

sions of the earth's equator and poles on the
celestial sphere. This system is the one

most commonly used in astronomy.

(3) Horizon System uses the observed horizon
as the reference plane and is the common

system of celestial navigation.

Coriolis force: a fictitious velocity dependent

force that apparently arises when the motion of

an object is reckoned with respect to a rotating

coordinate system. The relationship yielding

this "force" is -2m_x_" r, where m is the maSS

of the object, _ is the angular velocity vector

of the rotating coordinate system, and }r is

the velocity of the object reckoned with respect

to the rotating system.
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Cosmicdust: finedustparticles(micrometeorites)
thatareconcentratedin thesolarsystemin the
plane of the ecliptic (e. g., giving rise to the

phenomenon of "zodiacal light") and also

dispersed in a more rarefied manner in inter-

stellar space, being more concentrated in the

galactic spiral arms; also a component of

comets.

Cosmic rays (direct): high-energy charged parti-

cles (e. g., with energies in excess of 100 Mev)

such as protons, alpha particles and heavy

nuclei which have apparently been ejected by
stars and accelerated by vast magnetic fields

in interstellar space.

Cosmoparticle: discrete material entities of sub-

meteoritic mass, either in or from space.

They may be "free" or individual molecules

or atoms, or molecular or atomic constituents

of any kind, e.g., ions, atomic nuclei, protons,

neutrons, electrons, positrons, etc.

Cross product: or vector product (denoted by

x B) of two typical vector quantities _ and

can be defined either as a vector mutually

perpendicular to both _ and B with magnitude

A B sin (A, B) or equivslently as

(A B - AzBy) I + (AzB x - A B ) JF z - x z

+ {AxBy - AyB x) N

where the subscripts denote the components

of the vectors on the three orthogonal axes

denoted by the unit vectors I, J, K.

Culmination: The time at which a heavenly body

reaches the meridian of an observer. Upper
culmination occurs near zenith, lower culmina-
tion near nadir.

D

Day, sidereal: the period of one rotation of the
earth relative to inertial space (the stars),

23 h 56 m 04 s. 090 mean solar time.

Day, solar: the time between two successive
upper (or lower) culminations of the sun,

24 h 03 m 56 s. 556 sidereal time.

Declination: the arc of an hour circle (great

circles passing through the poles) intercepted

between the celestial equator and the object;

angular distance north or south of the celestial

equator.

Definitive orbit: an orbit that is defined in a

highly precise manner with due regard taken
for accurate constants and observational data,

and precision computational techniques including
perturbations.

Differential correction: a method for finding from
the observed minus computed (O - C) residuals

small corrections which, when applied to the
elements or constants, will reduce the devia-

tions from the observed motion to a minimum.

Dip: the angular distance between the true hori-

zontal and the observed horizon for an observer

above ground level.

Direct motion: the term applied to eastward or

counterclockwise motion of a planet or other
object as seen from the North Pole (i. e. , in

the direction of increasing right ascension).
Thu_, it is motion on an orbk in whicll i < _0

degrees.

Diurnal: daily.

Diurnal motion: the apparent revolution of the

heavenly bodies around the earth.

Dot product: or scalar product (denoted by A ' B)

of two typical vector quantities A and B can be

defined as AB cos (A, B) or equivalently as
A B + A B 4- A B where the subscripts

x x y y z z
denote the components of the vectors on three

orthogonal axes.

Drag: the force occasioned by the passage of an

object through a resistive medium acting in a

direction opposite to that of the object's motion
relative to the m_dLum.

Drag coefficient: the total drag force acting on'an

object divided by one-half the local atmospheric

density, the projected frontal area of the object,
and the square of the magnitude of the velocity

of the object relative to the resistive medium.

Drift, anomalistic: the variation or drift of a

frequency source (e.g., a crystal oscillator)
such that the frequency changes due to a variety

of causes (e. g., temperature variation, com-
ponent aging, etc. ), none of which can be pre-

dicted in advance or completely controlled.

£
Eccentric anomaly: an angle at the center of an

ellipse between the line of apsides and the

radius of the auxiliary circle (which has radius

equal to semimajor axis of ellipse and center
at center of ellipse) through a point that has

the same x-coordinate as a given point on the

ellipse.

Eccentricity: the ratio of the radius vector through

a point on a conic to the distance from the point
to the directrix.

Eclipse: a name applied to cases where a non-

luminous body passes into the shadow of another;

eclipse of the sun means the interposition of the
moon' s disc between the observer and the sun.

Ecliptic: the great circle formed by the intersec-

tion of the orbital plane of the earth (the ecliptic

plane) and the celestial sphere.
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Ecliptic coordinate system: axes with the ecliptic

as the fundamental plane and with spherical co-

ordinates: celestial longitude and latitude.

Elements of orbit: any six independent constants

defining the orbit, e.g., (I) orientation ele-

ments: _ longitude of ascending node; £ inclina-

tion of orbit plane; _ argument of perifocusj

(2) dimensional elements: e eccentricity; a

semimajor axis; (3) time element: T time of

perifocus passage.

Elevation, angle of:. the angle between the inertial

velocity vector _" and the local horizontal, i.e.,

the plane normal to _'passing through the ve-
hicle.

Eliminant: a determinant that is formed when

n - i linear unknowns are eliminated from a

set of n equations. The elimination of x and y,

for example, from

alx + blY = c I

a2x + b2Y = c 2

a3x + b3Y = c 3

yields the eliminant:

a I b I c 1

a 2 b 2 c 2 = 0

a 3 b 3 c 3

Elongation, angle of: the angle between the di-

rection to an object and to the center of the

coordinate system reckoned at the observer.

Energy integral: one of the integrals of two-body

motion expressing conservation of energy.

Entry angle: the angle between the velocity vector
of a space vehicle relative to a resistive medi-

um and the local horizontal.

Ephemeris (plural, ephemerdies): a table of cal-

culated coordinates of an orbject with equi-

distant dates as arguments.

Ephemeris time (ET): uniform or Newtonian

time, defined by mean frequency of rotation
of the earth around the sun for the year 1900.

Epoch: arbitrary instant of time for which the

elements of an orbit are valid (e. g., initial,
injection, or correction time).

Equator, celestial: the great circle in which the

plane of the terrestrial equator intersects the
celestial sphere.

Equator, terrestrial: the circle in which the

plane through the earth's center normal to

its axis of rotation (the equatorial plane) in-
tersects the earth's surface.

Equatorial bulge: the excess of the earth, s

equatorial diameter over the polar diameter
(i. e., about 27 miles, 43 kmh oblateness.

Equatorial satellite: a satellite whose orbit

plane coincides with the earth' s equatorial
plane.

Equatorial system: rectangular axes referred to

the equator as the fundamental plane and

having spherical coordinates, right ascension
and declination.

Equilateral triangle solutions: a particular solu-

tion of the three-body problem in which an

object situated at one vertex of an equilateral
triangle formed with the sun and a planet has

a stable orbit. It was predicted by Lagrange
(1772) and amply confirmed in the case of

Jupiter. See Trojan asteroids.

Equinox, nutation of: arises from nutation of

equator.

Equinox of date: position of equinox at epoch

being used in discussion.

Equinox, precession of: arises from precession

of equator.

Equinox, true: equals equinox or vernal equinox,

q.v., "true" being used to emphasize distinc-

tion from mean equinox.

Equinoxes: intersections of the equator and

ecliptic, the vernal equinox being the point

where the sun crosses the equator going from

south to north (descending node of earth's orbit).

Euler' s equatlon: a relation in a parabolic orbit

involving two radii vectors, their chord, and
the time interval between them; discovered
by Euler (1744).

Erection: a large perturbative term in the

moon, s longitude discovered by Hipparchus,

amounting to 1° 15, at maximum.

F

Feasibility orbit: an orbit that can be rapidly and

inexpensively computed on the basis of simpli-

flying assumptions (e. g., two-body motion,

circular orbit, three-body motion approxima-

ted by 2 two-body orbits, etc. ) and yields an

indication of the general feasibility of a system
based upon the orbit without having to carry

out a definitive orbit computation.

Free-molecule flow (or free-molecular flow):

flow regime in aerodynamics in which mole-

cules emitted from an object, as it passes

through a resistive medium, do not affect

the flow of oncoming molecules by scattering

interactions, i.e., the mean free path of the
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emitted molecules is much longer than a

characteristic linear dimension of an object.

G
Galactic system: a system based on the center-

line of the milky way.

Gaussian gravitational constant, Ks: factor of

proportionality in Kepler' s third law; the

numerical value depending on the units em-

ployed. See astronautical unit.

Geocentric: referred to the center of the earth

as origin.

Geocentric parallax: see parallax.

Geocentric subvehicle point: the point where the

radius vector from the geocenter to a space

vehicle intersects the spheroid.

Geodetic subvehicle point: the point where a

line through a space vehicle normal to the

spheroid intersects the spheroid.

Geoid: the mean sea-level figure of the earth.

Geoidal surface: the mean sea-level surface of

the earth; surface of gravitational equipotentiah

Geome[ric meter: the stan:Jard meter.

Geopotential meter: a unit of length employed in

reckoning geopotential altitude.

Gravitational potential: at a point, the work re-

quired to remove unit mass from that point

to infinity.

Greenwich meridian: the zero meridian from which

geographical longitude is measured (passes

through the Greenwich Observatory, England).

Ground trace: a succession of subvehicle points

on earth or on any other celestial body.

Ground swath: a region around the ground trace,

the boundaries of which are specified by the
lateral distance from the ground trace.

Guidance and control system: a system that ac-

tively counteracts or overcomes the effects

of deviations (from nominal conditions) in

order to accomplish the given mission with

the desired degree of exactness. Navigational

inputs allow the guidance and control system

to sense these deviations.

Guidance law: the equations which are mechanized

in the guidance and control system.

Guidance law, explicit: the guidance computer in

the vehicle predicts and the vehicle is steered

along a trajectory which brings it to the de-
qired end conditions.

Guidance law, implicit: the vehicle follows a

nominal trajectory while the guidance system

is active.

H
Harmonics of the earth's gravitational field: a

series representing the gravitational potential
of the earth whose terms form a harmonic

progression, i.e., include powers of the re-
ciprocal of distance.

Heliocentric: referred to the center of the sun as

origin.

Hohmann orbit: an elliptic heliocentric trajectory

for interplanetary flight, having tangeney to the

earth at one apsis and to another planetary

orbit (e. g. , that of Venus or Mars) at the op-

posite apsis. More generally stands for any
such doubly tangent transfer ellipse.

Horizon, apparent: the horizon formed by the

horizontal plane through the position of the
observer.

Horizon, rational: the horizon formed by the

plane through the center of the earth parallel

to the observer's horizon.

Horizon coordinate system: a system of topo-
centric coordinates either spherical (azimuth

and altitude) or rectangular, having as
reference plane the celestial horizon, which

is perpendicular to the direction of gravity
at the observer.

Horizon scanner: an optical device that senses

the radiation discontinuity between a planet

or lunar surface and the stellar background

of space. It can be utilized to establish a

"vertical" reference based upon a "visual"

horizon (which differs from both the astro-

nomical and geodetic horizon).

Horizontal plane: that plane perpendicular to the

direction of gravity at any place.

Hour angle (LHA): angle between the observer's

meridian and the hour circle passing through
the object, a coordinate in the rotating equa-

tor system, positive toward west, 0 to 24 hr.

Hour circle: any one of the great circles that

pass through the celestial poles and, therefore,

are at right angles to the equator.

Inclination i: angle between orbit plane and

reference plane (e. g., the equator is the
reference plane for geocentric orbits and the

ecliptic for heliocentric orbits).

Inertial axes: axes that are not in accelerated
or rotational motion.

Injection: the addition of an "instantaneous" in-

cremental velocity vector to the satellite

velocity vector at a prescribed time and place
to establish a new orbit.
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Injectlonconditions: position and velocity of

rocket at the instant when the thrusting of

rocket motor ends and the ballistic portion of

the trajectory begins.

Intermediate orbit: an orbit tangent to the actual

(or disturbed) orbit, having the same coordi-

nates but not velocity at point of tangency.

Inversion: in this context is meant to be synony-

mous with the numerical solution of a set of

linear algebraic equations.

Ionosphere: the ionized portion of the atmos-

phere above about 60 km.

Isostatic equilibrium: a situation in which the

pressure under the earth' s surface is the

same regardless of whether it is measured

under a mountain, valley or ocean, i.e.,

lower density strata underlie mountains

while higher density strata underlie oceans.

J
Jacobi' s integral: an integral of the equations

of motion in a rotating coordinate system

which relates the square of the velocity and

the coordinates of an infinitesimal body re-

ferred to the rotating coordinate system. The
constant of integration associated with Jacobi's

integral is known as Jacobifs constant.

Julian date: the number of mean solar days that

have elapsed since midnight, January 1, 4713

BC; e. g., the Julian date of January 1, 1960
is 2,436,934, a_id of February 1, 1965 is
2,438,792, etc.

K

Kepler' s planetary laws: (I) every planet moves

in an eUipse about the sun with the sun at one

focus; (2) every planet moves in such a way

that its radius vector sweeps over equal areas

in equal intervals of time; (3)the squares of

the periods of revolution of two planets are to

each other as the cubes of their mean distances

from the sun.

-i

K e min: the characteristic time for geocentric

orbits, i.e., the time required by hypothetical

satellites to move 1 radian in a circular orbit

of radius a e (equatorial earth, s radius); equal

to 13,447,052 min.

-I
K day: the characteristic time for heliocentric

s

orbits, i.e., the time required for a planet at

1 astronomical unit to move I radian (or 1 a.u. )

along its orbit; equal to 58. 132,440, 87 days.

t
Lagrangian solutions: particular solutions of the

three-body problem in which an infinitesimal

object moves under the attraction of two finite

bodies (e. g., the sun and JupRer) which re-

volve in circles around their center of mass

and in which the distances from the infinitesi-

mal object to the finite bodies remain constant.

See also equilateral triangle solutions and

synodic satellites, i.e., the so-called straight
line solutions.

Lambert' s equation: an equation of the 3th degree

expressing the curvature of the apparent path

of a body moving around the sun, as seen from

the earth: discovered by Lambert (1771).

Latitude, astronomical: the angle between the

direction of gravity through a point and the

equatorial plane.

Latitude, celestial: the angular distance of an

object north (+) or south (-) of the ecliptic

plane; a coordinate in the ecliptic system.

Latitude, geocentric: the angle between the

equatorial plane and a straight line from the
observer to the center of the earth. It differs

from astronomical and geodetic latitudes be-
cause of the oblateness of the earth, 0 ° to 90 °
north or south.

Latitude, geodetic (or geographic latitude): the

angle between the plane of the equator and a

normal to a reference spheroid. Geodetic

and astronomical latitudes differ only because

of local deviations in the direction of gravity,
0 ° to 90 ° north or south.

Least squares inversion: a solution of a set of

overdetermined linear equations such that
the sum of the squares of the residuals is a
minimum.

Legendre polynomials: the coefficients Pn (c)

in the expansion (i - 2ch + h2) - 1/2 =

Px(c) hnwhere P0(c) = I, Pl(C) =

n=0

1[2 (3c 2 - 1), P3(c) = I/2 (5c 3 - 3c), or, in

+ l(c) - (2n+ l)cP (c)general, (n + i) Pn n

+ nPn- l(C) = 0.

Libration: (I) apparent or optical and physical

tilting and side-to-side movements of the moon

that render 18 percent of its surface alternately

visible and invisible, (2) long-period orbital

motions of the Trojan asteroids around the

equilateral triangle points of the three-body

Lagrangian solutions, (3) periodic perturba-
tire oscillations in orbital elements.
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Lift: the force arising from the passage of a ve-

hicle through a resistive medium when the ve-

hicle presents an asymmetrical form or orien-

tation; which force acts in a direction normal

to the object, s motion relative to the medium.

Limb: the edge of the visible disk of the sun,

moon, planet, etc.

Line of apsides: a line connecting the near to
the far apsis, i.e., defines the major or
transverse axis.

Line of nodes: the intersection of a reference

plane and the orbit plane.

Line-of-sight: the apparent or observed direction

of an object.

Longitude, celestial: the angular distance

measured along the ecliptic from the vernal

equinox eastward to the great circle passing

through the object and normal to the ecliptic.

Longitude, ephemeris: analogous to ordinary

geographic longitude, but referred to the

ephemeris meridian, rather than to the

Meridian of Greenwich.

Longitude, geocentric: the angular distance

from the foot of the Greenwich meridian,

measured along the equator, east or west,

to the foot of the meridian through the place.

Longitude of ascending node: the angular dis-

tance from the vernal equinox measured east-

ward in the fundamental plane (ecliptic or

equator) to the point of intersection with the

orbit plane at the point that the object crosses
from south to north.

Longitude of perifocus: sum of the angle in the

fundamental plane between the vernal equinox
and the line of nodes and the angle in the

orbit plane between the line of nodes and the

line of apsides, measured in the direction
of motion.

Lunar equation: a factor required for reducing
• observations to the barycenter of the earth/

moon system.

Lunar theory: the analytical theory of the motion
of the moon. The lunar theories of Delavnay,

Hansen, and Hill-Brown are used most fre-

quently today.

Lunar unit (LU): the mean distance from the center
of the earth to the center of a fictitious unper-

turbed moon having the mass and sidereal period
of the moon. One lunar unit is approximately

equal to 384. 747 km or 239,122 statute miles.

Lunicentric: referred to the moon, s center as

origin; selenocentric.

M
Mach number: the ratio of the speed of a vehicle

to the local speed of sound.

Macrometeorites: meteorites that are sufficiently

ntassive to become fallen meteorites (and

whose origin appears to be related to that of

minor planets).

Magnetic storms: extensive disturbances in the

earth, s magnetic field.

Magnitude, stellar: a measure of the brightness

of a star. A difference of five magnitudes

represents a factor of I00 in brightness•

Mean anomaly: the angle through which an object

would move at the uniform average angular

speed n, measured from pe_ifocus; M : t_t_-_ $

Va -J

Mean center of moon (MCP): the point on the

lunar surface intersected by the lunar radius

that is directed toward the earth's center

when the moon is at the mean ascending node

and when the node coincides with the mean

perigee or the mean apogee. The MCP is a

specified distance from the crater Mbsting A

iN the Sinus Medii.

Mean distance: the semimajor axis (it can be con-

sidered as an historical term).

Mean equinox of date: a fictitious equinox whose

position is that of the vernal equinox at a

particular date with fl_e effect of nutation _'e-

moved.

Mean free path: the path of a molecule when mol-
ecules are assumed to be smooth, rigid spheres

with no external field of force acting on them;

each molecule travels freely on a straight line

between impacts with other molecules. The

distance traversed between two successive im-

pacts is called the free path and the average
value of this distance the mean free path.

Mean solar day: the elapsed time between suc-

cessive passage of the mean fictitious sun
across the observer's meridian, 86,400 mean

solar sec, the mean fictitious sun being a
fictitious sun that moves along the celestial

equator with the mean speed with which the
true sun apparently moves along the ecliptic

throughout the year.

Meridian: (1) Terrestrial meridians: great

circles passing through North and South Poles,

e. g., the observer' s local meridian passes
through his local zenith and the North and
South Poles. (2) Celestial meridian: a great

circle on the celestial sphere in the plane of
the observer' s terrestrial meridian.

Meridian, ephemeris: the geographical meridian
which lies east of Greenwich by the amount
1. 002738 times the difference {ET-UT).

Meridian passage: also called "transit" or
"culmination" of a celestial object is marked

by its crossing an observer' s meridian.
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Mesometeorites:intermediatemeteorites
having characteristic dimension of the order

of a fraction of an inch that are stopped by
the atmosphere, consumed, and are seen as

common "meteors. " The origin of these
bodies appears to be related to that of comets

Meteor swarms: a large collection of mesome-

teorites (probably the remains of an "old"

comet) that enters the earth' s atmosphere
and is seen as a swarm of meteors. The

term is often applied to the actual collection
of mesometeorites on heliocentric orbits in

space.

Micrometeorites: very small meteorites (having
a characteristic dimension of a few microns)

that are stopped by the atmosphere without

being consumed in flight or without producing
luminous phenomena visible at the earth's

surface.

Minor planets (or asteroids): small planets
revolving about the sun, estimated to number

more than 30,000, with diameters of more

than 1 mile. The largest, Ceres, has a
diameter of 488 miles.

Molecular scale temperature: the actual tempera-

ture of the atmosphere at any given height
multiplied by the ratio of the mean molecular

weight of the atmosphere at sea level to the
mean molecular weight of the atmosphere at

the given height.

Month, nodal: the time for one revolution of the

moon with respect to either node.

Month, sidereal: the time between two successive

arrivals of the moon at a given apparent place

on the celestial sphere as indicated by the
stars.

Month, synodic: the time for one revolution of

the moon with respect to the apparent place

of the sun, e. g., the time between conjunc-
tions.

Moon's celestial equator: a great circle on the
celestial sphere in the plane of the moon's

equator, i.e., in a plane perpendicular to
the moon's axis of rotation.

Moon's orbital plane (MOP): the instantaneous
orbital plane of the moon around the earth,

defined by the moon's geocentric radius and

velocity vectors.

N
Nadir: the downward plumb-bob direction,or

the point where the downward extension of the

direction of a plumb-bob intersects the celes-

tial sphere.

Navigation: the process of determining the po-

sition and velocity of a submarine, ship, air-

plane, or space vehicle by making observa-

tions from the vehicle of objects in the en-

vironment of the vehicle.

n-body problem: concerned with the gravitational

interactions of masses m i, mj, i, j = 1, 2 .....

which are assumed homogeneous in spherical

layers, under the Newtonian law. If n = 2, one
has a two-body problem, while n = 3 is known

as the three-body problem.

Newton, s laws: Law of gravitation: Every par-

ticle of matter in the universe attracts every
other particle with a force varying directly as

the product of their masses and inversely as the
square of the distance between them. Laws

of motion: (1) Every particle continues in its
state of rest, or of uniform motion in a

straight line, unless it is compelled to change
that state by a force impressed upon it.

(2) The rate of change of momentum is pro-
portional to the force impressed, and takes

place in the direction of the straight line in

which the force acts. (3) To every action
there is an equal and opposite reaction; or the

mutual actions of two bodies are always equal
and oppositely directed.

Nodal passage, time of: the time T_ when an ob-

ject passes through the node from the southern

hemisphere to the northern hemisphere.

Node: the points of intersection of the great circle

on the celestial sphere cut by the orbit plane and

a reference plane (e. g., the ecliptic or equator
reference plane).

Node, ascending: the node in the reference plane

through which the body passes from South to
North.

Node, descending: the node in the reference

plane through which the body passes from North
to South.

Node, longitude of ascending: see longitude of as-

cending node.

Nominal orbit: the true or ideal orbit in which

space vehicle is expected to travel.

Normal places: curve formed, when several ob-

servations are available very close together

in time, by smoothing observed coordinates.

Numerical differentiation: a process that allows

for the numerical evaluation of the derivative

of quantity, given tabular values of the quantity.

Numerical integration: a process that allows for

the numerical evaluation of a definite integral.

Nutation: short period terms in the precession

arising from the obliquity, the eccentricity,

and the inclination of the moon's orbit and the

regression of its nodes (approximately a 19-
year period).

0
Obliquity of the ecliptic: the inclination of the

ecliptic to the celestial equator; the angle of

approximately 23 ° 27' between the earth's or-

bital plane and its equator.
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Occultation: the interruption of the light from

one celestial body by the intervention of another.

Opposition: the position of an object when its ce-

lestial longitude is 180 ° from sun, i.e. , op-

posite to sun. (Configuration possible only

with moon and superior planets. )

Orientation angles: the classical orientation ele-

ments, i.e., the inclination, longitude of the

ascending node, and longitude of perifocus.

Osculating orbit: an orbit tangent to the actual or

disturbed trajectory, having the same coordinates

and velocity at that instant.

P

Parallactic angle: the angle between the hour
circle of and the vertical circle through a body

Parallactic inequality: a secondary effect on the

solar perturbations in the moon's longitude due

to the ellipticity of the earth's orbit.

Parallax: (I) Geocentric parallax: the angle at the

object subtended by the earth's equatorial radius;

applied to objects in the solar system. (2)

Heliocentric parallax: the angle at a star, etc. ,

subtended by the radius of the earth's orbit;

applied to objects outside the solar system.

Pericynthion: the point on a selenocentric orbit

nearest the moon' s center.

Perifocus: the point on an orbit nearest the central

force.

Perigee: the point on a geocentric orbit nearest

the earth's center.

Perihelion: the point on a heliocentric orbit nearest
the sun.

Period: the time required for one complete circuit
of the orbit.

Period, anomalistic: interval of time from one

perifocus passage to the next.

Period, nodal (also draconic): interval of time

from one nodal crossing to the next.

Period, sidereal: the time required for the pro-

jection of a planet or other body to make a com-
plete circuit of the celestial sphere. This is

the true period.

Period, synodic: the time between successive

oppositions of a superior planet or successive

inferior conjunctions of an inferior planet.

Perturbations: deviations from exact reference

motion caused by the gravitational attractions

of other bodies or other forces.

General perturbations: A method of calculating

the perturbative effects by expanding and

integrating in series.

Special perturbations: methods of deriving the

disturbed orbit by numerically integrating

the rectangular coordinates or the elements.

Piecewise continuous: a function that can be di-

vided into a finite number of pieces such that

the function is continuous on the interior of

each piece and such that the function approaches

a finite limit at the point of connection of one

piece with another. In the context of the tem-

perature profile discussion the term is used in

a more restricted sense to imply a function

that is divided into a finite number or series

of connected linear pieces (straight line seg-

ments).

Planetocentric: referred to the center of a planet

as dynamical center or origin of coordinates.

Planets: bodies in the solar system which move

in essentially elliptical paths around the sun

(see Kepler's laws).

Inferior planets:

Mercury
Venus

Superior planets:

Mars

Asteroids

Jupiter

Saturn

Uranus

Neptune
Pluto

Inner, or terrestrial,

planets:

Me rc ury
Venus

Earth

Mars

Asteroids, or minor

planets.

Oute D or major, planets:

Jupiter
Saturn

Uranus

Neptune

Pluto

Plasma: a collection of positive and negative ions

that has no overall or gross charge.

Polar satellite: a satellite that passes over the

north and south poles of the earth, i.e., that

has an inclination of 90 ° with respect to the

earth's equator.

Polar distance, ecliptic: complement of the ce-
lestial latitude.

Polar distance, north: complement of the dec-

lination.

Poles, celestial: the points in which the axis
of rotation intersects the celestial sphere.

Poles, ecliptic: the points in which the normal

to the ecliptic through the origin intersects

the celestial sphere.
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Poles, galactic: the points in which the funda-

mental galactic axis intersects the celestial

sphere. The north galactic pole is at 12 h 44 m
right ascension and +27 ° declination.

Position, apparent: coordinates of a celestial

body as seen by an observer at the center of

the earth referred to a coordinate system de-

fined by the instantaneous equator, ecliptic,
and equinox. The tabulated positions of the

sun, moon, and planets in the American

Ephemeris and Nautical Almanac are usually
apparent positions.

Position, mean: coordinates of a celestial body

referred to a coordinate system defined by the

mean equator, ecliptic and equinox of date.

This means that the periodic effects of nutation

have been neglected.

Position, true: coordinates of a celestial body if

corrections for planetary aberration are ap-

plied to the apparent position. A sequence of

true positions as a function of time is known

as a geometric ephemeris.

Potential function: see gravitational potential.

Poynting-Robertson effect: the gradual decrease

in the orbital semimajor axis and eccentricity
of a micrometeoritc caused by the re-emission

of radiant energ)- from the micrometeorite.

The theory was first announced by Poynting and

later improved and brought into conformity with

the theory of relativity by Robertson.

Precession of the equinoxes: the slow, 26,000-

year period westward motion of the equinoxes

(and equator) along the ecliptic, arising from
solar and lunar perturbations on the earth's

equatorial bulge, which cause the earth's axis
to precess.

Predicting a satellite 's position: the six elements
are the same in number as the three coordinates

of position and the three components of velocity

required to specify the launching conditions

completely.

Primary: the body having the strongest gravita-
tional field (most ponderous mass) in a system

of bodies revolving about their common center

of gravity. (Sun is the solar system's primary,
earth is earth-moon system primary, etc. )

Prime meridian: the meridian defining 0 ° and

180 ° E or 180 ° W longitude. On earth the

Greenwich meridian is the prime meridian.

R
Radiation pressure: the pressure acting on a sur-

face exposed to incident electromagnetic radia-

tion caused by the momentum transferred to the

surface by the absorption and reflection of the

radiation.

Ratios of the triangles: in the orbit determination

methods of Gauss, Olbers, etal., the ratios

of the triangles formed by the radii and the
chords are assumed in a first approximation
to be ratios of the sectors, which are the ratios

of the corresponding time intervals by Kepler's
second law.

Rectilinear orbit: a trajectory for which pert-

focus distance is zero and eccentricity is one.

Red shift, gravitational: an effect predicted by the

General Theory of Relativity in which the fre-
quency of light emitted by atoms in stellar atmo-

spheres is decreased by a factor proportional
to the (mass/radius) quotien_ of the star: con-

firmed observationally by the spectra of white
dwarfs.

Re-entry: portion of a trajectory in the atmos-
phere of a planet; in the case of the earth it is

usually taken as the portion below 400,000 ft
or 122 km.

Re-entry corridor: all possible re-entry trajec-
tories which do not produce excessive aero-

dynamic heating or deceleration.

Reduction to orbit: quantity added to celestial

heliocentric longitude to give true longitude,

q.v.

Reference ellipsoid (or spheroid): oblate spheroid

closely approximating the geoid.

Reference orbit: an orbit, usually but not ex-

clusively the best two-body orbit available,
on the basis of which the perturbations are
computed.

Refractive index (of a medium): the ratio of the

speed of light in a vacuum to that in the medium,

hence it is a measure of how greatly electro-

magnetic radiation rays are bent during their
transit through a medium such as the earth' s
atmosphere.

Regression of the moon' s nodes: the movement
of the nodes of the moon, s orbit westward

along the ecliptic, due to solar perturbations,

with period _- 19 years.

Relativity effects: effects on a space vehicle tra-

jectory and on time measurement arising by
use of Einstein' s special theory of relativity or

of Einstein, s general theory of relativity instead

of the customary Newtonlan mechanics for de-

termining the trajectory. The fundamentals of

these theories of relativity are discussed in

Chapter IV of the Lunar Flight Handbook. Rela-

tivity effects are small in the weak gravitational

field of the solar system if the space vehicle

velocity is small compared to the speed of light.

There are many such effects, the most prominent

of which are: the time dilation predicted from

the Lorentz transformation of special relativity;

the time dilation, secular advance of perigee,

and red-shift of spectral lines predicted by

general relativity.
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Rendezvous:theapproachand contact of two ve-

hicles in space.

Representation: the computation of the position

of a space vehicle given the orbital elements
and the time.

Residuals (0 - C): differences between the ob-

served and computed coordinates in the sense

observed minus computed.

Residuals (O - I): differences between the pre-

computed ideal observational data and the

actual observed data on, for _xan_pl_, an

interplanetary voyage.

Restricted n-body problem: the motion of n

masses under their mutual gravitational at-

traction, but with one of the n masses having

negligible mass and hence not influnencing the

motion of the other (n - 1) masses. This

term is usually applied to n = 3 (see also n-

body problem).

Retrograde motion: westward or clockwise motion
as seen from the North Pole, i.e., motion in

an orbit in which [ > 90 degrees (opposite earth's

rotation).

Retrorocket: a rocket attached to a space vehicle

,:chose thrust is directed in a general direction
agains: ;he inertial velocity of the space ve-
hicle.

Reynolds number: the ratio of inertial forces to

viscous forces--it is proportional to the Mach

number, vehicle diameter, and the density,

or, in equivalent terms, proportional to the

diameter of the space vehicle in mean free

paths and the vehicle speed measured in terms

of the average thermal speeds of gas mole-

cules that constitute the oncoming flow.

Right ascension: angular position of an object
(e. g. , star) measured eastward along the

celestial equator from the vernal equinox to
the great circle passing through the north

celestial pole and the star (hour circle). Right
ascension is often expressed in hours, minutes,

and seconds (1 h = 15°).

$
Scale height: the distance in which an isothermal

atmosphere decreases in density from I to

1/e.

Secular terms: expressions for perturbations that

are proportional to the time.

Selenocentric: referred to the center of the moon;

lunicentric.

Selenocentric equatorial coordinates: a right-
handed coordinate system centered at the moon

with its three axes defined by the vernal equinox,

north celestial pole (of the earth), and a direction

perpendicular to these two, i.e., an equatorial

coordinate system translated to the moon.

Selenographie coordinates: coordinates that are

rigidly attached to the moon (as geographic
coordinates are attached to the earth) defined

by the moon' s equator and prime meridian.
See mean center of moon.

Semimajor axis: the distance from the center of
an ellipse to an apsis; one-half the longest diam-

eter; one of the orbital elements.

Semiminor axis: one-half the shortest diameter

of an ellipse.

Semiparameter: semilatus rectum; the perpen-
dicular distance from the conic to the semi-

major axis through either focus (not to be con-

fused with the generic term "parameters").

Setting circles: a graduated scale that can be read

visually and indicates the direction (e.g., alti-

tude and azimuth or right ascension and de-

clination) in which a telescope is pointed. Ordi-

narily they are employed to set or point a con-

ventional astronomical telescope in the proper

direction to make a given observation.

Sidereal period of a planet: see period, sidereal.

Sidereal time: the hour angle of the vernal equinox.

(See Chapter H for conversion of sidereal time

to mean solar time).

Sidereal:.'ear: time required by the earth to com-

plete one revolution of its orbit; equal to

365. 25636 mean solar days.

Slip flow: a flow regime in aerodynamics in which

there is some departure from continuum flow

and the layer of compressible fluid immediately

adjacent to the surface of an object is no longer

at rest but has a finite tangential "slipping"

velocity.

Solar flares: short-lived areas of brilliance

(covering areas of i0 million square miles or

so) on the sun' s chromosphere that are as-

sociated with other solar activity. Often ac-

companied by bursts of emitted charged cor-

puscles and electromagnetic radiation. They

reach several times normal brightness within

one or two minutes and then subside slowly

over 15 to 30 minutes.

Solar parallax: the ratio of the earth' s equatorial
radius to its mean distance from the sun.

Solar time, mean: hour angle of fictitious mean

sun increased by 12 hours. (The fictitious

mean sun is a fictitious sun moving on the

celestial equator with a mean motion of the real
sun. ) See pages 474 to 476, American Ephemeris
and Nautical Almanac for conversion of mean

solar time to sidereal time.

Solar wind: those low energy particles, i.e. ,

corpuscular radiation (electrons and protons)

emanating from the sun. Typical flux rates

are 108 to 1010 particles per cm 2 per second,

and typical energies are 1000 to 100,000
electron volts for the protons and a few elec-
tron volts for the electrons.
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Solstices: the two times a year when the sun' s

declination is greatest north or south (about
June 22 and December 22).

Space range system: a system or network of

observation stations, together with their
associated communication links and compu-

tational facilities, that are utilized to observe

and track space vehicles, e.g. , the Pacific

Missile Range, the National Space Surveillance
System, etc.

Specular reflection: characterized by the relation

that the angle of incidence equals the angle of
reflection, in contrast to diffuse reflection.

Sphere, celestial: an imaginary reference sphere;
generally considered to be of infinite radius,

and having its visible representation in the sky.

Spheroid: an oblate ellipsoid which closely approx-

imates the mean sea-level figure of the earth

or geoid.

Stability of a point or orbit: a point or orbit is

stable if the space vehicle will remain near
the point or orbit if given a small displace-

ment and velocity. The point or orbit is un-
stable if the space vehicle will depart from it

rapidly.

Standard atmosphere: a table of atmospheric

density as a function of altitude which is

accepted as a standard and used as a model

to portray a typical average atmospheric
density variation.

Standard deviation: the square root of the arith-

metic mean of the squares of the deviations

from the mean; also called root mean square

error and sigma deviation.

Stationary points: points in the apparent path of

a planet, etc., against the star background

where the object appears to stand still because

relative to the observer it is moving only in
the line of sight. Such a point occurs when a

planet changes its apparent motion from direct

to retrograde and vice-versa.

Station error: small, usually negligible, dif-

ferences between the astronomical and geodetic
latitudes, due to certain anomalies (such as a

mountain) in the local gravitational field.

Stratosphere: a region in which the temperature

remains constant from about 18 km up to a

height of 30 to 35 kin.

Surface-circular satellite: a hypothetical satellite

on a circular orbit about the earth having a

semimajor axis equal to the earth, s equatorial
radius. Hence, such a satellite would "skim
the surface of the earth" as it revolved on its
orbit.

Synodic satellite: a hypothetical satellite, situated
0.84 of the distance to the moon on a line join-

ing the centers of the earth and moon and having

the same period of revolution as the moon, ac-

cording to the Lagrangian "straight line solu-

tion" of the three-body problem.

T
Terminator: the boundary between the illuminated

and dark sides of a planet or satellite. Usually

one distinguishes between a morning and an
evening terminator.

Three-body problem: the problem of integrating
the equations of motion of three bodies (e. g.,

sun-moon-earth) moving under their mutual

gravitational attractions" directly soluble

only in particular cases. See Lagrangian
solutions.

Thrust: the force exerted on a vehicle, by the

discharge of a gas or propellant, in accordance
with the conservation of linear momentum.

Time, ephemeris: time reckoning based upon

"constant" frequency rather than frequency
of earth's rotation. The current difference

between ephemeris and universal time is
about 35 seconds.

Time dilation: the apparent slowing-down of

moving clocks. This effect arises from the

special and general theory of relativity.

Time of perifocal passage: the time when a space

vehicle traveling upon an orbit passes by the

nearer apsis or perifocal point.

Topocentric: referred to the position of the ob-

server on the surface of the earth, as origin.

Topocentric parallax: the difference between the

geocentric and topocentric positions of a
satellite.

Topocentric equatorial coordinates: a right-

handed coordinate system centered at the ob-

server with its three axes defined by the vernal

equinox, north celestial pole, and a direction

perpendicular to these two, i.e., an equatorial

coordinate system translated to the topos.

Tracking: the process of determining the posi-
tion and velocity of a celestial body by making

observations from earth by optical or electro-
magnetic means.

Trajectory sensitivities: the partial derivatives

of dependent trajectory variables with respect

to independent trajectory variables.

Transitional flow: a flow regime in aerodynamics

between the free-molecule flow and slip-flow
regimes in which the molecules emitted from

the surface of an object affect the flow of on-

coming molecules, i.e., in which the mean
free path of the emitted molecules becomes

comparable to a characteristic linear dimension

of an object.

Transearth trajectory: trajectory from the vi-

cinity of the moon to the vicinity of the earth.

Translunar trajectory: trajectory from the vi-
cinity of the earth to the vicinity of the moon.
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Transverse axis: the distance between the apsides

--identical to the semimajor axis for elliptical
orbits.

Triaxial ellipsoid: a solid aspherical figure which

when cut or sectioned in three (orthogonal,

normal or mutually perpendicular) directions

exhibits three elliptical cross sections of dif-

fering semirnajor axes and eccentricities.

Tropopause: the height (varying from about 9 km

over the poles to 18 km over the equator) where

the gradual decrease in temperature with ele-

vation above sea level ceases.

True anomaly: the angle about the focus between

the perifocus and the radius vector in the
direction of the motion.

True equinox of date: the actual position of the

equinox including both precession and nutation

Twenty-four-hour satellite: a satellite whose
orbital period is approximately 24 hr. If

such a satellite is on circular equatorial orbit,
then it will theoretically remain fixed or

"stationary" relative to the rotating earth.

Two-body orbit: the motion of a body of negligible
mass around a center of attraction.

U
Umbra: the dark central portion of the shadow

of a large body such as the earth or moon
(used in connection with eclipses). The outer,

less dark shadow is known as the penumbra.

Unit vector: a vector whose magnitude or length

is unity--utilized to define directions in space,

Universal time (UT): mean solar time referred

to the meridian of Greenwich, slightly non-
uniform owing to the [rregular rotation of the
earth.

V
Van Allen radiation belt: two toroidal-

shaped zones or belts of charged particles

roughly situated in the plane of earth' s equator.
The inner belt commences at about one-fifth
on an earth' s radius above the equator and'

extends out to a little less than one earth' s
radius. The outer belt is located at about

two-and one-half earth radii from the earth

at the equator and is about one-earth radius

thick. Actually the outer belt has a cross
section that is shaped somewhat like a banana

and extends north and south of the equatorial

plane two earth radii. The northern and
southern extremes of the belt, s cross section

(at about 45 degrees latitude} approach the
earth one-half of an earth radius closer than

at the equator.

Variant orbits: computed orbits in which one of

the initial conditions (or parameters) is varied

slightly from those of the nominal trajectory--

such orbits are utilized to compute numerical

partial derivatives or to determine the effects
of errors in launch conditions.

Variation of latitude: small periodic changes in
the position of the earth's poles due to a

"wobbling" of the axis of rotation about the
geometrical axis (the shortest diameter) of
the earth.

Vector component: the projection of a vector on

a given axis in space, e.g., if it is the X-

axis then the component of the vector _% on

this axis is denoted by A x.

Vector equation: an equation, whose terms in-

elude vectors, that can be resolved into

•_" ._

component equations; e.g., r = --T
r

actually represents the three component

equations:

= -/_x/r 3

= -_y/r 3

= -_z/r 3

where _ has been replaced by its three com-

ponents :',_,j;, and E and_r by it._ three com-
ponents x, y, and z.

Velocity, circular: the magnitude of the velocity

required of a body at a given point in a gravita-

tional field which will result in the body fol-

lowing a circular orbital path about the center

of the field.

Velocity, escape (also parabolic velocity): the

minimum magnitude of the velocity required

of a body at a given point in a gravitational

field which will permit the body to escape from
the field.

Velocity, orbital: with respect to the planets,
usually the mean magnitude of the velocity in
orbit--computed as the total distance traveled

in one circuit divided by the period.

Vernal equinox: that point of intersection of the

ecliptic and celestial equator where the sun

crosses the equator from south to north in its
apparent annual motion along the ecliptic.

Vis viva integral: see energy integral.

Voice trajectory program (Volume of Influence
Calculated Envelopes): a patched conic lunar

mission trajectory program. It uses the ana-

lytical solutions of the two-body trajectories

to construct a complete trajectory from the
vicinity of the earth to the moon and back.

¥
Year: the orbital period of the earth. When un-

qualified, it refers to the equatorial or to the

calendar year, depending on its use.
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Year, anomalistic: the time interval between

successive passes through perihelion =
365. 259,641, 34 + 0. 000,003, 04 T days (T
denotes centuries since 1900).

Year, Besselian: a time reckoning in terms of

actual rather than calendar years.

Year, calendar: a variable year containing either

365 or 366 days.

Year, equatorial (also tropical or ordinary year,

not calendar year): interval between transits

of the sun through the moon equator 365. 242,

198,79 - 0. 000,006,14 T days.

Year, Julian: the year of the Julian calendar =

365.25 days.

Year, sidereal: the period of the earth relative

to the stars = 365. 256,360, 42 + 0. 000,000, Ii

T days.

Z
Zedir technique: the use of two cameras on a

satellite whose optical axes are parallel, one

of which photographs the sky (zenith) while

the other simultaneously photographs the

ground (nadir). Upon development and meas-

urement, the photographs can be utilized to

find the attitude of the camera, s optical axis

at the time of photograph.

Zenith: the point where the upward extension of

the plumb-bob dh'_tiua intersects the celestial
sphere.

REFERENCE

i. "Flight Performance Handbook for Orbital
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1. THE ASTRONOMICAL UNIT AND THE SOLAR PARALLAX

The astronomical unit (A.U.), or the Earth's mean distance from the Sun, is connected with

the solar parallax (n o ) by the following relation (with Ro= 6378.170 ± 0.020 km the equato-

rial radius of the Earth):

Ro R, 206264."806247 R, 1 315 592 000 ± 4000 (1)
1 A.U. sin uo %" sin 1" - no* = rio_

Modern determinations of the solar parallax usually are included between the two values no --

87790 _+ 07001 (H. Spencer Jones, 1941) and no = 8.#79835 ± 0.#00039 (E. Rabe, 1949). The

mean value of bob determinations, % = 8:" 794 ± 0.'002, has been accepted by C. _. Alien

(Ref. 1, p. 131) in his book on "Astrophysical Quantities" (1955). Exactly in the middle of

these two values are also the recently obtained data of radar echoes from Venus, which have a

considerably higher accuracy than previous determinations. Furthermore, agreement of the

different radio observatories is also very good, as shown in the following table:

Radio Observatory

Millstone (Lincoln

Lab., M.I.T.)

Goldstone (J.P.L.)

Jodrell Bank (U. of

Manchester)

Moorestown (R.C.A.)

U.S.S.R.

Author (Year) I Ref.

Pettengill, Price

et. al. (1961)

Victor, Stevens and

Muhlemann (1961)

Thomson et. al.
(I961)

Maron et. al. (1961)

Kotelrdkov (1961)

Radar Frequency

(M C/sec)

440

2388

408

700

Astronomical Unit

(km)

149 597850 ± 400

149 598845 ± 250

149601000 ± 5000

149 596 000

149 599 500 ± 800

Solar Parallax

(Ro= 6378.170kin

8.'79419 l

8." 794132

8."79400 s

8.* 794299

8.* 794094

8.* 79414 4

According to l_ewcomb and de Sitter the semimajor axis of the Earth's orbit around the Sun

is given by a®= 1.000000236 + 0.000000004 A.U. (or approximately 35 km more than 1 A.U.).

For practical purposes both distances will be assumed equal to

ab = 149598700 ± 400 = 149598700 (1 ± 2.7 x 10=0kin

The corresponding solar parallax will be

R. 6378.170 ± 0.020

% = a o sin 1" - 206264.*806247 149598700 ± 400 = 8."79414 ± 0.*00005 (3)

Taking as best value for the light velocity the vahe determined by Froome (Ref. 4) in 1958:

c = 299792.5 ± 0.1 = 299792.5 (1 ± 3.3 x 10 -7 ) km/sec (4)
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the light-time for unit distance (1 A.U.) is therefore

r = _ = 499.007 s ± 0.018
C

= 499.0075 (1 _+ 3.6 x 10 "s) sec (5)

. DEFINITION OF TIME UNITS, MEAN ORBITAL MOTIONS,

AND ROTATIONAL ANGULAR VELOCITIES OF EARTH

AND MOON

There are three different times which are in use, namely, the Greenwich mean solar time or

universal time (U.T.), the Greenwich mean siderial time (G.M.S.T.) and the ephemeris time (E.T.)

or Newtonian time. Due to the variable rotation of the Earth, the mean solar time and the mean

siderial time do not have a constant rate. The observations are therefore functions of a variable

time, while the gravitational theories for the Sun and the planets use a uniform time. The ephe-

meris time, having a constant rate is defined by the orbital motion of the Earth as given by

Newcomb's Tables of the Sun. It is therefore necessary to apply corrections to our practical

determinations of time. In addition to the fluctuations and the tidal slowing down of the Earth's

rotation, the Moon also shows a real diminution in the angular mean motion which is not given by

Brown's lunar theory.

The correction to Newcomb's tabulated tropical mean longitude of the Sun (Ref. 5)

L o = 279 ° 41"48."04 + 129602768.'13 TE+ 1..089 T_ (6)

is, according to H. Spencer Jones (Ref. 6),

AL o = + 1700 + 2.*97 T + 1.'23 T 2 + 0.0748 B (7)

when the observation times are in U.T. The time T is in Julian centuries of 36525 e counted

from 1900 Jan. 0, 12 h U.T. (Greenwich mean noon) and _ Ls the irregular fluctuaticm inthe Moorr's

mean longitude in arc seconds (time of observation again expressed in U.T.). The Sun's tropical

mean longitude, Lo, increases at the rate of 1"" in 86400/(0.9856473354 x 3600) = 24.349 48

see, so that the correction to universal time, required to obtain ephemeris time is, according to
H. Clemence (Ref. 7),

A t -t E- t_=24.34948 A L o =+ 24. s 349 + 7_318 T +29._950 T2+ 1.82134B (8)

H. Spencer Jones gives for the irregular fluctuation (Ref. 6)

B = (Lg , oh,.-- L, ,t,bul,,) + 10.'71 sin (140°0 T + 240 ° 7) - 4:65 - 12.* 96 T- 5."22 T 2
(9)

The periodic term is Brown's empirical term in his lunar theory. Therefore the correction to the

Moon's mean longitude, as given by Brown's Tables of the Motion of the Moon(Ref. 8), is

AL, _L,,ob..-Li,t°_a,,, = + 4..65+ 12.'96 T + 5.*22 T 2 + B -10771sin(140°0 T+ 240°7)

(10)

in order to obtain the actual mean longitude determined by observations in U.T. In the time

1
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interval A t = tE - tU the Moon's mean longitude increases by (n

= 0.549016 522 "/sec)

ALl = 0.549 At= 13.368AL o =+ 13."37 + 39:70 T + 16:'44 T 2 + B (11)

Therefore the correction to Brown's Tables is

AL, -AL t =-8:72 -26."74 T-11.'22 T 2- 10.'71 sin (14070 T + 240. ° 7) (12)

when the observations are in ephemeris time. Brown's theory is now reduced to a gravitational

theory with the same measure of time as defined by Newcomb's Tables of the Sun. Clemence's

corrected value for the Moon's mean longitude (Ref. 7)

L, =270 c26"2:'99 + 1732564379:31 T_-4:08 T_+0:'0068 T_ (13)

is used in the American Ephemeris and Nautical Almanac.

By means of equation (6) the tropical year, from mean equinox to mean equinox, thus has

the length

2n 1296000"× 36525 eE = 365.eE2421987S -0.aE0000061_B T
Pt,ov- L,° - 1296027687 13 + 2:I78 T

= 365aE05he48_E45. "E 9747 -- 0. °_ 5303T = 31556925: a 9747 -0.'E5303 T (14)

= 13.176 396 5268 x 3600/86400=

c.

In 1957 the ephemeris second has been adopted as the fundamental invariable unit of time,

and it is the fraction 1/31 556 925.9747 of the tropical year for 1900 Jan. 0, 12 h E.T. (Ref. 9)

The basis for all civil time-keeping is the universal time which is non-uniform. In practical

life, however, the difference between mean solar time and ephemeris time can be neglected be-

cause there is 1a = (1 ± 10-8) a_. To define universal time Newcomb introduced a fictitious

mean Sun which moves with the same constant siderial rate, in the equator, as the mean siderial

motion is for the true Sun, affected by aberration (20.*50) in the ecliptic. According to Newcomb,

the right ascension of the fictitious mean Sun is (neglecting nutation in right ascension)

RE = 279°41"27:54 + 129602768:13 TE + 1".394 T_

18 h 38"45.'836 + 8640184?542 T E + 0.*0929 T 2 (15)= E

Defining a point on the equator whose right ascension, measured from the mean equinox of date,

is

Rrl = 18a38"45. " 836+ 8640184.* 542 Tot+ 07 0929 T_ , (16)

and where R B differs from R e by 0.002738 At (see equation 8), the Greenwich hour angle
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to, eRe) of the point whose right ascension is R e [equal to universal time (U.T.) i: 12h], in-

creased by the right ascension Re, is the Greenwich hour angle, ro, c'v;, of the mean vernal

equinox of date which is Greenwich mean siderial time, _ . That is,

U.T. -+ 12 n + R u = rGrcRr.t) + R U : r_r (TJ _ O Gr (17)

Adding the East longitude to both sides gives the .%cal mean time on the left side of the equation

and the local mean sidefial time on the right side, because

O=_Or+A,e==t.

The time rate of the right ascension, given by differientation of equation (i6), is

/_e = 8640184.542 + 0.1858 T U [sec/Jul. century]

= 129602768.13 . 2.788 T e [ "'/Jul.century]

= 3548.330 4074 + 0.00007633 T u [*/d]

= 0.9856473354 + 2.1203 x 10 "s Ttt [°/d], (18)

Adding to this the time rate of the hour angle, _ = 360 °/d = 1296000 "'/d, the time rate of the

mean siderial time is then

@m= 1299548.3304074 +0.00007633 T [ "/d]

= 360.9856473354 + 2.1203x I0 -s T [°/d]

= 15.04106863897 + 8.835 x 10"I°T ["/s or °/an]

= 1.002737909265 +0.5890x 10-1°T [d./d or s./s]

= 7.29211585458 x 10"s+ 4.283x 10"1ST [tad/s] (19)

This motion is the result of the spin of the Earth and the motion of the vernal equinox (pre-

cession). Because the latter motion takes place in the ecliptic the equatorial component or the

general precession in right ascension, m, must be used here. The mean angular velocity of the

Earth's rotation is, therefore,

_. = O. -m (20)

It is very probable that Newcomb's value for the general precession in longitude, p, must be

increased by Ap = + 0."80 per tropical century (see Part 9), thus

p = 5026.441 + 2.2229 T + 0.00026 T u [ "'/ttop. century]

= 0.1376194 + 0.000060861 T + 0.712 x 10 "s T 2 ["/d]

= 0.00003822761 +0.000000016906 T + 1.98x 10 "12T _ [°/d] (21)
.)
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Neglecting the correction in planetary precession (AA = O) the correction for the general pre-

cession in right ascension would be Am = Ap • cos _ --- 0:80 x 0.917 -- + 0:" 73. Thus,

m = 4609.236 + 2.7945 T _- 0.00012 T2 [*/trop. centu_]

= 0.1261967+ 0.000076511 T+ 0.33 x 10 -s T 2 [ "'/d']

=0.00003505464 + 0.000000021253 T ÷ 0.92x 10"12T 2 [°/d] (22)

The angular velocity of the Earth's rotation is, therefore,

_m = 1 299 548.2042107 - 0.000000 18 T [ "'/d ]

= 360.9856122808-0.0050x 10 .8 T [°/d]

= 15.041 067 178 37-0.021x 10 "x° T[",/s or °/h ]

= 1.002737811 891 - 0.0014 × 10-1°T [rot/d]

= 7.29211514646x 10"s-0.010x 10 -is T[rad/s] (23)

Using equations (19) and (23) the following periods are obtained:

1. Mean solar day (culmination period of the mean Sun)

1 e = I. e" 002737909265 + 0.a, 589× 10 "l° T

=866367,55536050 + 0.'.0508896x 10 .4 T

=24a,03='56. ".55536050 + 0.% 0508896x 10 -4 T

= 1."°t 002737811891 -0: °t 0014 x 10 "t° T

= (1 + 10 -s)aE (24)

2. Mean siderial day or mean equinoctial day (culmination period of the vernal equinox)

la. = i a_0.e002730433586 -0. e587x 10"*° T

= 0.a 997269566414 -0. e 587x 10"*°T

= 86164.* 09053817 -0? 0507168x 10-4T

= 23h_6= 04.* 090 53817 - 07 0507168 x 10 -4 T

1 m = (1_ 0.000 000 097108_-ot 0._* 589x 10 "*° T
T

= 0._t 999999902892 - 0_. t 589x 10 -*0 T (25)
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3. Period of the Earth's rotation (culmination period of an equatorial star without proper morion)

6 m
1'_t = --_-= 1 +--_- = 1.a. 000000097108 + 0.a* 589x 10 "l° T

= 86400:,00839013 + 0.',0508896 x 10 -4 T

= 1 e -0.e002730336743 +0.00014 x 10 "1° T

= 1 e - 235? 901 09460 + 0:00012096 x 10 "4 T

= 0.0997269663257 + 0.00014 x 10 "1° T

= 86164:09890540 + 0:0012096 x 10 "s T (26)

Because

or

1 e - 1 a, =236.',55536050 +0.',0508896 x 10 .4 T

= 235.*90946183 +0." 0507168 x l0 "4 T

1 h- I h. =9:,856473 = _829561

the change of mean siderial time against mean solar time is 9:" 85647 in a mean solar hour and
9:829 56 in a mean siderial hour.

In order to apply Kepler's third law, the siderial mean angular motions of the Earth about

the Sun and the Moon about the Earth will be needed. Differentiation of equation (6) gives the

tropical mean motion of the Earth:

n o (trop.) =/'o = 129602 768.13 + 2.178 T [ "'/Jul. century]

= 3548.3304074 +0.00005963 T ["/d']

= 0.9856473354 + 1.6564x 10 s T [°/all (27)

Subtracting from this the general precession in longitude (equation 21) yields the siderial mean
motion of the Earth:

no (sid.)--/_® - p = 3548.1927880- 0.00000123 T [ "'/d]

= 0.9856091078 - 0.0342 x 10 -8 T [°/dl

= 0.041 06704616 - 0.1424 x 10"*°T [ "'/s]

= 1.9909865820 x 10 -7 - 0.69037468 x 10 "16 T [tad/s] (28)

Differentiating equation (13) provides the tropical mean motion of the Moon:
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n, (trop) = /_, = 1732 564 379.31 - 8.16 T + 0.0204 T 2 [ "'/Jul. century]

=47435.0274965 -2.234x 10 .4 T+ 0.559x 10"6T 2 ["/d]

= 13.1763965268 -6.206x 10 .0 T + 1.55 x 10"1°T2 [°/d]

= 0.549016 521 950 - 2.586 x 10 -9 T + 6.46 x 10-12T: [ "'/s ] (29)

and subtraction of the general precession in longitude, p, gives the siderial mean motion of the

Moon:

n, (sid.)=/_, -p = 47434.8898771- 2.843x 10 "4T 4- 0.552x I0"6T2 [,-/d]

= 13.1763582992 -7.897x 10 .8 T + 1.53x I0-1°T 2 [°/d]

= 0.549014929133-3.290 xl0 "8 T +6.38 xlO'12T2["/s]

= 2.66169948773 x 10 -6 - 1.595 x 10-13T + 3.09 x 10 "lTT2[rad/s] (30)

Because the distance of the Earth to the Sun is now known more accurately than before, it

is possible to give the mean orbital velocity of the Earth about the Sun with high accuracy,

namely

v® =a) n® =29784.90 -+ 0.08 [re<s] (31)

There are two constants connected with this velocity. Taking e = 0.01675 for the orbital eccen-

tricity of the Earth the value for the constant of aberration will be

K = v®/c = r n_ = 20"" 4956 ± 0"0007, (32)

%/1-e -Tsin i'" %/1-e2 sin 1""

and using the formula of de Sitter (Ref. 10) the geodetic precession, due to the special theory of

relativity, is

3 3 1"'_/ -p_ = -_ (v®/c) 2 n® = _ (K sin 1 - -_)2n® = 1. "'9188 + 0"0002 (33)

3- THE LUNAR DISTANCE AND THE LUNAR PARALLAX

The mean observed distance, _, of the Moon from the Earth is connected with the mean per-

turbed lunar parallax, n, , and the constant rr: of the sine of the perturbed lunar parallax by the

following relation:

7, 1 1
-_. - sin #, rt," sin 1 "" (34)

Dividing both sides of the series development

1
n, = sinn, +--_ sin 3 n, +...
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bysin i "" yields (because n_" = sin rtI /sin 1 "')

rr = rig" + -_- (rG (sinl'" + .... _ 1 + +...

= rt," x 1.0000458.85 = rt,"+ 0."157 (35)

Newer determinations are

rt; = 3422:" 54 rrq = 3422.70

3422.526 ± 0.009 3422.683 ± 0.009

3422.419 ± 0.024 3422.576 ± 0.024

3422.493 3422.650

(E.W. Brown, Ref. 8)

(W. deSitter, Ref. 10)

(H. ]effreys, Ref. 11, p. 193)

(Herrick, Baker, Ref. 12)

Recent determinations of the mean lunar distance, _'r , by means of radar echoes to the Moon are

in very close agreement (see Reference 13). This value is given by

7, = 384402.0 + 1.0 = 384402.0 (1 ± 2.6 × 10 "_) km (36)

thus

384402.0 (1 -+ 2.6 x 10"6)

R. - 6378.170 (1 ± 3.2 x 10-6)
= 60.26838 (1 z- 5.8 x 10 .6) = 60.26838 ± 0.00035

(37)

and

. sin rr, 206 264/" 806 247

= _= (_ /R,) = 3422:'438 ± 0:'020 (38)

rr, = 3422/" 595 + 0:'020 (39)

To obtain the semi-major axis, a e , it is necessary to add to the mean lunar distance the constant

part of the solar perturbations according to Brown's lunar theory. There is now

a, = 1.000907681 _ = 384750.9 ± 1.0 km (40)

and the mean orbital velocity of the Moon about the Earth is

v 4 = a, n, = 1024.091 -+ 0.003 r_/s (41)

4. MASS RATIOS OF THE SUN AND THE EARTH-MOON SYSTEM

Taking the already given values for a o , n e (sid.), and a t , n t (sid.) then Kepler's third law
gives

n_ a_=G(M_,+Me+M , ) = GMe(v +l)(l+g) (42)

2

n. a, 3 = G (M e + M. ) -- G M® (1 + K) (43)
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with

Mo Mq

v = Me+M, >> 1 ; K = _ << 1 (44)

Dividing the two equations yields

V

M ®+ MG

= 328898.6 (1 + 1.6 x 10 s) = 328898.6 ± 5.2 (45)

This value is approximately in the middle between the value 329 390 obtained by S. Newcomb

(Ref. 14), adopted by Am. Ephemeris, and the value 328 446 ± 43 determined by E. Rabe (Ref. 1 5).

The second equation gives

tz®(l+_)= n2, a, 3 = v, 2 a t = 403 512.3 +-3.2 kma/s 2 (46)

which connects the gravitational parameter go= GM o for the Earth with K, the ratio of the Moon's

mass to the Earth's mass.

. THE CONSTANT OF LUNAR INEQUALITY AND THE

PARALLACTIC INEQUALITY IN MOON'S ECLIPTIC

LONGH-UDE

The Parallactic Inequality in the Moon's ecliptic longitude is given by E. W. Brown's lunar

theory as follows

1/K- 1 _ (47)
1-K i=(49853:,2 +- 1:'2) l/K+ 1 a.P, = (49853."2 -+ 1:'2) 1 +K _r,

or with the newest data for the lunar distance and the astronomical unit

1/K-1
P, = (128.'" 1005 ± 0:" 0037) _ 1 (48)

Newer determinations are:

P, = 124:'86 ± 0:'15
= 125.154

= 124.93
= 124.969 ± 0.042

(j. Bauschinger, Ref. 16)

(E. W.Brown, Ref. 8)
(H. Battermann, Ref. 17)

(D. Brouwer and O. B. Watts, Ref. 18)

On the other hand, the constant of Lunar Inequality is

L = K .__L_ _ 206 264:" 806 247
I+K slnn_ I/K + I

definedby W. deSitter (Ref. 10) as

rrL _ 530:" 0089 ± 0:'0028
rr, l/K+ I

(49)
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Newcomb used the lunar inequality in the Sun's longitude which is, according to deSitter, L, =
1.00450L. The ratio of P. and L, depending only on K, is

P,/L 49853"'2 + 1"'2= - (I/K - i) = (0.241695 + 0.000006) (I/K - I)
206 264.'" 806 247

(50)

The mass ratio is therefore

1/K=(4.13744 4 ± 0.00010) P* 530:'0089 ± 0:'0028
T -+I = L -i =

Observed values for the constant of Lunar Inequality are:

128/" 1005 + P.

128_" 1005 - P,

(51)

L = 6Y456 ± 0/'012

6.414 ± 0.009

6.4305 ±0.0031

6.4390 ± 0.0015

6.450 ± 0.010

6.4378± 0.0015

6.4356_ 0.0028

6.4428± 0.0014)

6.4430 ± 0.0017)

(Newcomb, Ref. 14) From observations of

(D. Gill, Ref. 19) "

(A.R. Hinks, Ref. 20) "

(H. Spencer Jones, Ref.21) "

(Morgan and Scott, Ref. 22) "

(H. Jeffreys, Ref. 23) "

(E. Rabe, Ref. 15) i,

(E. Delano, Ref. 24) "

Sun

Victoria

Eros (opp. of 1901)

Eros (opp. of 1931)

Sun

Eros (opp. of 1931)

Eros (opp. of 1931)

Eros (opp. of 1931)

The latest reevaluation of all Eros observations during the opposition of 1930/31 by E.

Delano (Ref. 24) gave

L =6/'4428 ± 0/'0014

L = 6.4430 _* 0.0017

(from right ascensions of Eros)

(from declinations of Eros)

Delano used the old value % = 8:" 790 for the solar parallax and obtained therefore 1/K =

81.222 ± 0. 027 and 81. 219 _+ 0. 030, respectively. With the newest values for % and rr," there is
now

re spectively.

I/K = 81.263¢ and 1/K = 81.2612

6. ANOTHER METHOD FOR THE DETERMINATION OF THE

RATIO OF THE MASSES OF EARTH AND MOON

The mass of the Earth is given by

4 s
M® =Trr R, (i -/)p ® (52)

where / is the flattening (oblateness) and p. is the mean density of the Earth. On the other
hand the mass of the triaxial figure of the Moon is given by

M, = 3" =a/'eP' = 3 r,a3 _- _. p, (53)
)
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Because the longest axis is always directed to the Earth (neglecting the small librations) and

can never be seen, the lunar radius of the visible disk is

2 ' a T + = a (54)

That yields for the mass of the moon

4 (b/aXc/a) (55)

O

The mass ratio is therefore

(R®_ a (1-/),a a (p____/) (1- {)a s _ (56)1/K = M®.,:_ = \ R, ; (_ST(E,_) (_,,'.x¢/,_; ,_3

where

07R, sin s, s," & - 003
= - 7-'= OC' (57)k _= _T._ _ _ - 157

is given by the lunar parallax,_, and the apparent semi-diameter of the Moon, s, .

A reevaluation of Sir Harold Jeffrey's best data on the Moon's figure by the author gave

(see section 12)

b c

- = 0.9998 116 ; - = 0.9993 720 ; a = 0.9995 918
a a

From the secular perturbations of artificial Earth satellites there follows as best value for the

Earth oblateness

1// = 298.30 ; 1-[ = 0.99664767

so that

1/K = 0.9962409 Po/P_ (58)
i*

Taking for the mean densities the well-known and frequendy used values

p® = 5.517 ± 0.004 g/era 3 (Hey1) ; p, = 3.342 ± 0.005 g/cm 3 (Jeffreys)

the density ratio, independent from the assumed value of the gravitational constant, G, becomes

p®/p, = 1.6508. Therefore

1/1( : 1.6446/k 3 (59)
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With rr" = 3422." 438 and various values for s, the following table is obtained

s, k I/K

932:" 58 (Newcomb, Ref. 25) 0.2724891 81.286

932.63 (American Ephem., Ref. 26) 0.2725 037 81.272

932.80 ÷ 0.07 (Hirose & Manabe, Ref. 27) 0.2725 534 81.228

The American Ephemeris is using k = 0.2724953, based on Brown's lunar parallax. The values

for 1/_ obtained in the previous paragraph are between the two latter values in this table. The

arithmetic mean of these two latter values will be taken as the presently best value, namely

1/K -= &t® - 81.250(1 ± 3 x 10 -4 ) = 81.250- + 0.024 (60)

and therefore

R I

k --- _ = 0.2725 289 ± 0.0000 273 (61)

The last equation of paragraph 4 now gives

403 512.3

/_®- GM,- 1.0123077 -398606.4 ± 4.9 km3/sec 2. (62)

for the Earth, while, for the Moon,

/_, - G:_t, =Kg e = 4905.92 +- 1.52 kma/sec 2 (63)

7. GEODYNAMIC (TERRESTRIAL) RELATIONS

The surface of the Earth (geoid) can be approximated as the surface of an spheroid assumed

as an equipotential surface. The equation for the Earth's radius, as function of the latitude, is

then given by

where _0 is the geodetic (geographic) latitude and 95 the geocentric latitude. They are related by

tan 95=(1-/)2 tan _0 =(1-e2) tan <# (65)

where e = _/[ (2 - D is the eccentricity of the meridian ellipse of the Earth. The equation of

the Earth-ellipsoid is obtained by setting K = 0. The maximum depression, - K Ro, of the sphe-

roid from the ellipsoid is reached at the latitude 45 °. It will never be more than 5.17 m. For the

spheroid as equipotential surface there is

_ I P2 (sin 4_) + _- K P4 (sin 95) +... + -_ _ R 2 cos 2 95

GM 1 -.=2= _ I. R Pn (sin 95 + T R 2cos295 = const. (66)
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1 _ .

(

and the acceleration of gravity at this surface is

g = Igrad UI =g, [1+_ sinU¢+ysin 2 2 _'] = g,[1 +/3sin2q_+ (y+ /3/) sinZ2 6] (67)

where f_ is the angular velocity of the Earth's rotation,/_ and y are constant gravity coefficients

and Jn or ] and K are constant oblateness coefficients. These coefficients depend only on /,

K, and a parameter containing _ 2 (centrifugal force parameter). This latter parameter is a little

different in the various second-order theories which have been developed. Taking

f_ =7.292115146 x 10 "s tad/sec

1/7 = 298.30 ; 1 - / = 0.996 647 670

G = 6.670 × lffScm3/(g-sec 2) ; pm=5-517g/cm3 ; GPm =3"679839" 10"7 (68)

then the follow ing parameters could be used

f12 R a f/a

G _4 4/3 7r G p= (1 - [) = 0.003461 369 [ Herrick, (Ref.12]
(69)

_2 R 3 _2
v

G 3| 4/3 rr G p m
- _ ( 1 -/) = 0.003449 766 [Jeffteys, Ref.ll] (70)

( 8) s1-[+2/a- -_K =_'(1+ 2/a--_ -K)= 0.003449 843 [deSitter,
Ref.10]

(71)

m
Q2 Ro

g° 3 3 16

1-A-_- _+/+ - _ T

1-A-_ + ] + 1/2 K

= 0.003467730 [Darwin, Ref.28; Helmert, Ref.29] (72)

where R, = R° (1 - O tis is the radius for a sphere of same volume as the Earth and Rt =

R° (1 - 1/3 [ + 5/9 /_- 8/9K)is the mean radius for which P2 (sin ¢)= 0 or _=-sin'l_¢_l--73=

35°15"51."8. A = 0.88 x 10-_ is the mass of the Earth's atmosphere (expressed in mass of the

Earth) which does not contribute to the surface gravity of the Earth. Different assumptions have

been made for K. Bullard (P,ef.30) found 10 i K = 0.68. This value was accepted later by Herrick,

Baker, and Hilton (Ik-f.12) On the other hand, deSitter found values of only 10 s K = 0.47 to 0.52

and used dae round mean value 106K = 0.50. The theoretical limits are according to deSitter (Ref.

31)

0 x< K ..< [.__ 4 [2= (3.62 - 2.81) x 10-_=0.81 x10 "6 (73)

The different formula systems now yield
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1 1 z _ 4S =/-T_s--7--I + I_ + T,<

1 1/2 1 , 4=f-_-_>'- _ + _- /_ + 7,_

1 1 1 4
=/_2._1 - __/2+ 7/_1 + -,<7

1 1 f: 1 3ma 4
=f-_-m-2. + _fm+, _ +7'< (74)

24K= 67 D = 3 /2_ __/_" +-7" K

24
= 3/:- 1._5/_'+, "7-_

= 3/"=--_/._l+-_,<

24
= 3/.2 15 fm + i<--7" 7

5 26 /g + _ _l 8_)=_-/-T -- +7 '<

5 ~, 17 15 2+ 8=T C° -/-1_ /_'+-_ _" 7 _

5 _'x -/. - 17 /._t + 15 8= _- F_ -7-z;l +7 K

8
5 17 /.m + K= 2 "-/-i_ 7

1 /.2 5 /__ 3 K

1/.2_5= _ _/_'- 3,<

1 /2 5= _- - _-/_',- 3

1 /.1 5 /.,, -3K

(75)

(76)

(77)
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2 1X- g /(GM/R )=I-A-GJ+J+ ._ K

3_ 3 16= l-A- _+/+/2_ 7" /_ +'T K

3 /2 27 16= l-A- T_'+/+ -7-_ /_'+T '<

3 1 27 16
= 1- A- _" _i ÷ [+ / - _ f_l + T K

3 [2 27 [m + 9 m2 16 (78)=l-A- _ re+l+ - -_ _ +--f" K

Using these equations and the above-given constants for the Earth then the following table
2 2 4 K 8

is obtained with J2 =-(C-A)/(M R.)= -_ J and J4 =-_'_ =- _ D:

Coefficient

10 6 ]
10 6 K

X

K=O

1623.48

8.85

1082.32
- 2.36

5302.92
- 5.85

0.99816566

K=0.50x 10 .6

1623.77

10.56

1082.51

- 2.82

5303.49

- 7.35

0.99816680

K= 0.68x 10 .6

1623.87

11.18

1082.58

- 2.98

5303.70

- 7.89

0.9981 6721

The numerical values for lJ41 are a little higher than the values derived from the observed secu-

lar perturbations of artificial satellites. Thus the data for K = 0 will be used here.

The gravitational parameter of the Earth is now given by

4 R 3 go R_
_e =GM® = _ rtGp® (i-/) =- = 398606.4+4.9 km3/sec 2 (79)• X

4
which corresponds to 1/K = 81.250. Taking, furthermore,
X = 0.998 16566 that yields

F = 4.188 790 204; 1 - [ = 0.996647670;

g. R_ = XlZe = 397875.2 -+4.9 km3/sec 2= 3.978752 x 1014 m 3/sec 2 (80)

and

..$_.e= 4
R. -3- = (I- /) X6 p® = 4.167090 090 G pe

(81)
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or with G=6.670x I0 -scm s/g-secl

(ge/Ro)x 10 7
P® = 2.77945 [ g/cm 3] (82) )

8. EXPERIMENTAL VALUES OF THE GRAVITATIONAL

ACCELERATION OF THE EARTH

The observed gravitational acceleration at the surface of the rotating Earth can be repre-

sented by the formula

g=go[l+_3 sin 2 _+ysin 2 2 _ +Scos 2 _0 cos2()_-)%)] (83)

where _. is the geographic longitude measured eastwards of Greenwich meridian. The first term

corresponds to a sphere. The next two terms give the contribution due to the oblateness of the

Earth spheroid, while the longitude term is due to the non-ellipticity of the equator when the

Earth is assumed as a triaxial figure. The longitude, _0, gives the direction of the longest semi-

axis of the equator. _ is connected with the difference B - A of the equatorial moments of inertia

or with the flattening, [o, of the equator by the relation

9 B-A 9 3

a 4 _'_" R[= T A/.(2-/.) = _ /. (84)

because the inhomogenity factor of the Earth is given by

A = C C 1 (85)
M®(a2+ b 2) _- 2_ R e =

The most important determinations from gravity measurements since 1915 have been compiled in

a table on the following page.

All these gravity measurements are still based on the standard gravity value of Potsdam

(¢ = 52°22:86; ], =+ 13°4.'06; b =87 m)

g = 981.2740 ga!

obtained by F. Kuhnen and Ph. Furtwangler (Ref. 43). It is necessary to revise the Potsdam

system. For the correction of the Potsdam value, the following data are given (Refs. 4;4 and 45):

P. R. Heyl and G. S. Cook (Wash. D.C.) : - 20

Bullard (Teddington, G. Brit.) :- 15

J. S. Clarke (Teddington, Gt. Brit.) :- 13

Ivanoff (Leningrad, U.S.S.R.) : - 4

P. R. Heyl
Bullard and Browne

Morelli (1954)

H. Jeffreys

Wollard

A. Betroth

More 1Li (1959)

:-15
:- 16

:- 16

:- 13.4

:- 14 to- 18

:- 12.5

:- 12.9

milligal
T!

11

II

T!

II

TI

I!

II

11

according to absolute

gravity measurements

according to

reca lculatinns

'i
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Taking for go the latest determination of Heiskanen and Uotila (Ref. 42 ) which is nearly in

agreement with the average value of all determinations, and using the correction due to H.Jeffreys

(Ref.39) the following value is obtained

go = 978.0496- 0.0134 = 978.0362 gal = 9.780362 m/sec 2 (86)

9. THE DYNAMIC OBLATENESS AND THE CONSTANTS

OF PRECESSION AND NUTATION

The dynamic flattening H = (C - A)/C is connected with Newcomb's constant of precession,

P, by the relation

P 94419 319" 1678 932."29 for 1/K = 81.250 (87)
_- = 530977."04 + 1/K + 1

while the constant of nutation, N, is given by

N 252871"" 231982""
cos ¢ = = 2820Y45 for I/K = 81.250 (88)

H 1/K +i I/K + 1

where cos ¢ = 0.9173917 (for 1900.0) has been used for the cosine of the obliquity, e, of the

ecliptic. The constants in the equations are obtained from Brown's theory, of the motion of the

Moon and are well known. Both equations yield

P
-- = 2.288872 (1/K + 1)+ 407.01140 = 595.271
N

for 1/K = 81.250

while observed modem values of P and N lead to

P _ 5493/'62 = 596.614 and thus 1/K = P/N 178.8218 = 81.84
N 9_'208 2.288 872

This value for 1/1< is by far too large. H. Jeffreys (Ref. 39) has shown that in the equation for

the constant of nutation, N, another constant H" for the dynamic flattening must be used due to

the deviation of the Earth's interior from the isostatic equilibrium (H'< H). Therefore ./_ can be
determined only from P and 1/K. With p^ = Po + Po , the lunisolar precession, 0 = 3 v_ n , the

u .... j 2 C 2 ®

geodetic precessicm (a relativistic term due to W. deSittet), p, the general precession in longitude,

and _, the planetary precession in right ascension, Newcomb's precessional constant is

p = Po = P+ Pa +_ (89)
COS ( COS

Values fo_ 1900.0 derived from observations are (for a tropical century)

P = 5490:'66 p = 50257641 k= 12:'473 Pa = 0 (Newcomb& Andoyer, Ref.46)

5493.156 ± 0.175 5026.000 12.493 1.915 (deSitter & Brouwer, Ref.10)

5493.847 5026:" 650 12.469 1.921 (Clemence, Ref.7)

According to newer investigations, Newcomb's value of the general precession in longitude
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,i- •

must be corrected by Ap = + 0:'75 (H. R. Morgan, Ref. 47.), Ap = + 0:"71 (J. H. Oort, Ref. 48),

Ap = + 0:'86(Dirk Brouwer, Ref. 48), Ap = + 0:'84 (Poulkovo Obs., Ref. 48). The average value

for the correction may be Ap = + 0."80. All these investigators take AA-- 0. In another paper,

J. H. Oort (1943, Ref. 49) takes AX = + 0:'02, a correction also used by deSitter. The correction

for P is therefore

AP = Ape Apa +AA 0:'80+ 1.92 + 0.00=2."96 (90)
cos _ 0.917 3917

\k

The value

P = 5490:'66 + 2:" 96 = 5493:'62 (91)

will be accepted here. The dynamic flattening is now

C - A 5493:" 62 1
H = = 0.003 272 091 = (92)

C 1 678 932."29 305.615 ± _1.05

and thus

3 c J
- 0.496160-+ 0.00017 (93)

q -= 2 ,_0"_ - H

and

C /'2 = 0.330773 ± 0.00011 (94)
m e R_ - H

The quantity q may be calculated in another way. Clairant's theory for the Earth in hydro-

static equilibrium has been developed to the second order by Radau (Ref. 50), Callandxeau (Ref.

51), and Darwin (Ref. 28). deSitter (Ref. 31) gives

3 C =1_ 1 2 ( 2 ) _/1+ fixq _ _ MR---T _ _st-3 1- _ / l+Xt (957

where

771 =

5 10-_2 4 [2 6T _t +-,2-f-°* + "_- _-[_,

5 /2 4/-_ +-y

-- 2 (96)

and 1 + )t 1 is an average value of Radau's function, [ (_), depending on the internal density

distribution of the Earth. The most reliable value, 1 + )t 1 = 1.00016, was derived by Bullard

(Ref. 30). With the above data for [ and _1 the above-mentioned equations give, for K = 0,

_t = 0.57440 ; q = 0.49815

C 2

= _ q= 0.33210
o
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These data are not compatible with the previously derived data (eqs. 93 and 94), showing that

the hypothesis of hydrostatic equilibrium is not fulfilled for the Earth.

10. DENSITY DISTRIBUTION WITHIN THE MOON

It is very difficult to derive a consistent system of lunar constants. Most reports on this

subject are based on the work of Sir Harold Jeffreys. However, not even this source is free

of inconsistencies. The reason is that many lunar constants are coupled with each other by rela-

tions. Therefore a systematic investigation of these relations will be necessary.

It is assumed that the density p within the Moon is constant over concentric e11ipsoidal
shells

a----_+ b 2 + c 2 = (97)

where /_ varies from 0 at the center to I at the surface, and where

_/a = tz cos 6 cos 0

rl/b = # cos q_ sin 0

_/c = # sin 6

(98)

are the relative coordinates of the mass element

dm =p(/x) d_ dr/ d_=p(#) abc# 2 cos_dlxdc_dO (99)

The angle q5 is the lunicentric latitude and 0 the longitude, a is the longest semi-axis of the

surface ellipsoid pointing toward the Earth, b the smallest semi-axis in the lunar equator, and c

the rotational or polar semi-axis.

Using equations (98) and (99) after observing that

sin20 dO= dO-=rr; | cos 3ff d_b = _ ; sin 2 _bcos gb dq_ =
_'c0 at_7r/2 .I--rr/2

the moments of inertia around the a, b, c axes, respectively, become

S"A = (7/2 + _2) dm = AM (b2+ c 2)
o

/3--_;(_2+ _2)dm =AM (c2+ a 2)

,!_ 2 b 2C= (_2+ _ ) ah =XM(a2+ ) (100)
o

where the integrations are taken from 0 to 2rt with respect to O, from - rr/2 to n/2 with respect to

and from 0 to I with respect to #. In the last equation M = 4/3 nabcpm is the total mass

(Pro is the mean density) and the inhomogeaity factor, k, is given by

f fop lz4 d l_ p _4 d#
0 (101)

-

Om
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C
Because a > b > c, there is A < B < C. A constant density model gives k = 1/5 = 0.2. For

Jeffreys compressional model with constant bulk modulus (Ref. 52 ) Roche's density law [with

p= -- 3.342 g/cm 3 (mean density), P0 = 3.290 g/cm 3 (surface density) and Pe = 3.420 g/cm 3 (cen-

tral density) ] becomes

P=Pc - (pc-p0) 2 = 3.420- 0.130 2 [g/cm 3] (102)

The inhomogenity factor is, therefore,

5 5

1 Pc- -_ (P¢-Po) 1 Pc- -_'(P¢ -Po) 0.9955

x=T p= =Y 3 - 5
Pc- T(P_-Po )

= 0.1991 + 0.0001 (103)

11. CONSTANTS OF THE PHYSICAL LIBRATION OF THE MOON

The values of [_= C- B and the inclination of the Moon's equator to the ecliptic can be
C-A

determined from observations of the physicai libration of the Moon. Due to the dlfficultv of

observations near the irregular limb of varied illumination the values for [ scatter widely, as

can be seen from the following table (Refs. 11 and 13 ):

C-B
Author Year [ -= C- A

F. Hayn 1907 0.75 ± 0.04

F. Hayn 0.85 + 0.07

J. Stratton 1909 0.50 ± 0.03

I. V. Belkovich 1936 0.84 + 0.08

I. V. BeLkovich 1949 0.67 ± 0.03

K. Koziel 1949 0.71 ± 0.051

K. Koziel 1949 0.60 + 0.055

A.A. Nefedjev 1950 0.65 ± 0.045

A.A. Yakovkin 1950 0.85 _: 0.03

T. Weimer 1954 0.60

Mean Value 0.70 2

Sir Harold Jeffreys used [= 0.84 in his book The Earth (Ref. 11). Later he recommended { = 0.67

(Ref. 53 ) and used [ = 0.639 + 0.014 in his latest paper (Ref.54).

The secular motions of the perigee and node of the lunar orbit are also in/luenced by the

Moon's oblateness coefficients (L and K). From Jeffreys equation for the perigee motion follows

(Ref. 11 ):

380L- 1192K= 6.420- 3896]o >_ 0
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and thus

K 380 812
/= l--L- >/ 1- IIiTffZ- = 1192 - 0.6812

The mean value of the table is consistent with this lower limit for [ and therefore

/ = 0.70 ± 0.02 (104)

will be adopted in this paper.

A new investigation of the libration of the Moon's axis by H. Jeffreys (Ref. 54 ) leads to

C-A
/3=- ---C"-- = 0.0006279 + 0.0000010 (105)

taking into account a solar effect not evaluated by Hayn.

The three quantities A, [, and/3 are sufficient to calculate all other quantities, provided the
mass and the mean radius of the Moon are known.

12. RELATIONS AND NUMERICAL VALUES FOR THE DIMENSIONLESS

MOMENT OF INERTIA PARAMETERS

The same symbols for moment of inertia parameters will be used as they have been intro-

duced mainly by H. Jeffreys (Ref. 11). The numerical values are based on the above-given
parameters A, {, and 13 ; namely

A B C
)k =

31(b_+c ") M(c"+a _) - M(a_+ b "_)

C-B C-A C-B
31(tfl-c 2) - M(a 2-c 2) - 31(b 2_c2 ) = 0.1991 -+ 0.0001 (106)

a C-B 2]-K ] - 1/2 K b2- c2
[ =-fl= _ = 2I+K -- L - a2-c2- 0.70 +- 0.02 (107)

fl C- A ] + 1/2 K L a 2-c 2
C = g - g - a-_+b2= 0.0006279 -+ 0.0000010 (108)

The other parameters can be derived from these as follows:

1-/= y _ B-A =. K K __aa-M = 3A-g= 3_./8-I
/3 C-A ] + 1/2K = _= a 2_ c 2 L /3

= 0.30 ± 0.02 (109)
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a

Y

c- B j-1/2 K
c /fl= g

L-K b 2 -c 2

g a2+b 2
= 0.0004395 +--0.0000133

(11o)

B-A K a2 - b2
c =#-,:,=-=(1-hfl=g

= 0.0001884 + 0.0000129 (111)

._ C 3A 3 a 2 + b2

g 2 Ma-'2- - i + y - 2 A _ -- 0.5972 ± 0.0003 (112)

L -
3 C-A 1 3 a2 -c2

=] + _ K =glg= _ A2 Ma2 a2
= 0.0003750 ± 0.0000008

(113)

C A+B a2÷ b2
C2

3 2 1 1+/ 1 1+/ 3 2
I = _ ,_,,2 = L- _ K=--T--t. 2 1--7 K-- :_X ,,2

1 y) =g 1= g (/_ - 2" 2 =g(a+ _ y) = O.O003187s:kO.O000044 (114)

K 3 B - A 3 a 2 - b2
2 _ =(1-/)L=gy--_- h _ = O.0O01125±0.000OO77 (115)

The dimensionless moments of inertia and their differences are obtained from the above-men-
tioned data as:

C-A 2 2J+K a 2 -c 2
Ma-_-= 3 L = 3 =A 7=0.0002500..!+0.0000005 (116)

b 2 -- ¢2
C-B 2 /L - 2J-K =X _ =0.0001750_+0.0000054= 3 3 (ii7)

B-A 2 2 a=-b 2
hla2 = _ (1 -/) L = _- K = A _a2 = 0.0000750 ± 0.0000051 (118)

A 2 2 b 2 c a
Ma-''i = 3" g (i-/3)= _- (g- L) =k + = 0.3978 77 + 0.0002 (119)

as

B 2 2
(g-/L)=X c=+a'

a 2 " = 0"3979s2 + 0.0002 (120)
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C 2 2_. a2 + b2

Ma z - 3 g - 1+)/ -A a2 - 0.3981 27 ± 0.0002 (121)

The ratios of the semi-axes now become

2 'b __ 1- __£Z.__= 0.9998116 +- 0.0000129
a -_l+y = l+y

(122)

c 2_ ' 2y = 0.9993720 + 0.0000010 (123)
I l+y - (I-[)(I +y)

These data seem, at present, to be the most reasonable. H. Jeffreys' value

3 C
g =- 2 MaU- 0.5956±0.0010

is slightly low, and affords a higher density concentration towards the center as has been as-

sumed by ]effreys.

13. THE FINAL DETERMINATION OF THE DIMENSIONS,

MASSES AND MOMENTS OF INERTIA FOR THE EARTH

AND THE MOON

Using the obtained value of the gravitational acceleration, g°, at the equator (eq. 86) in the

relations (eq. 80) and (eq. 82) at the end of Section 7 there follows at once R° = _/X_ =
6378 169.835 m and p® = 5.516964 g/cm 3. The final values, adopted for the Earth, will be
taken as

R° = 6378170 (1 -+3.2 x 10-6) m = 6378170 ± 20m (124)

and

pe = 5.5170 (1 ± 7.3 x 104)g/cm 3 = 5.5170 ± 0.0040 g/cm 3 (125)

The volume of the Earth is

4 3 102¢
Vo = _ rr R, (1 -/) = 1.083 225 x (1 -4-1.02 x 10 "s) cm a

= (1.083225 +- 0.000011) x 102¢ cm s (126)

while the mass is given by

Me = G/_ = Ve Pe= 5.9761x 10 2¢(1-4"7.2 x 10 -4) g=(5.9761±0.0043)x 102¢g

(127)
and the polar radius now becomes

R =R (1-D=6356788(1±3.TxlO-_)m =6356788+24 m (128)
p °
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The unit for the moments of inertia is

MoR2 = 2.43114 x 104s(1 _a7.3x 10-4 )g cm2= (2.43114 ± 0.0018) xl04Sgcm 2 (129)

and therefore

C - A = ]2 x 31e R 2o= 2.6313 x 1042 (1 ± 9.I x 10-4)g cm 2 = (2.6313 _- 0.0024)x 1042gcm 2

(130)

2
C=_ q ×,_1® R2# =8.0415 × 1044(1 ± 1.07-_ 10-3)g cm 2 =(8.0415 ±0.0086)× 1044g cm 2

(131)

It is now possible to give corresponding data for the Moon. The mass is given by

M = _¢M, = 7.3552 x 10 25 (1 ± 1.02 x 10 -_) g =(7.3552 +-0.0075) x I02s _ (132)

while the mean visible radius is

R, = kR e =1738236(1 ±I.0× 10-4)= 1738236 ±174 m (133)

and therefore the semi-axes of the three-axial Moon are

a = __R' = 1738946- +186m (134)
a

b = a (ab--? = 1 738 618 ± 209 m (135)

¢ =a (c) = 1737854 + 188m (136)

The unit for the Moon's moments of inertia is

M, a2 = 2.2241_ x 1042 (l +1.23x i0-3 )gcm 2 =(2.22416

and thus the moments of inertia are

+ 0.0027) x 1042g cm 2
(137)

A = 0.884942 x 1042 (1 + 1;73 x 10 -s) gcm2= (0.884942 +- 0.0015 s )x 1042_ cm 2 (138)

B=0.8851ogx1042 (l+-l.73x10-S) gcm 2 =(0.8851og±0.0015s)x1042gcm 2 (139)

C = 0.885 49s x 1042 (1 ± 1.73 x 10-a) g cm 2 = (0.88549s± 0.00153) x i0421g cm 2 (140)

C A+B
2 = (0.000473 -+ 0.000007) x 1042 g cm 2 (141)

B - A = (0.000167 ±0.000012) x 10 42 gcm 2

The oblateness coefficients of the potential function of the Moon are

(142)

I2 c- (a + _)/2 2
= M, a 2 = _- I = 0.0002125 ± 0.0000029 (143)
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/(2) B - A 1
i = 4 M, aa - 6 K =0.0000188-+0.0000013 (144)

The derived value for the equatorial radius of the Earth (eq. 124) is in good agreement with

the following values:

Author Year Ref. R
e

W.M. Kaula 11961 55 16378163± 21 m

V. C. Clarke, Jr. [1962 56 6378 165 -+ 25

I. Fischer 11962 57 378 166

Present Report 11962 378 170 ± 20
, 1

I. Fisher's value for 1/K = 3I_ '3I, = 81.268 is also in good agreement with the value in this

report. The presented system of constants is not only a consistent one, but the most serious

discrepancy has been removed in determining the gravitational parameter fz® from terrestrial

data and, on the other hand, from the lunar mean motion in combination with radar measurements

of the Moon's distance.

Finally, the present data for the Moon's moments of inertia are compared with the values of

other authors in the following table:

Author t Ref.

B. E. Kalensher 58

Makemson, Baker, Westrom 13

V. C. Clarke, Jr. 56

Present Report ---

A

103St£g 2

0.87976

0.88837

10.88746

10.88494
!
i

103Cg.m 2

0.87985

0.88856
0.88764

0.88511

C C-(,4+ B)J2

0.88032

0.88893
0.88801

0.88550

B - A

l_Sk_m:

0.00051 0.00009

0.00047 0.00019

0.00046 0.00018

0.00047 0.00017

The values of V. C. Clarke, Jr. are used for the Ranger Program.

14. THE EARTH ELLIPSOID

The equation of the rotational ellipsoid or spheroid is

where

X2 +y2 Z2

R2. + R---_-=I

x = R cos_b cos;_ = R cos_b cos)t = p, cos_° cos)_

y = R cos &sin _. = R,cos_b sin _ = p, cos_0 sin h

z = R sin 4_ = R sin _ = p,(1-e z) siu_o
P

(145)

(146)

(147)

(148)
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and R, is the equatorial Earth radius, Ro the polar Earth radius, R the local Earth radius, p,, the
normal radius of curvature, A the geographic longitude (positive eastward of Greenwich), 6 the
geocentric latitude, _t the reduced latitude, _0 the geodetic or geographic (= astronomical) lati-

tude, and e the first eccentricity of the meridian ellipse. Introducing the second eccentricity,
(, and the flattening (oblateness, ellipticity), [, the following relations hold

{= R'-R;-= 1-V'l-e-_ =1 1 1 e2 1 e4 1"l'3"5...(2K--3) e2K+...
R. _/1 +_ = 2 + 8 +'"+ 2.4.6.8 .... (2K)

(149)

:= R - R;
Ru 1.,_(2 - /'(2-/) = 2/- /'2 (150)

#

(l= Ri,,-R lo _ I(2-/) = 2f+ 3f_+...+(K+l)f'<+... (151)
R2. l-e -'x-- (1- _"

thus

R---e.-P= 1 - / =_ 1 (152)
Ro V.I + _"2-

The different latitude angles are related by

tan 6= %/1-e -'l- tan_ = (1- e 2)tango (153)

tan 6= (l-f) tan _ = (1-/)2 tan ¢ (154)

By differentiation the relation

R 2

R--'-p"d,_ = R,, d_ =p d ¢ (155)

follows.

Thus the line element is

ds2 = dx2+ dY2 + dz2= dr2+ r2dd a2 + r2 c°s2 6 d_.2= R2. (I - e2cos 2 _) d_ 2 + R:. cos2 _t d)_ 2
(156)

The parameter p is the mean radius of curvature, and is correlated with the normal radius of
curvature

2
R, R./R. =R cos_ (157)

P. - (l-e i sin 2_o)_ - (l+e2cos 2 _o)_ cos _o =

[, > ]= R, l+-_-elsinl_O + i e4 sin4 _0 + e6 sin6 _0 +...

and to themezidional radius of curvature
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R, (I- ,2) R_/R. R._/Rp
Pm= (1-e2 sinS_o)3/2 - (I-e2 sir_e)3/2 - (i+(2cos2 _ )3/2

3 2 15 4 35 6 ] (158)= Ro(1-e 2) l+_e sin2 _o +__ e4sin _o+ _- e sin6_ +...

by the relation

R A_ /Ru = R v[l+ e: sin 2 _- e 4 sin 4_+e%in 6_+...]p=_/p_,p, = l_e_sin2_ = 1+(2cos2 _o

(159)

The radius of a parallel of latitude is Pn cos _0= R° cos _= R cos 4- Because /or e2 are small

quantities the latitudes 6, _, and @ will not differ very much from each other. Therefore it is

very useful to have rapidly converging series developments available for the differences _ -

and _b-_o. With

m = R 2.- R 2 1-(1- e2) e2 i /2 I /4
R2 + R_ = 1 + (I e2) = "_-----_-_e= [ + _ - _- +"" (160)

• p

there is

ms m3

= _o _m sin 2 _0 + T- sin 4_:- _ sin6_ _:"" (161)

m 2 rrz3

_0 = _b +m sin2_6+ _- sin 4d) +-_- sin6_+...
(162)

and with

R.-Rp = I-(1--/) / I I {2 (163)
n - R,+R--_ i +(1--{) = 2----_ = 2 /+ 7[ +""

there is

n 2 . n 3

_b = _0_nsin 2 _o+ _-sm 4 e --_- sin6 _o+""
(164)

n2 n3
'P =O +nsin2_b+ _-sin 4_b+ _- sin6_b+... (165)

An accurate formula [or the difference _o _ _ is given by

e2 tan _o e2sin _o cos _o

tan ( (P - _b) = 1 + (i - e 2) tan2 _o = 1 - e2 sin 2 _o (166)

The local Earth radius (radius vector) can be accurately calculated [tom the relations

- R,_/l-e_sin_b = RJ IR =_/x_+y_+z _ = _/l-e_cos_q_' l-e_sin_o

= R 1 -- 4m (1 + m)-_sin_ i° l+n m _= R 1 + + 2m cos 2(P
1 4n(l +n)-T'_-T--_ _ " 1 + n _ + 2ncos 2_o

(167)
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By taking the logarithm of the last relation there follows

R l+n
In

--ff-_-= In i + m
Ill

1 1

+_ In (1+m2+ 2tacos 2_ °)- _- ln(l+nZ + 2ncos 2_ ° )

or, using a know n series development,

1+ n I m2--n2 m3--n3 ']log R_ log 1 + m 2 3 _'"
= ÷ M (m -- n) cos 2 _° cos 4_° + _cos6g ° (168)

where M is the modulefM = 0.43 429 44819). This series is due to Encke.

Conventional power series for R/R e can be obtained as follows:

R"_=R (i+ asin26)_i/2=1 - 2-1 _2sin2cb +' 83 4sin4c__ l_6sinS 6+...
(169)

The above-mentioned power series for the local Earth radius can also be written

RRe - I - _2 _ _._¢s sin26_ ¢4_ _ sina 2 _b + ee sin acb sin2 2,3 +...

(170)

or

C3 1 ) 5 [asin24_sin22q_÷.."RR__= l_/sin26 - /2+ _{3 sin:26 + g
Re

(171)

using eq. (151).

In order to obtain power series for the local Earth radius as a function of the geodetic lati-

tude, _o , it is useful to set

4m e_ 2) 4n
/_- (1+ m_ = (2--e ; k'- (1+ n) z= [ (2-D= ea ; /_//_ = 2-e 2 (172)

the non-dimensional local Earth radius is now

R =i_1
R--_ _ (k - k ") sin s

or

¢ - -_ (k2+ 2k. - 3/_'2) sin4 _o- ]_3+ k.2 k. "+ 3 k. k,"2-- 5 k."3) .sin6 _o....

(173)

1 e4[(2_ e2)2 + 2 (2 -- e2) -- 3]sin4 _o
-_=1--_R I ea[(2_e2)_l] sin2¢-

- l_e 6 [(2 - e2) 3 + (2- e2) a

Because

+3(2-e 2)-5]sin s_° .... (174)
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e2=2 /-/2 ; 2-e2 =2-2/+/2

there is, also,

" :'- (i- 1-7R---_" -2 i2÷ _ -- 5 fl -- __ f3 -- 1.f3/Ssin6 ¢ ....

(72 13) 133= I -/sin2 _ + [ - _ / sin 22_° ÷ ____i sin i ¢ sin i 2 _o +..,

, J=1- 2/+_./2+ .f3+ _f- _f - f+ _f cos 4_+ 8--4-j3cos6

(175)

It is also important to know the arc co_responding to l°inlongitude, namely

_" _" R e COS

v = _ p, cos _o _ 180 (1 -e _ sin'CP )_i,

( 3 e' sin' )1 e2 sin2 _ + _o +...=_ R cos _ I_-T -ff180 " '

" 0 1 3 4 (e 2 94)= 18-'-'-O R, + g e2+ _-_-e ) cos ¢P - _ + 1--_--e , cos 3 _ +

and the arc corresponding to 1° in latitude, namely

3 e4
-i_ cos 5 v_:...

(176)

rt rt Rc,(l-e 2 ) r¢ Ii 3 " 2 15 4-:-4 ]/_ _ P 180 (i -- e i sin2 _o )312 180 R.(1 -- e 2) + _ e:] --= m- - sin _+ 8 e _u_ ¢ +...

= rr 45 e4 + 1---6-e cos 2 _o + cos 4 ¢ _... (177)_ + e_+ _ _ e2 15 4 e4

The length of a meridian quadrant is given by

Ir -- F n'/l R.(I - e l) d e:t_ f 1 dz
Q== 2 P= _=1 (1-easin_¢)31_ ¢=R. (1-

*" 0 J (1 - e2zi)_/tl - z_Jtl - eZz _)
0

_ 35 _._

{ 'e' '".' }rt R (1 - e i) 1 + _ _-e 2--_= _- + + +*..

(178)

rt R. (1- le2- 3 4- 5 )= T ¥ -fie 2-3_ _....

rtR (1_ 1 _ 1 ,I _= 2- __f + /l+ .__[ +,.
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The volume of the Earth spheroid is simply given by

4 R2eR = 4 R 3 (179)

while the surface area follows from

S=4rtR R v 1+_2z2 do'=2rrRoRp _/1+_ 2 +- sinh-l_
£

0

= 2. R lr1+ 2. R. 1+

2 ( 1 2 4 4 8 _ ) :( 2 T5 4 3 ""X180)= 4. R. i- _ + iS-_ -_ ..... 4. R. 1-$/+ /2÷T65_ / +

These formulas will now be used to derive the Earth's dimensions and other Earth parameters.

Taking R° = 6378 170 X 20 m and 1// = 298.30 ± 0.05 yields

e2= 0.006693422 , e = 0.0S1813334

_2 = 0.006738525 , _ = 0.082088522

m = 0.003357 949 = 692:'627

n = 0.001678979 = 346['314

The mean radius is

_- _ 2R°+ R e =6371043_+ 21 m (181)
3

The radius for the geodetic latitude _0 = sin-l_/1/3 = 35 ° 15" 51-8 (¢ = 35 ° 4" 59- 5) is

%/ °2(l-e2 ) =R. II_ 1 5 2 1 2 _ 6.371083±21m (182)R I =R e 1-- 3_e2 T[+ _/ + _/ +" --

The radius for the geocentric latitude q_ = sin- 1_/1/3 = 35 ° 15" 51:'8 (_' = 35 ° 26' 45--5) is

/'I eZ _ _ 1 1/2 7 /3 "1 (183)R 2= R. 3-2e 2 = R° - _ /- _ --_- .... 6371019 ±21m

The radius for a sphere of equal area is

1 1 2 1 /s 11 )Rs= (S/4rt)z/a= R° - 3 / - _- +9-'_ / + .... 6371041 + 21 m (184)

while the radius for a sphere of equal volume is

( I 1 /2 5 , )Rv= (3V/41t)l/3= R (i -]9'/3=R 1- T� - _ - TF/ .....
=6371035±21m

(185)

B-31



The surface area is

S=4.R. _ l--_f+ f2+ / +...I--6T

while the volume is given by,

4 R 3 1021 a
V= _-rr , (I -[) = (1.083 225+ 0.000011) x rn (187)

The radius of curvature at the pole is

PP = Re2 /R v = R ./(1-/) = 6399624 + 24m_ (188)

while the meridional radius of curvature at the equator is given by

pm=R_/R = R (1 _/)2 = R (1-e2)=6335478+27m (189)p • • --

"]he length of an equatorial quadrant is

Q, = _ R.= 10018806 _-L-31 rn (190)

while the length of a meridional quadrant is

n 1 I 2 3_ 3+...Q_= -_- R (1 - _ / + 1-_[ + / ) = 10002020 t: 34 m (191)

Therefore the arc corresponding to 1° in longitude is at the equator

v, = Q,/90 = _ R,= 111320.07 +0.35 m (192)

while the arc corresponding to 1 ° in latitude is at the equator

fr fF

= 18---0 P=, = 1-_ R,(1-/)2 = 110574.95+0.47m (193)

at the pole

= (5.100 711 +_0.000 034) x i0 14 ra 2 (186)

rt rt (194)
lzp = _ po= .-_ R,/(1- [) = 111694.51 +0.41 ra

and in the average

"_= Q=/90 = 18-0rr R (1- _-1 / + i__/1 2 + ._._/1 _+...) = 111 133.56 +0.38m

(195)

Finally, a few series developments are given for the Earth radius, for the various definitions of

latitude, and for the radii of curvature:
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Q.,_j

4) = _o - 692:" 627 sin 2 _o + 1:'163sin 4 _o _...

_o = _ + 692:" 627 sin 2 _5 + 1:" 163 sin 4 ,_ +.,. (196)

and

t_ --- _o - 346."314 sin 2_o+ 0:'291 sin 4 _o;...

_o = _ + 346:'314sin 24J+0:'291 sin 4 _+... (197)

furthermore

R (198)

log _ = 9.99927266 + 0.00072917 cos 2 _ - 0.00000184 cos 4 _: +...

and

R

= 1 - 0.00336 9263 sin 2 (_ + 0.00001 7028 sin 4 d_ - 0.00000 0096 sin s @ +-""

= 1 - 0.00335 2330 sin s 05- 0.000004233 sins 2 _ + 0.000000024 sin s05 sin 2 2 6 +...

-- 0.99832 1724 * 0.00167 6162 cos 2,5 + 0.00000 2111 cos 4 6 + 0.000000003 cos 6 & +...

O5

R = 6378 170.0 - 21489.7 sin a _ + 108.6 sin ( @ - 0.6 sin e _ -+"'

= 6378 170.0- 21381.7 sin s _ - 27.0 sin 2 205 + 0.2 sin 2 05 sin a 2 _ +..,

= 6367465.7 + 10690.8 cos 2 _o + 13.5 cos 4 _o + 0.02 cos 6_o+...

and

R 1 0.00332 4310 sin s _0 0.00002 7777 sin 4 _0 0.00000 0241 sin _ _o
R e

= 1 - 0.00335 2330 sin 2 _o - 0.00000 7004 sin s 2 _ + 0.00000 0060 sin s @ sin 22 95 +..,

(199)

(2oo)

= 0.99832 0349 + 0.00167 6156 cos 2 _ + 0.000003487 cos 4 _ + 0.000000008 cos 6 _ +..-

(201)

R --6378170.0-21203.0sin 2 _o -177.2sin4 _o -1.5sin6_o ....

--6378170.0-21381.7sin 2_o - 44.7 sin 2 2 _o +0.4sin a _o sin 2 2_o+...

--6367456.9+ 10690.8eos2_O +22.2cos 4 _o +O.0s cos6 _o +,.. (202)
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and

_t = p.__ = 1 + 0.010040132 sin 2 ¢ + 0.000084004 sin 4 _0
/i Pa,.

= 1.00505 1568 - 0.00506 2068 cos 2 '9 + 0.00001 0500 cos 4 _o

0£

/i = 110574.95 + 1110.19 sin 2 ¢ + 9.29 sin 4 _0 of- • io

= 111 133.53- 559.74 cos 2_° + 1.16 cos 4 _0 ¥...

g-... (203)

(204)

m = cos q_ = 1.00083 8785 costa
Is' e

Of

and

-0.00083 9841 cos 3

v= 111413.44cos _o -93.49cos 3_° +0.12 cos 5_°

+ 0.00000 1059 cos 5

(205)

(206)

= 1 + 0.003346711 sin 2 _ + 0.000016801 sin 4 ¢ + 0.000000094 sin 6 9o +,,,
R e

i + 0.00336 3605 sin 2= _o - 0.000004224 sin i 2 _o - 0.000000023 sin 2 _a sinZ 2 _o

= 1.00167 9685 - 0.00168 1800 cos 2 _o + 0.000002118 cos 4 _o - 0.00000 0003 cos 6

(207)
O_

Pn = 6378170.0+ 21345.9sin2_ o + 107.2 sin4_ ° + 0.6 sin6_ ° +...

= 6378.170.0 + 21453.6 sin 2 _o_ 26.9 sin 2 2 _o _ O.Is sin 2 _osin 2 2 _o +...

= 6388883.3- 10726.8 cos 2 _o + 13.5 cos 4 _o .... (208)

/
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SUMMARY

Aninternallyconsistentsystemof astrodynamicconstantsis derivedbasedupontheoretical
couplingrelationshipsandthemostrecent available experimental data. A previously existing

discrepancy in the value of the gravitational parameter of the earth (as derived by different

methods) has been eliminated. Likewise, several inconsistencies in the previously available

system of lunar constants have been removed.

A new method of determining the ratio of the masses of the Earth and Moon has been derived

and the results are in agreement with other determinatims.

An error study of each constant is presented; both relative and absolute probable errors are

listed.

The results of this study can be summarized in the following list of astrodynamic constants:
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1. GENERALCONSTANTS

1. Newton'sgravitationconstant:

G = 6.670 (I ± 0.0007) x l0 -s -- (6.670 ± 0.005) x i0 -s era 3 g-1 s-Z(dyn era2 g-2)

2. Velocity of light:

c= 299792.5 (1 ±3.3x 10 -7)= 299792.5 ±0.1 km/s

3. Solar parallax (Sun's equatorial horizontal parallax):

no = 8:'79414 (1 + 5.8 x i0 -6 ) = 8:'79414 ± 0:'00005

4. Astronomical unit (mean Earth-Sun distance = R°/rr o sin 1"' ):

a. u. = 149598700 (1 ± 2.7 x 10 -6 ) = 149598700 ± 400 kra

5. Light year (distance which light travels in a year = Po c) :

1. y. = 31556925.9747 c = (9.460530± 0.000003) x 10 12 km = 63239.39 ±0.15 a. u.

6. Parsec (distance in which i a. u. appears as 1"" = 1 a. u./sin 1"'):

p e -- 206 264.806 247 a. u. = (3.085 695 _ 0.000 008) x 101_ km= 3.261 651 ± 0.000 008 I.y.

7. Light time for 1 a.u. :

r = a.u./c = 499.008 (1 ± 3.6 x 10 -s) = 499.008 ± 0.018 s

8. Constant of aberration:

K = 20."4956 (i ± 3.5 x i0 -s) = 20:'4956 ± 0:'0007

9. Obliquity of ecliptic

e = 23°27"8:'26 - 46:'844 T- 0:'0060 T 2 + 0"00183 T 3

cos e = 0.917 3917 ; sin _ = 0.397 985 5 (1900.0)

10. Newcomb's constant of precession (per tropical century) :

p = P0 _- 5493:'62-0:'00364T = (N+2:'96)*
COS

11. Luni-solar precession in longitude:

P0 = Po + P' = 5039."804 + 0:'4930 T- 0:'00004 T 2 = (S + 2.*72)

* N refers to Newcorab's precessional data
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12. Geodetic precession in longitude:

Pa = _-3 (v®/c) 2 n o= 1;'9188±0."0002 = (Nt- 1;'92)

13. Observed luni-solar precession in longitude:

Pl = P0 - P g = 5037:" 885 + 0:'4930 T- 0:'00004 T 2

14. Planetary precession in right ascension:

A =- m + n cot_ = i2:'473 - 1:'8870 T- 0:'00014 T

15. General precession in longitude:

= (N + 0:'80)

2

= (N + 0:'00)

P = P I - ,\ cos e = m cos ( + n sin (= 5026:'441 + 2:'2229 T + 0:'00026 T 2=(N + 0;'80)

16. General precession in right ascension:

m = Pl cos (- >, : 4609:'236 + 2;'7945 T + 0:'00012 T2: (iv + 0;'73)

= 307:2824 + 0:18630 + 0.' 000008 T2= (iV + 0." 0487)

17. General precession in declination:

n = Pl sin ( = 2005."005- 0:'8533 T- 0:'00037 T 2= (iv + 0":32)

= 133: 6670- 0." 05689 T- 0:000025 T2= (N+ 0: 0213)

18. Mean siderial time rate (for 1950.0):

= 7.292 11585479 x 10-Srad/s = 1.002737909294 d,/d (s,/s)
m

= 15.041 068 639 41 "/s (°/h) = 360.985 647 346 0 °/d

2. EARTH CONSTANTS

19. Semi-major axis of the Earth's orbit:

a® = 149598700 (1 ± 2.7 x 10 4 ) = 149598700± 400 km

20. Siderial mean orbital motion (for 1950.0):

n • = 0.985 609108 0 °/d = 0.041 067 046 15 "'/Is (°/h)

= 1.9909865817 x 10 -_ rad/s
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21. Mean orbital velocity:

v® = a® me = 29784.90 (1 ± 2.7 x 10 -6) = 29784.90 _: 0.08 m/s

22. Mass ratio of the Sun to the Earth-Moon system:

Mo

v = _ = 328898.6 (1 • 1.6 x 10 -s) = 325898.6 ± 5.2

23. Mass ratio of the Sun to the Earth:

Me
v (1 + K) = _ = 332 947.6 (1 ± 2.0 × 10 -5 ) = 332 947.6 ± 6.7

24. Gravitational parameter of the Earth:

_® = G,_4® = 398606.4 (1 ± 1.23 × 10 -s)-- 398606.4 ± 4.9 km3/s 2

25. Mass:

M® = 5.9761 x 1027(1 ± 7.2 x 10 -4 ) = (5.9761 t 0.0043) × 1027 g

26. Equatorial radius:

R,=6378170(1_: 3.14x 10 -_)=6378170±20m

27. Polar radius:

R = 6356788(i ± 3.70 x i0 -6) = 6356788 ± 24 m
P

28. Flattening (oblateness, ellipticity):

/ = R,-Rp 0.00335233 (1±1.7x 10-4)= 0.00335233 +0.00000056 1:(298.30+0.05)
RO _

1-{=(1-ez)i/2= (1 +ez?l/_ Rp/R,=0.99664767(1±5.6x 10 -7 )

29. First eccentricity of the meridian ellipse:

e = 0.081813 33 + 0.00000680

e2 = /(2 - [) = 0.006 693 42 + 0.000001 11

30. Second eccentricity of the meridian ellipse:

= 0.082 088 52 -+ 0.000 006 87

e 2

(2= _ =0.00673853±0.00000113

31. Mean radius:

R" = (2 R +R v) /3 = 6371043 (l + 3.3 x 10 -_)=6371043±21m
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32. Radius for geodetic latitude _0 = sift1 X/1/3 = 35°15"51:'8

R 1 = 6371 083 (1 + 3.3 x 10-6) _ 6371083 t21 m

33. Radius for geocentric latitude d = sin-1_/1-73-= 35°15"51:'8

R: =6371019(i_:3.3x 10 -6)=6371019±21m

34. Radius for sphere of same surface area:

R s=6371041(1 ± 3.3_ 10-6 )= 6371 041 ± 21 m

35. Radius for sphere of same volume:

R v= 6371 035 (1 ± 3.3 x 10 -6 ) = 6371 035 ± 21 m

36. Surface area:

1014 2S_ = 5.100711 x (1 *_6.6x 10-6)= (5.100711 +_0.000034)× 1014 m

37. Volume:

V_ = 1.083 225 x 1021(I ± 1.0 x lO'S)= (1.083 225 ± 0.000011)x I0=1m3

38. Mean density:

_® = 5.5170(1 ±7.3x 10-4 )= 5.5170±0.0040 g,/cma

Angular velocity of the Earth's rotation:

1"/ = 7.292 115 14646 x i0- Srad/s = 1.002737811 891 ro_/d
m

= 15.041067 17837 "'/s (°/h) = 360.9856122808 °/d

Rotational velocity at the equator:

-6

f_m Ro __465.1035 (1 ± 3.2 x 10 ) = 465.1035 ± 0.0015 m/s

Centrifugal acceleration at the equator:

2

f_ Ro = 0.03391588 (1 ± 3.2 x 10 -6 ) = 0.03391588 ± 0.00000011 m/s 2

Centrifugal acceleration factor:

f/a s
R. = 3461.369 x 10-e(1 + 2.2 x 10"s) = (3461.369 + 0.076) x 10 -e

39.

40.

41.

42.
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43. Oblateness coefficients of the Earth's potential:

] = 1623.48 x 10- 6(1 ± 1.8 x 10- 4) = (1623.48 + 0.29) x 10- 6

6
K= _ D= 8.85x 10-6

2
]2 = _ J = 1082.32 x 10-6(1 ± 1.8 x 10 -4) = (1082.32 ± 0.19) x 10- 6

4 8
]4 =- T_ K=- 3-'5- D=-2.36x 10 -6

44. Coefficients of the Earth's gravity formula:

-6 -6

/9 = 5302.92 x 10 ; y =- 5.85 x 10

45. Mass of the Earth's atmosphere:

= _Po. So = (10 332.275 kg/m 2 ). S ®M'tm g

= 5.270195 x 101s(1 +_6.6 × 10 -6) = (5.270195 ±0.000035) × 10Is kg

46. Relative mass of the Earth's atmosphere:

"A = Mat m /Mo= 0.881 88 x 10"-6(1 ± 7.3 x 10-4) = (0.881 88 ± 0.00064) x 10 -6

47. Gravity acceleration correction factor:

X = g./(634®/R2o ) = 0.998 165 66 (1 ± 4.0 x 10-7) = 0.998 165 66 -+0.000 000 40

1
I-X =A+_-]-_ K =1834.34x 10 -6 (1+-2.2x10 -4) = (1834.34 +_0.40) x 10 -_

48. Gravity acceleration at the Earth's equator:

g° = 9.780362 (I ± 3.3 x 10 -6 ) = 9.780362 +_0.000032 m/s 2

49. Dynamic oblateness:

H=C-A
C - 3272.09 x 10 -6 (1 ± 1.6 x 10-4 ) = (3272.09 ± 0.54) x 10-6= 1/305.615 ± 0.05

50. Moment of inertia parameter:

3 cq ; 2 M R2 " =0.49616(1±3.4x 10-4)=0.49616+_0.00017
® •

51. Dimensionless moments of inertia:

AM® _ =12 - =0.32969+_0.00011

C
= Is/H = 0.33077 ± 0.00011sg'x'F

B-44

•j'



k'..._ /

52. Unit for the Earth's momenta of inertia:

• 1038 4) 1038 2MeR 2 = 2.43114x (1±7.3x 10- --(2.43114±0.0018)x kgm

53. Earth's moments of inertia:

A = 0.801 52 × 103s(1 ± 1.07 x 10 -3 ) = (0.801 52 ± 0.00086) x 1038kg m 2

C = 0.80415 x 1038(1 -+ 1.07 x 10 -3 ) =(0.80415 ± 0.00086) x 1038kg m 2

C-A = 2.6313 x 1035(1 ± 9;1 x t0 -4 ) = (2.6313 +- 0.0024) x 103Skg m 2

54. Angular momentum:

= 10 33 103:*C _ 5.8640 x (1 ± 1.07 x i0 -3) = (5.8640 ± 0.0063) x kg m2/s

55. Rotational energy:

i 1029 3) 1029C_ 2 : 2.1380x (1 ±1.07x 10- = 2.1380:t0,0023) x kg m2/a=(joule)

56. Circular velocity at the Earth's equator:

u¢i r = ,,/_-----7-_-, = 7905.404 (I + 7.7 x 10 -6) = 7905.404 +- 0.061 m/s

3. LUNAR CONSTANTS

57. Mean observed distance from the Earth:

T, = 384402.0 (1 ± 2.6 x 10 -6 ) = 384402.0 ± 1.0 km

58. Relative mean lunar distance:

-6

_',/R,= 1/sin rtt = 60.26838 (1 +5.8x 10 )=60.26838±0,00035

59. Constant part of the sine of the perturbed lunar parallax :

• sin _e

lr, : sin 1-----v" : 3422/'438 (1 ± 5.8 x 10 -6) : 3422:'438 ± 0:'020

60. Mean perturbed equatorial horizontal parallax:

rt = 3422:'595 (i ± 5.8 x 10 -6 ) = 3422:'595 + 0['020

61. Semi-major axis of the Moon' s orbit:

a, = 1.000907681 _ -* 384750.9 (1+ 2.6 x 10-6) =, 384750.9 ± 1.0 km

62. Siderial mean orbital motion (for 1950.0):

n, = 13.1763582598 °/d=0.549014912685 "'/s (°/h)

= 2.66169940799 x 10 -6 rad/s
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63. Mean orbital velocity:

v, --a, n,= 1024.091(1 +-2.9x 10 -e)= 1024.091±0.003 m/s

64. Lunar inequality in the Moon's ecliptic longitude:

L = 6:'4439 (1 ± 3.0 x 10 -4 ) = 6/'4439 + 0"0019

65. Parallactic inequality in the Moon's ecliptic longitude:

P. = 124:'986 (1 ± 3.3 x 10 -s) = 124:'986 ± 0/'004

66. Mass ratio of the Earth to the Moon:

1/g = ,_I®,/M, = 81.250 (1+__3.0x 10-4)= 81.250±0.024

67. Mass ratio of the Earth-Moon system to the Earth:

1+_= (Ms+M,)/M e = 1.0123077 (1±3.7x I0 -6)= 1.0123077±0.0000037

68. Gravitational parameter of the Moon:

/_, = GSt, = 4905.92 (1+- 3.1 x 10 -4)= 4905.92 ±1.52 km3/s2

69. Mass:

M, = 7.3552 x 102s (1 ± 1.02 x 10 -_) = (7.3552 ± 0.0075) x 10 2s g

70. Moon's semi-diameter at mean distance:

s t = 932:'72 (1 _+ 1.0 x 10 -4 ) = 932:'72 +- 0/'09

71. Relative radius of the visible disk of the Moon:

t_ = R, /Re= 0.2725 289 (1 +- 1.0 x l0 -4) = 0.2725 289 ± 0.0000273

72. Radius of the visible disk of the Moon:

b+c
R, = --_ = 1738 236(1+1.0x 10-4)= 1738 236±174m

73. Longest semi-axis directed to the Earth:

-4

a= R, /0.9995 918= 1738946(1 _" i;07x 10 )= 1738946± 186m

74. Medium semi-axis in orbital direction:

b=0.9998116 a -- 1738618 (1+-l.20x 10-4)= 1738618±209m

75. Shortest semi-axis (rotational or polar radius):

c= 0.9993720 a= 1737854(1 ± 1.08x 10 -4 )= 1737854± 188m
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76. Volume:

4

V,=_- rt abc =2.20086x i02s (1-+ 3.35 x I0 -4)= (2.20086 _+0.00074)x 102Scm 3

77. Mean density:

_', = 3.3420 (I + 1.5 x 10 -a) = 3.3420 ± 0.0050 g/cm 3

78. Surface density:

p = 3.290 g/cm 3
0

79. Central density:

P c = 3.420 g/Cm 3

80. Inhomogenity factor of the Moon:

>, = 0.1991 (i ± 5.0 x 10 -4) -- 0.1991 ± 0.0001

81. Dimensionless moment of inertia parameters:

C-B
f= C-A = 0.70 (1 _- 2.86 x 10 -2 ) = 0.70 ± 0.02

C-B

C
- 0.0004395 (1 -+ 3.03 x 10 -2 ) = 0.0004395 _* 0.0000133

/9 C-A =0.0006279 (I+-1.6x 10-4)= 0.0006279 _-0.000 0001
C

B-A
- 0.0001884 (1 +- 6.85 x 10 -2 ) = 0.0001884 -+ 0.0000129

3 C

g = 2 M. a-_ =0.5972 ( 1 _+ 5.0 x 10 -4) = 0.5972 + 0.0003

3 C- 1/2 (A+B)

] = T M, a2 = 0.000 3187 (1 ± 1.38 x 10-2)= 0.0003187_+ 0.0000044

K = = 0.000 1125 (1 ± 6.84 x 10 -2) = 0.000 1125 ± 0.0000077

L
3C-A

2 M. a2
= 0.0003750(1 -+2.1x 10 -3 ) =0.0003750±0.0000008

82. Dimensionless moment of inertia differences:

C-A
= 0.0002500 (1 ± 2.1 x 10 -3) = 0.0002500 ± 0.0000005

C-B 9

= 0.0001750 (1 +- 3.09x 10-') = 0.0001750 ± 0.0000054
Ma aT
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82. Dimensionless moment of inertia differences (Conthaued):

B-A
= 0.0000750 (1 -+ 6.84 x 10- s) = 0.0000750 + 0.0000051

83. Dimensionless moments of inertia:

,4
= 0.397877(1 _" 5.0 x 10 -4 ) = 0.39787?x 0.00020

B
=0.397952(1-+ 5:0× 10 -4 ) =0.397952 +-0.00020a., 2.

C

=0.39812r(lx5.0× 10-4)= 0.39812r +-0.00020

84. Axial ratios of the Moon:

b 1 = 0.9998 116 (1 + 1.3 x 10 -s) 0.9998 116 + 0.0000 129
a

7-=_/1 lty

1
a =R,,'a =

0.9993720 (i _" 1.0 , I0 -6) = '_ "_o3- - u.:,;,,_ 720 ± 0.0000010

b c
_-1=, 0.9995918 (1± 7,0× 10-6)= 0.9995 918 :_ 0.0000070-a-

+

85. Oblateness coefficients of the potential function of the Moon:

C- 1//2 (,at + B) 2
]a = 31. aS -- -_ ] =0.0002125 + 0.0000029

_2) B - A 1

]a 4 ,_l.a a = g K = 0.0000188 ±0.0000013

86. Unit for the Moon's moments of inertia:

Mca s= 2.22416 x lOaS(l±l.2x 10-s)= (2.22416 ±0.0027) x lO ss kgm s

87. Moment of inertia differences:

_1 (A + B) = 0.000473x 10 as(1 -+ 1.50 x 10 -s)= (0.000473±0.000007) x 10aSkgmSC- 2

B-A = 0-000167x 10as(1 +6.96x 10 -s)= (0.000167 ±0.000012) x l0 sskgm s

88. Moon's moments of inertia:

A = 0.88494 x 10 as (1 ± 1.73 x 10 -s) = (0.88494 +- 0.001 53) x 10SSkg m 2

B= 0.88511x 10as(1 + 1.73x i0 -a) =(0.88511+_0.00153) x 10aSkgm 2

C=0.88550x 10aS(l± 1.73x 10 -s) =(0.88550+-0.00153) x 10aSkgm a

B-48



INDEX

(A_

Acceleration, gravitational .....................

Accuracy, tracking ..........................

Adams- Bashforth method ......................

Aerodynamic heating .........................

Page

II-9-14

XI-12-20

IV-9-10

IX-14-17

Air drag, perturbation of satellite orbits by .......... V-1-55, IV-3

Angular momentum smoothing,. .................

Angular orbital elements ......................

Anomaly, eccentric, equations for ................

series expansions, .......................

mean, equations for ........................

figures ...............................

series in, .............................

true, equations for .........................

series for, ............................

Apogee radius, equations for ....................

Apogee velocity, equations for ...................

Area coverage, ............................

Areas, law of .............................

Argument of perigee, equations for ...............

Ascending node, equations for ...................

Astronomical unit ...........................

Astronautical constants .......................

Atmospheric density, U.S. Standard 1962 ............

variability ..............................

Attitude control, modes of .....................

Attitude sensing, methods of ....................

Axis, semimajor, equations for ..................

semiminor, equations for ....................

Azimuth, equations for ........................

VII-44-46

III-4-37

III- 21

III- 26

III-25

II!-76-87

III-26-34

III-23

III- 27

III- 19

III-20

XIII- 17-26

III- 2

III-24

III-24

II-2-15

II-4

II-21-31

II-31-38

XII-31-55

XII-44-48

III- 17

III- 17

III-37



(B)

Ballistic coefficient ..........................

effective ................................

tumbling ................................

Bessel functions ............................

asymptotic series .........................

integrals ...............................

modified ................................

reduction formulas .........................

Bibliographies (see references)

(c)

Central force field ..........................

Change in orbital velocity due to

impulsive burning of an injection rocket .........

in satellite in-orbit position ...................

Closure (rendezvous), (see final closure)

Coefficient of drag ...........................

effective ................................

Coefficients of potential, function .................

Compatible orbits rendezvous ...................

Computation of orbits, .......................

Conic motion, .............................

Constants, astronautical .......................

conversion, .............................

geocentric ..............................

heliocentric .............................

planetocentric ............................

selenocentric, ...........................

Control requirements ........................

Conversion factors, table of ....................

Page

V-4-6

V-20

V-6-8

V-16

V-17

V-16

V-17

V-17

lll-2

VI-2, 6

VI-6-8, ii

V-3-6

V-20

II-9-14

VII-9-12

IX-25-30

III- 1 - 7

1I-2

II-50-56

II-9-14

II-4-5

II-5 -8

II-14-15

Xli-47-55

II-50-56

ii



Coordinate systems, geometrical properties of .......

Coordinate systems, important, summary ...........

Coordinates and transformations .................

Cosmic radiation ...........................

Cryogenic fluids, properties of ..................

Cryogenic tanks, design of .....................

Coverage, area, ...........................

effects of sensor limitations ..................

Cowell's method ............................

(D)

Decay histories ............................

circular orbits ...........................

effects on coverage ........................

elliptic orbits ............................

Decay rates, circular orbits ....................

elliptic orbits ............................

expansions for small parameter ................

Deceleration, re-entry ........................

Declination, equations ........................

Definitions ................................

Density, atmospheric (see atmospheric density)

Departure, orbital (see Orbital Departure)

Direct launch (rendezvous) .....................

Docking, orbital (see Rendezvous)

Drag, atmospheric ..........................

in circular orbits ..........................

coefficient ..............................

effect on the orbit (perturbations), ..............

for tumbling bodies ........................

Differential corrections, maneuvers ...............

orbit improvement .........................

Page

IX-2

IX-3

IX-2-6

II-41-45

X-10

X-11

XII I- 17 - 24

XIII- 26 - 31

IV-4

IX-2 - 18

V-9-10

VIII-25-26

V-13-21

V-18

V-19

V-11

IX-12-14

III- 37

Appendix A

VII-12-13

V-3-8

V-9-10

V-4-8

V-8-55

V-6-8

VI-33-39

XI-37-43

iii



(E)

Eccentricity, equations for ....................

series expansions in.......................

Eckert-Brouwer differential corrections ...........

Eclipses of earth satellites ....................

Ecliptic coordinates ........................

Elements, elliptic, equations for ................

hyperbolic, equations for ....................

Elliptic orbits, computation of..................

correction of............................

discussion of............................

Encke's method ...........................

Energy, equation ...........................

kinetic ................................

loss due to drag ..........................

minimization of..........................

potential ...............................

total .................................

Error analysis, of elliptic orbits ................

Page

III- 18

III-26-34

XI-37-42

XIII- 6 - 14

XI-2-6

III-16-34

III-34-38

XI-22 -47

VI-2 -52

III-2-13

IV-4-5

Ill-5

II-5

V-9

VI-43-50

II-5

II-5

XII-2 -28

of orbital departure ....................... VIII-5-6, 22-23

of maneuvers, ......... .................

Errors in numerical integration ................

Extraction of information (see Orbit Computation) ....

(F)

Final closure (rendezvous) ....................

analytic solutions .........................

techniques .............................

energy and time requirements ................

terminal smoothing .......................

Finite burning times--effects on departure .........

effects on maneuvers, .....................

VI-39-42

IV- 7-14

XI-12-22

VII-15-54

VII-50-54

VII-26-54

VII-40-44

VII-44-50

VIII-19-22

VI-50-53

iv

8..-- _



Page

Flight path angle, equations for .................. 111-22

Flight time, equations for ...................... III-6

figures ................................. III-45, 76-87

lifetimes ...............................

re -entry ................................

rendezvous, .............................

return from orbit ..........................

Flow regimes ..............................

Force, central, ............................

Formulations for elliptic orbits ..................

Fourier- Bessel expansions .....................

Frequency- departure .........................

(G)

Gauss- Jackson method ........................

General maneuver, ..........................

General perturbations ........................

Geocentric constants, ........................

coefficients of the potential function ..............

flattening and equatorial radius ................

gravitational constant .......................

Geodetic latitude ............................

Geometry, of ellipse, ........................

of hyperbola .............................

of orbit in 3-D ............................

of parabola ..............................

Geophysical data ............................

Glossary .................................

Ground resolution, ................ ..........

Ground swath, .............................

Guidance and control requirements ...............

V-2-30

IX-2-t2

VII-40-44

VIII-19-22

V-2 -3

III- 2

III- 16-34

III-30-34

VIII-24-30

IV-l!

VI-23-26

IV-14-50

I1-9-14

II- 12

II-12-14

II-11

XI-4

III-46

III-47

III-46

III-47

II-15-50

Appendix A

XIII-26-32

XIII- 17 - 26

XII-2-28

V



(H)

Heat balance, .............................

Heat input ................................

Heat transfer ..............................

Heliocentric constants ........................

planetary geometry ........................

planetary masses ..........................

planetary orbits ...........................

solar gravitation constant ....................

solar parallax ............................

Hyperbolic orbits, element relations ..............

time variant relations .......................

(1)

Illumination of satellites .......................

Improvement of orbit .........................

Impulsive maneuvers .........................

Inclination, equations for ......................

Integration, numerical, errors in .................

Intermediate orbits, rendezvous .................

(J)

Ji (coefficients of the gravitational potential) .........

(K)

Keplerian orbits ............................

Kepler's equation ...........................

solution by Newton's method ..................

Krylov-Bogoliuboff averaging method ..............

(L)

Lagrange's planetary equations ..................

Lambert's theorem ..........................

Page

X-4

X-5

X-II

II-4-5

II-5 -8

II-5

II-8-9

II-4

II-4

III-35-36

III-36-37

XIII- 6- 14

XI-37-43

VI-2 -38

III-24

IV-12-14

VII-5-9

II-9-14

III- 1 - 14

III- 6

III- 6

V-15

IV-20-21

Ill- 7 - 9

vi



\

S

Page

Lifetimes ................................ V-I-29

drag coefficients .......................... V-4-6

drag force .............................. V-3-4

drag on tumbling bodies ..................... V-6-8

effect of density variability ................... V-25-30

flow regimes ............................. V-2-3

three dimensional perturbation ................. V-21-25

change in elements ....................... V-22-25

perturbing force ......................... V-21-22

two-dimensional perturbation .................. V-8-21

elliptic orbits ........................... V- 10- 12

near circular orbits ...................... V-9-10, 18-19

variation of elements .....................

Low altitude orbits, departure from ...............

Low level thrust maneuvers ....................

Lunar perturbations .........................

(M)

Maneuverability ............................

envelopes, ..............................

lifting bodies .............................

re- entry, ...............................

Maneuvers, ...............................

differential corrections ......................

distribution of the resulting orbit ...............

effects of finite burning time ..................

general .................................

impulsive corrections .......................

in orbit propulsion system ....................

independent adjustment of elements, .............

microthrust study .........................

optimization .............................

V-12-18

VIII- 17 - 23

VI-56-64

IV-36-40

IX-18-21

IX-21

IX-21

LX-18-21

VI- 1 - 64

VI-33 -39

VI-39-43

VI-50-53

VI-23 -26

VI-2-3

VI-53 -56

VI-3-15

VI-56-64

VI-43 -50

vii



propulsion for canceling drag and

oblateness ............................

small maneuvers in nearly circular orbits .........

Mean anomaly (see Anomaly, mean)

Meteoroid, data ............................

hazard and shielding ........................

penetration ..............................

Method of least squares .......................

Microthrust, normal to the plane .................

circumfe rential ...........................

general ................................

radial .................................

tangential ...............................

Minimum energy transfe rs .....................

Mission requirements ........................

area coverage, ...........................

communication satellites .....................

eclipses ................................

ground tracks ............................

meteorological satellites .....................

mission considerations ......................

navigation satellites ........................

pattern coverage ..........................

point coverage ............................

reconnaissance satellites .....................

relative geometry vehicle, earth, sun .............

satellite coverage ..........................

sensor limitations .........................

solar problems ...........................

synchronous orbits .........................

Model atmospheres ..........................

Page

VI-26-33

VI-15-23

iI-4_-50

II-50

II-49

XI-30-36

VI- GO

VI-58

VI-60-64

VI-57-58

VI-58

VI-43-50

XIII- 1-32

XlII- 17-21

XIII- 2 - 4

XIII- 8 - 14

XIII- 14-17

XIII-6

XIII- 2 - 6

XIII- 4 - 6

XIII- 21-24

XIII-24-26

XIII- 2

XIII- 6 - 8

XIII- 17 - 26

XIII-26-32

XIII- 6 - 14

XIII-16-17

II-15-38

viii



i"

:i

Molecular speed ratio ........................

Motion, equations of.........................

(N)

Node, ascending, equations for, .................

Nomography ...............................

Nongravitational forces .......................

Numerical integration ........................

(O)

Orbit computation ...........................

accuracy determination ......................

acquisition of data .........................

coordinate systems and transformations ..........

data correction ...........................

Gibbs' modification .........................

maximum likelihood ........................

method of Laplace .........................

method of least squares .....................

method of Gauss ..........................

method of moments ........................

minimum variance, ........................

observational error ........................

orbit improvement, ........................

preliminary orbits .........................

station properties .........................

tracking techniques ........................

Orbital departure ...........................

analysis of departure frequencies ...............

generalized return problem ...................

planar analysis of deorbit from low altitude circular

orbits ................................

three-dimensional impulse analyses .............

Page

V-4

III- 2

111-24

II1-14-15

IV-3 -4

IV-7-i4

XI-I-47

XI-43 -47

XI-14-22

XI-2-14

XI-2-11

XI-26-27

XI-36

XI-22 -25

XI-30-37

XI-25-26

XI-36-37

XI-36

XI-28-37

XI-37-43

XI-22-28

XI-14-16

XI-12-14

VIII-3 -30

VIII-24-30

VlII-3-17

VIII-17-23

VIII-23 -24

ix



Orbit mechanics ............................

graphical data ............................

Lagrangian equations .......................

Lambert's theorem ........................

motions in central force field ..................

motion in 3-D ............................

N-body problem ...........................

nornograms, .............................

orbital elements ...........................

properties of elliptic motion ..................

series expansion for elliptic orbits ..............

tables of equations for elliptic motion ............

Oblate earth ...............................

Oblateness, comparison of theories ...............

perturbations ............................

long period ..............................

secular, ...... . ........................

short period .............................

Observational theory and trajectory prediction .......

Optimization, of area coverage ..................

of maneuvers, ...........................

of satellite patterns ........................

Orbit determination ..........................

Orbit improvement ..........................

Orbital parameters, equations for ................

Orbital perturbations, equations for ...............

Orientation, satellite .........................

Osculating orbital elements ....................

(P)

Parallax, lunar .............................

solar, .................................

Pag e

III-1-39

III-39-87

III-3

III- 7 - 9

111-2 -3

III-4

111-9-12

111-14-15

III-3

III-4-7

III-12-14

111-15-38

II-9-14

IV-31-36

IV-21-31

IV-24

IV-23 -24

IV-24 -25

XI-28-37

XIII- 17 -26

VI-43 -50

XIII- 21 -28

XI-22-28

XI-37-42

111-17-38

IV-23-40

XIII- 6-14

IV-15-21

H-14

I1-4

X



-

Parameters, variation of ...................

Parking orbits, utilization of, ...............

Penetration, meteorite ....................

Perigee advance, due to drag ................

due to oblateness .......................

Perigee radius, equations for ................

Perigee velocity, equations for ...............

Period, anomalistic ......................

changes due to drag, ....................

changes due to oblateness .................

nodal ...............................

sidereal, ...........................

Perkins' method for decay rates ..............

Perturbation theories, analytic comparison of, ....

CoweLl' s method .......................

drag perturbations .....................

Encke's method ........................

first order secular .....................

general .............................

higher order, ........................

numerical integration ...................

oblateness, ..........................

precession of apsides ...................

regression of nodes .....................

solar-lunar, .........................

special .............................

stability............................

variation of parameters ..................

Physical data ..........................

astronomical constants, .................

Page

IV-15-21

VII- 5 - 9

VIII- 3 - 17

V-i3

IV-23 -24

III- 19

III-20

IV-22

VIII-25-27

IV-21-22

IV-22

IV-22

V-18-19

IV-31-36

IV-4-5

IV-40-45

IV-5-6

IV-21-23

IV-15-40

IV-23-31

IV-7-14

IV-21-31

IV-24

IV-24

IV-36-40

IV-2-7

IV-47-50

IV-6-7-15-21

II-2-56

II-2-15

xi



astrophysical data .....................

conversion data .......................

Planets, geometry of .....................

masses of, ..........................

elements of orbits ......................

Potential function ........................

Precession of apsides .....................

Primary cosmic radiation ..................

Propellant storage in orbit .................

Propulsion requirements to cancel effects

of oblateness .......................

Propulsion system .......................

chamber sizing ........................

nozzle sizing .........................

propellant flow rates ....................

requirements .........................

thrust level ..........................

(R)

Radar data ............................

Radial acceleration, equations for .............

Radial velocity, equations for,

Radiation, damage thresholds ................

penetrating electromagnetic, ..............

primary cosmic .......................

solar flare radiations ....................

Van ALien belts,

Radius, earth's equatorial ..................

equivalent ............................

polar ..............................

orbital, equations for ....................

series, ...........................

xii

Page

II-15-50

II-50-56

11-5-9

II-5

II-8

II-9

IV-24

II-43 -45

X-10-15

VI-26-33

VI-53-56

VI-55

VI-54

VI-56

VI-53

VI-54

XI-12-22

III-22

II-2I, 22

II-45

II-45

II-41-45

II-39, 40

II-40, 41

II-12-14

If-19

II-12-14

IH-21

III-27, 28



f

Range, descent from orbit to re-entry ..........

ballistic vehicles re-entry to impact .........

equilibrium glide re-entry to impact .........

lateral re-entry to impact ................

lifting vehicles re-entry to impact ...........

Re-entry, aerodynamic heating ...............

deceleration and loads ...................

range and maneuverability ................

theory ..............................

trajectories ..........................

References and bibliography, guidance and control, .

lifetime .............................

maneuvers, ..........................

mission requirements ...................

orbit computation ......................

orbit mechanics .......................

orbital departure ......................

perturbations .........................

physical data .........................

re-entry, ...........................

rendezvous, .........................

waiting orbit criteria ...................

Regression of the nodes ...................

Rendezvous, ...........................

compatible orbits, .....................

direct launch .........................

energy and time requirements ..............

final closure techniques ..................

gross maneuvers, .....................

homing phase errors ....................

intermediate orbits .....................

long time closures .....................

Page

VIII- 17- 23

IX- 17, 18

IX-19

IX-18-21

IX-17-21

IX-14-17

IX-12-14

IX-17-21

IX-2 -22

IX-2-12

XII-56-63

V-30-35

VI-64-75

XIII-32 -35

XI-47-49

III-39-41

VIII- 30

IV-50-59

II-56-63

IX-21-29

VII-54-57

X-15-21

IV-24

VII-l-53

VII-9-12

VII-12-13

VII-40-44

VII-26-40

VII-3-13

VII-53 -59

VII- 2 - 9

VII-50-53

/

xiii



relative motion, .......................

terminal guidance smoothing, . . ............
terminal manuever .....................

Return from orbit (see Re-entry and
Orbit Departure)

iRunge-Kutta method ......................

(s)

Satellite, energy ........................

ground tracks .........................

illumination ..........................

orbital data ..........................

orientation with respect to the sun ...........

recovery, ...........................

Selenocentric constants ....................

Simulatus rectum (see Semiparameter)

Semimajor axis, equations for ...............

Semiparameter, equations for ...............

Sensitivities, trajectories ..................

Series expansions of orbital parameters ........

Smoothing techniques, general ...............

rendezvous, ..........................

Solar, gravitational constant ................

parallax ............................

perturbations, ........................

radiation ............................

Special perturbations .....................

Spherical trigonometric relations .............

Statistical error analysis (maneuvers) ..........

Storability, cryogenic .....................

Swath ................................

Page

VII-13-26

VII-44 -50

VII-13-54

IV-7-8

III- 5

XIII- 14 - 17

XIII- 6 - 14

111-15-39

XIII- 6 - 14

VIII, IX

11-14-15

III- 17

III- 18

XII-2 -28

III-26-34

XI-28-42

VII-44-50

II-5

II-4

IV-36-40

II-39-40

IV-2-14

III-37, 38

IV-39-43

X-10-15

XIII- I 7 - 2 6

xiv



(T)

Temperatures, histories for re-entry ..........

parameters, ........................

radiation equilibrium ....................

skin ...............................

stagnation point .......................

Terminal guidance for rendezvous .............

Theory of errors in orbital prediction ..........

Three dimensional elliptic relations ...........

Time dependent variables for elliptic orbits ......

Time standards and conversions ..............

Tracking facilities .......................

Trajectories, re-entry ....................

Transfer maneuvers ......................

Transformation of coordinates ...............

True anomaly, equations for .................

series expansions ......................

(u)

Umbra, time in .........................

Upper atmosphere, models of ................

Universal gravitation, low of ................

(v)

Van Allen radiation ......................

Variation of parameters ...................

Vis Viva integral ........................

Visibility times .........................

(w)

Waiting orbit criteria .....................

cryogenic propellant storage, ..............

Page

IX-14-17

IX-14-17

IX-16

IX-14-17

IX-14-17

VII- 13-54

XII-2-2

III-4

III-21-23

II-50-56

XI- 12 -22

IX-2-12

VI-2-33

XI-2-12

III-23

II1-27

XIII-6-14

II-15-38

II-2

II-40, 41

IV-15-21

III- 5

XIII- 17 - 26

XV



payload and geometrical restrictions

vehicle temperature control ...............

Weights and volume conversions ..............

(z)

Z function for re-entry ....................

Zenith angle of a satellite..................

Page

X-2-4

X-4-10

II-50-56

IX-2-12

XIII-24-25

xvi


